DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (d8847129d134)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996

/*
 * Copyright 2006 The Android Open Source Project
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */


#include "SkBlurMask.h"
#include "SkMath.h"
#include "SkTemplates.h"
#include "SkEndian.h"


// This constant approximates the scaling done in the software path's
// "high quality" mode, in SkBlurMask::Blur() (1 / sqrt(3)).
// IMHO, it actually should be 1:  we blur "less" than we should do
// according to the CSS and canvas specs, simply because Safari does the same.
// Firefox used to do the same too, until 4.0 where they fixed it.  So at some
// point we should probably get rid of these scaling constants and rebaseline
// all the blur tests.
static const SkScalar kBLUR_SIGMA_SCALE = 0.57735f;

SkScalar SkBlurMask::ConvertRadiusToSigma(SkScalar radius) {
    return radius > 0 ? kBLUR_SIGMA_SCALE * radius + 0.5f : 0.0f;
}

SkScalar SkBlurMask::ConvertSigmaToRadius(SkScalar sigma) {
    return sigma > 0.5f ? (sigma - 0.5f) / kBLUR_SIGMA_SCALE : 0.0f;
}

#define UNROLL_SEPARABLE_LOOPS

/**
 * This function performs a box blur in X, of the given radius.  If the
 * "transpose" parameter is true, it will transpose the pixels on write,
 * such that X and Y are swapped. Reads are always performed from contiguous
 * memory in X, for speed. The destination buffer (dst) must be at least
 * (width + leftRadius + rightRadius) * height bytes in size.
 *
 * This is what the inner loop looks like before unrolling, and with the two
 * cases broken out separately (width < diameter, width >= diameter):
 *
 *      if (width < diameter) {
 *          for (int x = 0; x < width; ++x) {
 *              sum += *right++;
 *              *dptr = (sum * scale + half) >> 24;
 *              dptr += dst_x_stride;
 *          }
 *          for (int x = width; x < diameter; ++x) {
 *              *dptr = (sum * scale + half) >> 24;
 *              dptr += dst_x_stride;
 *          }
 *          for (int x = 0; x < width; ++x) {
 *              *dptr = (sum * scale + half) >> 24;
 *              sum -= *left++;
 *              dptr += dst_x_stride;
 *          }
 *      } else {
 *          for (int x = 0; x < diameter; ++x) {
 *              sum += *right++;
 *              *dptr = (sum * scale + half) >> 24;
 *              dptr += dst_x_stride;
 *          }
 *          for (int x = diameter; x < width; ++x) {
 *              sum += *right++;
 *              *dptr = (sum * scale + half) >> 24;
 *              sum -= *left++;
 *              dptr += dst_x_stride;
 *          }
 *          for (int x = 0; x < diameter; ++x) {
 *              *dptr = (sum * scale + half) >> 24;
 *              sum -= *left++;
 *              dptr += dst_x_stride;
 *          }
 *      }
 */
static int boxBlur(const uint8_t* src, int src_y_stride, uint8_t* dst,
                   int leftRadius, int rightRadius, int width, int height,
                   bool transpose)
{
    int diameter = leftRadius + rightRadius;
    int kernelSize = diameter + 1;
    int border = SkMin32(width, diameter);
    uint32_t scale = (1 << 24) / kernelSize;
    int new_width = width + SkMax32(leftRadius, rightRadius) * 2;
    int dst_x_stride = transpose ? height : 1;
    int dst_y_stride = transpose ? 1 : new_width;
    uint32_t half = 1 << 23;
    for (int y = 0; y < height; ++y) {
        uint32_t sum = 0;
        uint8_t* dptr = dst + y * dst_y_stride;
        const uint8_t* right = src + y * src_y_stride;
        const uint8_t* left = right;
        for (int x = 0; x < rightRadius - leftRadius; x++) {
            *dptr = 0;
            dptr += dst_x_stride;
        }
#define LEFT_BORDER_ITER \
            sum += *right++; \
            *dptr = (sum * scale + half) >> 24; \
            dptr += dst_x_stride;

        int x = 0;
#ifdef UNROLL_SEPARABLE_LOOPS
        for (; x < border - 16; x += 16) {
            LEFT_BORDER_ITER
            LEFT_BORDER_ITER
            LEFT_BORDER_ITER
            LEFT_BORDER_ITER
            LEFT_BORDER_ITER
            LEFT_BORDER_ITER
            LEFT_BORDER_ITER
            LEFT_BORDER_ITER
            LEFT_BORDER_ITER
            LEFT_BORDER_ITER
            LEFT_BORDER_ITER
            LEFT_BORDER_ITER
            LEFT_BORDER_ITER
            LEFT_BORDER_ITER
            LEFT_BORDER_ITER
            LEFT_BORDER_ITER
        }
#endif
        for (; x < border; ++x) {
            LEFT_BORDER_ITER
        }
#undef LEFT_BORDER_ITER
#define TRIVIAL_ITER \
            *dptr = (sum * scale + half) >> 24; \
            dptr += dst_x_stride;
        x = width;
#ifdef UNROLL_SEPARABLE_LOOPS
        for (; x < diameter - 16; x += 16) {
            TRIVIAL_ITER
            TRIVIAL_ITER
            TRIVIAL_ITER
            TRIVIAL_ITER
            TRIVIAL_ITER
            TRIVIAL_ITER
            TRIVIAL_ITER
            TRIVIAL_ITER
            TRIVIAL_ITER
            TRIVIAL_ITER
            TRIVIAL_ITER
            TRIVIAL_ITER
            TRIVIAL_ITER
            TRIVIAL_ITER
            TRIVIAL_ITER
            TRIVIAL_ITER
        }
#endif
        for (; x < diameter; ++x) {
            TRIVIAL_ITER
        }
#undef TRIVIAL_ITER
#define CENTER_ITER \
            sum += *right++; \
            *dptr = (sum * scale + half) >> 24; \
            sum -= *left++; \
            dptr += dst_x_stride;

        x = diameter;
#ifdef UNROLL_SEPARABLE_LOOPS
        for (; x < width - 16; x += 16) {
            CENTER_ITER
            CENTER_ITER
            CENTER_ITER
            CENTER_ITER
            CENTER_ITER
            CENTER_ITER
            CENTER_ITER
            CENTER_ITER
            CENTER_ITER
            CENTER_ITER
            CENTER_ITER
            CENTER_ITER
            CENTER_ITER
            CENTER_ITER
            CENTER_ITER
            CENTER_ITER
        }
#endif
        for (; x < width; ++x) {
            CENTER_ITER
        }
#undef CENTER_ITER
#define RIGHT_BORDER_ITER \
            *dptr = (sum * scale + half) >> 24; \
            sum -= *left++; \
            dptr += dst_x_stride;

        x = 0;
#ifdef UNROLL_SEPARABLE_LOOPS
        for (; x < border - 16; x += 16) {
            RIGHT_BORDER_ITER
            RIGHT_BORDER_ITER
            RIGHT_BORDER_ITER
            RIGHT_BORDER_ITER
            RIGHT_BORDER_ITER
            RIGHT_BORDER_ITER
            RIGHT_BORDER_ITER
            RIGHT_BORDER_ITER
            RIGHT_BORDER_ITER
            RIGHT_BORDER_ITER
            RIGHT_BORDER_ITER
            RIGHT_BORDER_ITER
            RIGHT_BORDER_ITER
            RIGHT_BORDER_ITER
            RIGHT_BORDER_ITER
            RIGHT_BORDER_ITER
        }
#endif
        for (; x < border; ++x) {
            RIGHT_BORDER_ITER
        }
#undef RIGHT_BORDER_ITER
        for (int x = 0; x < leftRadius - rightRadius; ++x) {
            *dptr = 0;
            dptr += dst_x_stride;
        }
        SkASSERT(sum == 0);
    }
    return new_width;
}

/**
 * This variant of the box blur handles blurring of non-integer radii.  It
 * keeps two running sums: an outer sum for the rounded-up kernel radius, and
 * an inner sum for the rounded-down kernel radius.  For each pixel, it linearly
 * interpolates between them.  In float this would be:
 *  outer_weight * outer_sum / kernelSize +
 *  (1.0 - outer_weight) * innerSum / (kernelSize - 2)
 *
 * This is what the inner loop looks like before unrolling, and with the two
 * cases broken out separately (width < diameter, width >= diameter):
 *
 *      if (width < diameter) {
 *          for (int x = 0; x < width; x++) {
 *              inner_sum = outer_sum;
 *              outer_sum += *right++;
 *              *dptr = (outer_sum * outer_scale + inner_sum * inner_scale + half) >> 24;
 *              dptr += dst_x_stride;
 *          }
 *          for (int x = width; x < diameter; ++x) {
 *              *dptr = (outer_sum * outer_scale + inner_sum * inner_scale + half) >> 24;
 *              dptr += dst_x_stride;
 *          }
 *          for (int x = 0; x < width; x++) {
 *              inner_sum = outer_sum - *left++;
 *              *dptr = (outer_sum * outer_scale + inner_sum * inner_scale + half) >> 24;
 *              dptr += dst_x_stride;
 *              outer_sum = inner_sum;
 *          }
 *      } else {
 *          for (int x = 0; x < diameter; x++) {
 *              inner_sum = outer_sum;
 *              outer_sum += *right++;
 *              *dptr = (outer_sum * outer_scale + inner_sum * inner_scale + half) >> 24;
 *              dptr += dst_x_stride;
 *          }
 *          for (int x = diameter; x < width; ++x) {
 *              inner_sum = outer_sum - *left;
 *              outer_sum += *right++;
 *              *dptr = (outer_sum * outer_scale + inner_sum * inner_scale + half) >> 24;
 *              dptr += dst_x_stride;
 *              outer_sum -= *left++;
 *          }
 *          for (int x = 0; x < diameter; x++) {
 *              inner_sum = outer_sum - *left++;
 *              *dptr = (outer_sum * outer_scale + inner_sum * inner_scale + half) >> 24;
 *              dptr += dst_x_stride;
 *              outer_sum = inner_sum;
 *          }
 *      }
 *  }
 *  return new_width;
 */

static int boxBlurInterp(const uint8_t* src, int src_y_stride, uint8_t* dst,
                         int radius, int width, int height,
                         bool transpose, uint8_t outer_weight)
{
    int diameter = radius * 2;
    int kernelSize = diameter + 1;
    int border = SkMin32(width, diameter);
    int inner_weight = 255 - outer_weight;
    outer_weight += outer_weight >> 7;
    inner_weight += inner_weight >> 7;
    uint32_t outer_scale = (outer_weight << 16) / kernelSize;
    uint32_t inner_scale = (inner_weight << 16) / (kernelSize - 2);
    uint32_t half = 1 << 23;
    int new_width = width + diameter;
    int dst_x_stride = transpose ? height : 1;
    int dst_y_stride = transpose ? 1 : new_width;
    for (int y = 0; y < height; ++y) {
        uint32_t outer_sum = 0, inner_sum = 0;
        uint8_t* dptr = dst + y * dst_y_stride;
        const uint8_t* right = src + y * src_y_stride;
        const uint8_t* left = right;
        int x = 0;

#define LEFT_BORDER_ITER \
            inner_sum = outer_sum; \
            outer_sum += *right++; \
            *dptr = (outer_sum * outer_scale + inner_sum * inner_scale + half) >> 24; \
            dptr += dst_x_stride;

#ifdef UNROLL_SEPARABLE_LOOPS
        for (;x < border - 16; x += 16) {
            LEFT_BORDER_ITER
            LEFT_BORDER_ITER
            LEFT_BORDER_ITER
            LEFT_BORDER_ITER
            LEFT_BORDER_ITER
            LEFT_BORDER_ITER
            LEFT_BORDER_ITER
            LEFT_BORDER_ITER
            LEFT_BORDER_ITER
            LEFT_BORDER_ITER
            LEFT_BORDER_ITER
            LEFT_BORDER_ITER
            LEFT_BORDER_ITER
            LEFT_BORDER_ITER
            LEFT_BORDER_ITER
            LEFT_BORDER_ITER
        }
#endif

        for (;x < border; ++x) {
            LEFT_BORDER_ITER
        }
#undef LEFT_BORDER_ITER
        for (int x = width; x < diameter; ++x) {
            *dptr = (outer_sum * outer_scale + inner_sum * inner_scale + half) >> 24;
            dptr += dst_x_stride;
        }
        x = diameter;

#define CENTER_ITER \
            inner_sum = outer_sum - *left; \
            outer_sum += *right++; \
            *dptr = (outer_sum * outer_scale + inner_sum * inner_scale + half) >> 24; \
            dptr += dst_x_stride; \
            outer_sum -= *left++;

#ifdef UNROLL_SEPARABLE_LOOPS
        for (; x < width - 16; x += 16) {
            CENTER_ITER
            CENTER_ITER
            CENTER_ITER
            CENTER_ITER
            CENTER_ITER
            CENTER_ITER
            CENTER_ITER
            CENTER_ITER
            CENTER_ITER
            CENTER_ITER
            CENTER_ITER
            CENTER_ITER
            CENTER_ITER
            CENTER_ITER
            CENTER_ITER
            CENTER_ITER
        }
#endif
        for (; x < width; ++x) {
            CENTER_ITER
        }
#undef CENTER_ITER

        #define RIGHT_BORDER_ITER \
            inner_sum = outer_sum - *left++; \
            *dptr = (outer_sum * outer_scale + inner_sum * inner_scale + half) >> 24; \
            dptr += dst_x_stride; \
            outer_sum = inner_sum;

        x = 0;
#ifdef UNROLL_SEPARABLE_LOOPS
        for (; x < border - 16; x += 16) {
            RIGHT_BORDER_ITER
            RIGHT_BORDER_ITER
            RIGHT_BORDER_ITER
            RIGHT_BORDER_ITER
            RIGHT_BORDER_ITER
            RIGHT_BORDER_ITER
            RIGHT_BORDER_ITER
            RIGHT_BORDER_ITER
            RIGHT_BORDER_ITER
            RIGHT_BORDER_ITER
            RIGHT_BORDER_ITER
            RIGHT_BORDER_ITER
            RIGHT_BORDER_ITER
            RIGHT_BORDER_ITER
            RIGHT_BORDER_ITER
            RIGHT_BORDER_ITER
        }
#endif
        for (; x < border; ++x) {
            RIGHT_BORDER_ITER
        }
#undef RIGHT_BORDER_ITER
        SkASSERT(outer_sum == 0 && inner_sum == 0);
    }
    return new_width;
}

static void get_adjusted_radii(SkScalar passRadius, int *loRadius, int *hiRadius)
{
    *loRadius = *hiRadius = SkScalarCeilToInt(passRadius);
    if (SkIntToScalar(*hiRadius) - passRadius > 0.5f) {
        *loRadius = *hiRadius - 1;
    }
}

#include "SkColorPriv.h"

static void merge_src_with_blur(uint8_t dst[], int dstRB,
                                const uint8_t src[], int srcRB,
                                const uint8_t blur[], int blurRB,
                                int sw, int sh) {
    dstRB -= sw;
    srcRB -= sw;
    blurRB -= sw;
    while (--sh >= 0) {
        for (int x = sw - 1; x >= 0; --x) {
            *dst = SkToU8(SkAlphaMul(*blur, SkAlpha255To256(*src)));
            dst += 1;
            src += 1;
            blur += 1;
        }
        dst += dstRB;
        src += srcRB;
        blur += blurRB;
    }
}

static void clamp_with_orig(uint8_t dst[], int dstRowBytes,
                            const uint8_t src[], int srcRowBytes,
                            int sw, int sh,
                            SkBlurStyle style) {
    int x;
    while (--sh >= 0) {
        switch (style) {
        case kSolid_SkBlurStyle:
            for (x = sw - 1; x >= 0; --x) {
                int s = *src;
                int d = *dst;
                *dst = SkToU8(s + d - SkMulDiv255Round(s, d));
                dst += 1;
                src += 1;
            }
            break;
        case kOuter_SkBlurStyle:
            for (x = sw - 1; x >= 0; --x) {
                if (*src) {
                    *dst = SkToU8(SkAlphaMul(*dst, SkAlpha255To256(255 - *src)));
                }
                dst += 1;
                src += 1;
            }
            break;
        default:
            SkDEBUGFAIL("Unexpected blur style here");
            break;
        }
        dst += dstRowBytes - sw;
        src += srcRowBytes - sw;
    }
}

///////////////////////////////////////////////////////////////////////////////

// we use a local function to wrap the class static method to work around
// a bug in gcc98
void SkMask_FreeImage(uint8_t* image);
void SkMask_FreeImage(uint8_t* image) {
    SkMask::FreeImage(image);
}

bool SkBlurMask::BoxBlur(SkMask* dst, const SkMask& src,
                         SkScalar sigma, SkBlurStyle style, SkBlurQuality quality,
                         SkIPoint* margin, bool force_quality) {

    if (src.fFormat != SkMask::kA8_Format) {
        return false;
    }

    // Force high quality off for small radii (performance)
    if (!force_quality && sigma <= SkIntToScalar(2)) {
        quality = kLow_SkBlurQuality;
    }

    SkScalar passRadius;
    if (kHigh_SkBlurQuality == quality) {
        // For the high quality path the 3 pass box blur kernel width is
        // 6*rad+1 while the full Gaussian width is 6*sigma.
        passRadius = sigma - (1/6.0f);
    } else {
        // For the low quality path we only attempt to cover 3*sigma of the
        // Gaussian blur area (1.5*sigma on each side). The single pass box
        // blur's kernel size is 2*rad+1.
        passRadius = 1.5f*sigma - 0.5f;
    }

    // highQuality: use three box blur passes as a cheap way
    // to approximate a Gaussian blur
    int passCount = (kHigh_SkBlurQuality == quality) ? 3 : 1;

    int rx = SkScalarCeilToInt(passRadius);
    int outerWeight = 255 - SkScalarRoundToInt((SkIntToScalar(rx) - passRadius) * 255);

    SkASSERT(rx >= 0);
    SkASSERT((unsigned)outerWeight <= 255);
    if (rx <= 0) {
        return false;
    }

    int ry = rx;    // only do square blur for now

    int padx = passCount * rx;
    int pady = passCount * ry;

    if (margin) {
        margin->set(padx, pady);
    }
    dst->fBounds.set(src.fBounds.fLeft - padx, src.fBounds.fTop - pady,
                     src.fBounds.fRight + padx, src.fBounds.fBottom + pady);

    dst->fRowBytes = dst->fBounds.width();
    dst->fFormat = SkMask::kA8_Format;
    dst->fImage = NULL;

    if (src.fImage) {
        size_t dstSize = dst->computeImageSize();
        if (0 == dstSize) {
            return false;   // too big to allocate, abort
        }

        int             sw = src.fBounds.width();
        int             sh = src.fBounds.height();
        const uint8_t*  sp = src.fImage;
        uint8_t*        dp = SkMask::AllocImage(dstSize);
        SkAutoTCallVProc<uint8_t, SkMask_FreeImage> autoCall(dp);

        // build the blurry destination
        SkAutoTMalloc<uint8_t>  tmpBuffer(dstSize);
        uint8_t*                tp = tmpBuffer.get();
        int w = sw, h = sh;

        if (outerWeight == 255) {
            int loRadius, hiRadius;
            get_adjusted_radii(passRadius, &loRadius, &hiRadius);
            if (kHigh_SkBlurQuality == quality) {
                // Do three X blurs, with a transpose on the final one.
                w = boxBlur(sp, src.fRowBytes, tp, loRadius, hiRadius, w, h, false);
                w = boxBlur(tp, w,             dp, hiRadius, loRadius, w, h, false);
                w = boxBlur(dp, w,             tp, hiRadius, hiRadius, w, h, true);
                // Do three Y blurs, with a transpose on the final one.
                h = boxBlur(tp, h,             dp, loRadius, hiRadius, h, w, false);
                h = boxBlur(dp, h,             tp, hiRadius, loRadius, h, w, false);
                h = boxBlur(tp, h,             dp, hiRadius, hiRadius, h, w, true);
            } else {
                w = boxBlur(sp, src.fRowBytes, tp, rx, rx, w, h, true);
                h = boxBlur(tp, h,             dp, ry, ry, h, w, true);
            }
        } else {
            if (kHigh_SkBlurQuality == quality) {
                // Do three X blurs, with a transpose on the final one.
                w = boxBlurInterp(sp, src.fRowBytes, tp, rx, w, h, false, outerWeight);
                w = boxBlurInterp(tp, w,             dp, rx, w, h, false, outerWeight);
                w = boxBlurInterp(dp, w,             tp, rx, w, h, true, outerWeight);
                // Do three Y blurs, with a transpose on the final one.
                h = boxBlurInterp(tp, h,             dp, ry, h, w, false, outerWeight);
                h = boxBlurInterp(dp, h,             tp, ry, h, w, false, outerWeight);
                h = boxBlurInterp(tp, h,             dp, ry, h, w, true, outerWeight);
            } else {
                w = boxBlurInterp(sp, src.fRowBytes, tp, rx, w, h, true, outerWeight);
                h = boxBlurInterp(tp, h,             dp, ry, h, w, true, outerWeight);
            }
        }

        dst->fImage = dp;
        // if need be, alloc the "real" dst (same size as src) and copy/merge
        // the blur into it (applying the src)
        if (style == kInner_SkBlurStyle) {
            // now we allocate the "real" dst, mirror the size of src
            size_t srcSize = src.computeImageSize();
            if (0 == srcSize) {
                return false;   // too big to allocate, abort
            }
            dst->fImage = SkMask::AllocImage(srcSize);
            merge_src_with_blur(dst->fImage, src.fRowBytes,
                                sp, src.fRowBytes,
                                dp + passCount * (rx + ry * dst->fRowBytes),
                                dst->fRowBytes, sw, sh);
            SkMask::FreeImage(dp);
        } else if (style != kNormal_SkBlurStyle) {
            clamp_with_orig(dp + passCount * (rx + ry * dst->fRowBytes),
                            dst->fRowBytes, sp, src.fRowBytes, sw, sh, style);
        }
        (void)autoCall.detach();
    }

    if (style == kInner_SkBlurStyle) {
        dst->fBounds = src.fBounds; // restore trimmed bounds
        dst->fRowBytes = src.fRowBytes;
    }

    return true;
}

/* Convolving a box with itself three times results in a piecewise
   quadratic function:

   0                              x <= -1.5
   9/8 + 3/2 x + 1/2 x^2   -1.5 < x <= -.5
   3/4 - x^2                -.5 < x <= .5
   9/8 - 3/2 x + 1/2 x^2    0.5 < x <= 1.5
   0                        1.5 < x

   Mathematica:

   g[x_] := Piecewise [ {
     {9/8 + 3/2 x + 1/2 x^2 ,  -1.5 < x <= -.5},
     {3/4 - x^2             ,   -.5 < x <= .5},
     {9/8 - 3/2 x + 1/2 x^2 ,   0.5 < x <= 1.5}
   }, 0]

   To get the profile curve of the blurred step function at the rectangle
   edge, we evaluate the indefinite integral, which is piecewise cubic:

   0                                        x <= -1.5
   9/16 + 9/8 x + 3/4 x^2 + 1/6 x^3   -1.5 < x <= -0.5
   1/2 + 3/4 x - 1/3 x^3              -.5 < x <= .5
   7/16 + 9/8 x - 3/4 x^2 + 1/6 x^3     .5 < x <= 1.5
   1                                  1.5 < x

   in Mathematica code:

   gi[x_] := Piecewise[ {
     { 0 , x <= -1.5 },
     { 9/16 + 9/8 x + 3/4 x^2 + 1/6 x^3, -1.5 < x <= -0.5 },
     { 1/2 + 3/4 x - 1/3 x^3          ,  -.5 < x <= .5},
     { 7/16 + 9/8 x - 3/4 x^2 + 1/6 x^3,   .5 < x <= 1.5}
   },1]
*/

static float gaussianIntegral(float x) {
    if (x > 1.5f) {
        return 0.0f;
    }
    if (x < -1.5f) {
        return 1.0f;
    }

    float x2 = x*x;
    float x3 = x2*x;

    if ( x > 0.5f ) {
        return 0.5625f - (x3 / 6.0f - 3.0f * x2 * 0.25f + 1.125f * x);
    }
    if ( x > -0.5f ) {
        return 0.5f - (0.75f * x - x3 / 3.0f);
    }
    return 0.4375f + (-x3 / 6.0f - 3.0f * x2 * 0.25f - 1.125f * x);
}

/*  ComputeBlurProfile allocates and fills in an array of floating
    point values between 0 and 255 for the profile signature of
    a blurred half-plane with the given blur radius.  Since we're
    going to be doing screened multiplications (i.e., 1 - (1-x)(1-y))
    all the time, we actually fill in the profile pre-inverted
    (already done 255-x).

    It's the responsibility of the caller to delete the
    memory returned in profile_out.
*/

void SkBlurMask::ComputeBlurProfile(SkScalar sigma, uint8_t **profile_out) {
    int size = SkScalarCeilToInt(6*sigma);

    int center = size >> 1;
    uint8_t *profile = SkNEW_ARRAY(uint8_t, size);

    float invr = 1.f/(2*sigma);

    profile[0] = 255;
    for (int x = 1 ; x < size ; ++x) {
        float scaled_x = (center - x - .5f) * invr;
        float gi = gaussianIntegral(scaled_x);
        profile[x] = 255 - (uint8_t) (255.f * gi);
    }

    *profile_out = profile;
}

// TODO MAYBE: Maintain a profile cache to avoid recomputing this for
// commonly used radii.  Consider baking some of the most common blur radii
// directly in as static data?

// Implementation adapted from Michael Herf's approach:
// http://stereopsis.com/shadowrect/

uint8_t SkBlurMask::ProfileLookup(const uint8_t *profile, int loc, int blurred_width, int sharp_width) {
    int dx = SkAbs32(((loc << 1) + 1) - blurred_width) - sharp_width; // how far are we from the original edge?
    int ox = dx >> 1;
    if (ox < 0) {
        ox = 0;
    }

    return profile[ox];
}

void SkBlurMask::ComputeBlurredScanline(uint8_t *pixels, const uint8_t *profile,
                                        unsigned int width, SkScalar sigma) {

    unsigned int profile_size = SkScalarCeilToInt(6*sigma);
    SkAutoTMalloc<uint8_t> horizontalScanline(width);

    unsigned int sw = width - profile_size;
    // nearest odd number less than the profile size represents the center
    // of the (2x scaled) profile
    int center = ( profile_size & ~1 ) - 1;

    int w = sw - center;

    for (unsigned int x = 0 ; x < width ; ++x) {
       if (profile_size <= sw) {
           pixels[x] = ProfileLookup(profile, x, width, w);
       } else {
           float span = float(sw)/(2*sigma);
           float giX = 1.5f - (x+.5f)/(2*sigma);
           pixels[x] = (uint8_t) (255 * (gaussianIntegral(giX) - gaussianIntegral(giX + span)));
       }
    }
}

bool SkBlurMask::BlurRect(SkScalar sigma, SkMask *dst,
                          const SkRect &src, SkBlurStyle style,
                          SkIPoint *margin, SkMask::CreateMode createMode) {
    int profile_size = SkScalarCeilToInt(6*sigma);

    int pad = profile_size/2;
    if (margin) {
        margin->set( pad, pad );
    }

    dst->fBounds.set(SkScalarRoundToInt(src.fLeft - pad),
                     SkScalarRoundToInt(src.fTop - pad),
                     SkScalarRoundToInt(src.fRight + pad),
                     SkScalarRoundToInt(src.fBottom + pad));

    dst->fRowBytes = dst->fBounds.width();
    dst->fFormat = SkMask::kA8_Format;
    dst->fImage = NULL;

    int             sw = SkScalarFloorToInt(src.width());
    int             sh = SkScalarFloorToInt(src.height());

    if (createMode == SkMask::kJustComputeBounds_CreateMode) {
        if (style == kInner_SkBlurStyle) {
            dst->fBounds.set(SkScalarRoundToInt(src.fLeft),
                             SkScalarRoundToInt(src.fTop),
                             SkScalarRoundToInt(src.fRight),
                             SkScalarRoundToInt(src.fBottom)); // restore trimmed bounds
            dst->fRowBytes = sw;
        }
        return true;
    }
    uint8_t *profile = NULL;

    ComputeBlurProfile(sigma, &profile);
    SkAutoTDeleteArray<uint8_t> ada(profile);

    size_t dstSize = dst->computeImageSize();
    if (0 == dstSize) {
        return false;   // too big to allocate, abort
    }

    uint8_t*        dp = SkMask::AllocImage(dstSize);

    dst->fImage = dp;

    int dstHeight = dst->fBounds.height();
    int dstWidth = dst->fBounds.width();

    uint8_t *outptr = dp;

    SkAutoTMalloc<uint8_t> horizontalScanline(dstWidth);
    SkAutoTMalloc<uint8_t> verticalScanline(dstHeight);

    ComputeBlurredScanline(horizontalScanline, profile, dstWidth, sigma);
    ComputeBlurredScanline(verticalScanline, profile, dstHeight, sigma);

    for (int y = 0 ; y < dstHeight ; ++y) {
        for (int x = 0 ; x < dstWidth ; x++) {
            unsigned int maskval = SkMulDiv255Round(horizontalScanline[x], verticalScanline[y]);
            *(outptr++) = maskval;
        }
    }

    if (style == kInner_SkBlurStyle) {
        // now we allocate the "real" dst, mirror the size of src
        size_t srcSize = (size_t)(src.width() * src.height());
        if (0 == srcSize) {
            return false;   // too big to allocate, abort
        }
        dst->fImage = SkMask::AllocImage(srcSize);
        for (int y = 0 ; y < sh ; y++) {
            uint8_t *blur_scanline = dp + (y+pad)*dstWidth + pad;
            uint8_t *inner_scanline = dst->fImage + y*sw;
            memcpy(inner_scanline, blur_scanline, sw);
        }
        SkMask::FreeImage(dp);

        dst->fBounds.set(SkScalarRoundToInt(src.fLeft),
                         SkScalarRoundToInt(src.fTop),
                         SkScalarRoundToInt(src.fRight),
                         SkScalarRoundToInt(src.fBottom)); // restore trimmed bounds
        dst->fRowBytes = sw;

    } else if (style == kOuter_SkBlurStyle) {
        for (int y = pad ; y < dstHeight-pad ; y++) {
            uint8_t *dst_scanline = dp + y*dstWidth + pad;
            memset(dst_scanline, 0, sw);
        }
    } else if (style == kSolid_SkBlurStyle) {
        for (int y = pad ; y < dstHeight-pad ; y++) {
            uint8_t *dst_scanline = dp + y*dstWidth + pad;
            memset(dst_scanline, 0xff, sw);
        }
    }
    // normal and solid styles are the same for analytic rect blurs, so don't
    // need to handle solid specially.

    return true;
}

bool SkBlurMask::BlurRRect(SkScalar sigma, SkMask *dst,
                           const SkRRect &src, SkBlurStyle style,
                           SkIPoint *margin, SkMask::CreateMode createMode) {
    // Temporary for now -- always fail, should cause caller to fall back
    // to old path.  Plumbing just to land API and parallelize effort.

    return false;
}

// The "simple" blur is a direct implementation of separable convolution with a discrete
// gaussian kernel.  It's "ground truth" in a sense; too slow to be used, but very
// useful for correctness comparisons.

bool SkBlurMask::BlurGroundTruth(SkScalar sigma, SkMask* dst, const SkMask& src,
                                 SkBlurStyle style, SkIPoint* margin) {

    if (src.fFormat != SkMask::kA8_Format) {
        return false;
    }

    float variance = sigma * sigma;

    int windowSize = SkScalarCeilToInt(sigma*6);
    // round window size up to nearest odd number
    windowSize |= 1;

    SkAutoTMalloc<float> gaussWindow(windowSize);

    int halfWindow = windowSize >> 1;

    gaussWindow[halfWindow] = 1;

    float windowSum = 1;
    for (int x = 1 ; x <= halfWindow ; ++x) {
        float gaussian = expf(-x*x / (2*variance));
        gaussWindow[halfWindow + x] = gaussWindow[halfWindow-x] = gaussian;
        windowSum += 2*gaussian;
    }

    // leave the filter un-normalized for now; we will divide by the normalization
    // sum later;

    int pad = halfWindow;
    if (margin) {
        margin->set( pad, pad );
    }

    dst->fBounds = src.fBounds;
    dst->fBounds.outset(pad, pad);

    dst->fRowBytes = dst->fBounds.width();
    dst->fFormat = SkMask::kA8_Format;
    dst->fImage = NULL;

    if (src.fImage) {

        size_t dstSize = dst->computeImageSize();
        if (0 == dstSize) {
            return false;   // too big to allocate, abort
        }

        int             srcWidth = src.fBounds.width();
        int             srcHeight = src.fBounds.height();
        int             dstWidth = dst->fBounds.width();

        const uint8_t*  srcPixels = src.fImage;
        uint8_t*        dstPixels = SkMask::AllocImage(dstSize);
        SkAutoTCallVProc<uint8_t, SkMask_FreeImage> autoCall(dstPixels);

        // do the actual blur.  First, make a padded copy of the source.
        // use double pad so we never have to check if we're outside anything

        int padWidth = srcWidth + 4*pad;
        int padHeight = srcHeight;
        int padSize = padWidth * padHeight;

        SkAutoTMalloc<uint8_t> padPixels(padSize);
        memset(padPixels, 0, padSize);

        for (int y = 0 ; y < srcHeight; ++y) {
            uint8_t* padptr = padPixels + y * padWidth + 2*pad;
            const uint8_t* srcptr = srcPixels + y * srcWidth;
            memcpy(padptr, srcptr, srcWidth);
        }

        // blur in X, transposing the result into a temporary floating point buffer.
        // also double-pad the intermediate result so that the second blur doesn't
        // have to do extra conditionals.

        int tmpWidth = padHeight + 4*pad;
        int tmpHeight = padWidth - 2*pad;
        int tmpSize = tmpWidth * tmpHeight;

        SkAutoTMalloc<float> tmpImage(tmpSize);
        memset(tmpImage, 0, tmpSize*sizeof(tmpImage[0]));

        for (int y = 0 ; y < padHeight ; ++y) {
            uint8_t *srcScanline = padPixels + y*padWidth;
            for (int x = pad ; x < padWidth - pad ; ++x) {
                float *outPixel = tmpImage + (x-pad)*tmpWidth + y + 2*pad; // transposed output
                uint8_t *windowCenter = srcScanline + x;
                for (int i = -pad ; i <= pad ; ++i) {
                    *outPixel += gaussWindow[pad+i]*windowCenter[i];
                }
                *outPixel /= windowSum;
            }
        }

        // blur in Y; now filling in the actual desired destination.  We have to do
        // the transpose again; these transposes guarantee that we read memory in
        // linear order.

        for (int y = 0 ; y < tmpHeight ; ++y) {
            float *srcScanline = tmpImage + y*tmpWidth;
            for (int x = pad ; x < tmpWidth - pad ; ++x) {
                float *windowCenter = srcScanline + x;
                float finalValue = 0;
                for (int i = -pad ; i <= pad ; ++i) {
                    finalValue += gaussWindow[pad+i]*windowCenter[i];
                }
                finalValue /= windowSum;
                uint8_t *outPixel = dstPixels + (x-pad)*dstWidth + y; // transposed output
                int integerPixel = int(finalValue + 0.5f);
                *outPixel = SkClampMax( SkClampPos(integerPixel), 255 );
            }
        }

        dst->fImage = dstPixels;
        // if need be, alloc the "real" dst (same size as src) and copy/merge
        // the blur into it (applying the src)
        if (style == kInner_SkBlurStyle) {
            // now we allocate the "real" dst, mirror the size of src
            size_t srcSize = src.computeImageSize();
            if (0 == srcSize) {
                return false;   // too big to allocate, abort
            }
            dst->fImage = SkMask::AllocImage(srcSize);
            merge_src_with_blur(dst->fImage, src.fRowBytes,
                srcPixels, src.fRowBytes,
                dstPixels + pad*dst->fRowBytes + pad,
                dst->fRowBytes, srcWidth, srcHeight);
            SkMask::FreeImage(dstPixels);
        } else if (style != kNormal_SkBlurStyle) {
            clamp_with_orig(dstPixels + pad*dst->fRowBytes + pad,
                dst->fRowBytes, srcPixels, src.fRowBytes, srcWidth, srcHeight, style);
        }
        (void)autoCall.detach();
    }

    if (style == kInner_SkBlurStyle) {
        dst->fBounds = src.fBounds; // restore trimmed bounds
        dst->fRowBytes = src.fRowBytes;
    }

    return true;
}