DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (d8847129d134)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
/*
 * Copyright 2013 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "SkBitmap.h"
#include "SkErrorInternals.h"
#include "SkValidatingReadBuffer.h"
#include "SkStream.h"
#include "SkTypeface.h"

SkValidatingReadBuffer::SkValidatingReadBuffer(const void* data, size_t size) :
    fError(false) {
    this->setMemory(data, size);
    this->setFlags(SkReadBuffer::kValidation_Flag);
}

SkValidatingReadBuffer::~SkValidatingReadBuffer() {
}

bool SkValidatingReadBuffer::validate(bool isValid) {
    if (!fError && !isValid) {
        // When an error is found, send the read cursor to the end of the stream
        fReader.skip(fReader.available());
        fError = true;
    }
    return !fError;
}

bool SkValidatingReadBuffer::isValid() const {
    return !fError;
}

void SkValidatingReadBuffer::setMemory(const void* data, size_t size) {
    this->validate(IsPtrAlign4(data) && (SkAlign4(size) == size));
    if (!fError) {
        fReader.setMemory(data, size);
    }
}

const void* SkValidatingReadBuffer::skip(size_t size) {
    size_t inc = SkAlign4(size);
    const void* addr = fReader.peek();
    this->validate(IsPtrAlign4(addr) && fReader.isAvailable(inc));
    if (!fError) {
        fReader.skip(size);
    }
    return addr;
}

// All the methods in this file funnel down into either readInt(), readScalar() or skip(),
// followed by a memcpy. So we've got all our validation in readInt(), readScalar() and skip();
// if they fail they'll return a zero value or skip nothing, respectively, and set fError to
// true, which the caller should check to see if an error occurred during the read operation.

bool SkValidatingReadBuffer::readBool() {
    uint32_t value = this->readInt();
    // Boolean value should be either 0 or 1
    this->validate(!(value & ~1));
    return value != 0;
}

SkColor SkValidatingReadBuffer::readColor() {
    return this->readInt();
}

SkFixed SkValidatingReadBuffer::readFixed() {
    return this->readInt();
}

int32_t SkValidatingReadBuffer::readInt() {
    const size_t inc = sizeof(int32_t);
    this->validate(IsPtrAlign4(fReader.peek()) && fReader.isAvailable(inc));
    return fError ? 0 : fReader.readInt();
}

SkScalar SkValidatingReadBuffer::readScalar() {
    const size_t inc = sizeof(SkScalar);
    this->validate(IsPtrAlign4(fReader.peek()) && fReader.isAvailable(inc));
    return fError ? 0 : fReader.readScalar();
}

uint32_t SkValidatingReadBuffer::readUInt() {
    return this->readInt();
}

int32_t SkValidatingReadBuffer::read32() {
    return this->readInt();
}

void SkValidatingReadBuffer::readString(SkString* string) {
    const size_t len = this->readUInt();
    const void* ptr = fReader.peek();
    const char* cptr = (const char*)ptr;

    // skip over the string + '\0' and then pad to a multiple of 4
    const size_t alignedSize = SkAlign4(len + 1);
    this->skip(alignedSize);
    if (!fError) {
        this->validate(cptr[len] == '\0');
    }
    if (!fError) {
        string->set(cptr, len);
    }
}

void* SkValidatingReadBuffer::readEncodedString(size_t* length, SkPaint::TextEncoding encoding) {
    const int32_t encodingType = this->readInt();
    this->validate(encodingType == encoding);
    *length = this->readInt();
    const void* ptr = this->skip(SkAlign4(*length));
    void* data = NULL;
    if (!fError) {
        data = sk_malloc_throw(*length);
        memcpy(data, ptr, *length);
    }
    return data;
}

void SkValidatingReadBuffer::readPoint(SkPoint* point) {
    point->fX = this->readScalar();
    point->fY = this->readScalar();
}

void SkValidatingReadBuffer::readMatrix(SkMatrix* matrix) {
    size_t size = 0;
    if (!fError) {
        size = matrix->readFromMemory(fReader.peek(), fReader.available());
        this->validate((SkAlign4(size) == size) && (0 != size));
    }
    if (!fError) {
        (void)this->skip(size);
    }
}

void SkValidatingReadBuffer::readIRect(SkIRect* rect) {
    const void* ptr = this->skip(sizeof(SkIRect));
    if (!fError) {
        memcpy(rect, ptr, sizeof(SkIRect));
    }
}

void SkValidatingReadBuffer::readRect(SkRect* rect) {
    const void* ptr = this->skip(sizeof(SkRect));
    if (!fError) {
        memcpy(rect, ptr, sizeof(SkRect));
    }
}

void SkValidatingReadBuffer::readRegion(SkRegion* region) {
    size_t size = 0;
    if (!fError) {
        size = region->readFromMemory(fReader.peek(), fReader.available());
        this->validate((SkAlign4(size) == size) && (0 != size));
    }
    if (!fError) {
        (void)this->skip(size);
    }
}

void SkValidatingReadBuffer::readPath(SkPath* path) {
    size_t size = 0;
    if (!fError) {
        size = path->readFromMemory(fReader.peek(), fReader.available());
        this->validate((SkAlign4(size) == size) && (0 != size));
    }
    if (!fError) {
        (void)this->skip(size);
    }
}

bool SkValidatingReadBuffer::readArray(void* value, size_t size, size_t elementSize) {
    const uint32_t count = this->getArrayCount();
    this->validate(size == count);
    (void)this->skip(sizeof(uint32_t)); // Skip array count
    const size_t byteLength = count * elementSize;
    const void* ptr = this->skip(SkAlign4(byteLength));
    if (!fError) {
        memcpy(value, ptr, byteLength);
        return true;
    }
    return false;
}

bool SkValidatingReadBuffer::readByteArray(void* value, size_t size) {
    return readArray(static_cast<unsigned char*>(value), size, sizeof(unsigned char));
}

bool SkValidatingReadBuffer::readColorArray(SkColor* colors, size_t size) {
    return readArray(colors, size, sizeof(SkColor));
}

bool SkValidatingReadBuffer::readIntArray(int32_t* values, size_t size) {
    return readArray(values, size, sizeof(int32_t));
}

bool SkValidatingReadBuffer::readPointArray(SkPoint* points, size_t size) {
    return readArray(points, size, sizeof(SkPoint));
}

bool SkValidatingReadBuffer::readScalarArray(SkScalar* values, size_t size) {
    return readArray(values, size, sizeof(SkScalar));
}

uint32_t SkValidatingReadBuffer::getArrayCount() {
    const size_t inc = sizeof(uint32_t);
    fError = fError || !IsPtrAlign4(fReader.peek()) || !fReader.isAvailable(inc);
    return fError ? 0 : *(uint32_t*)fReader.peek();
}

SkTypeface* SkValidatingReadBuffer::readTypeface() {
    // TODO: Implement this (securely) when needed
    return NULL;
}

bool SkValidatingReadBuffer::validateAvailable(size_t size) {
    return this->validate((size <= SK_MaxU32) && fReader.isAvailable(static_cast<uint32_t>(size)));
}

SkFlattenable* SkValidatingReadBuffer::readFlattenable(SkFlattenable::Type type) {
    SkString name;
    this->readString(&name);
    if (fError) {
        return NULL;
    }

    // Is this the type we wanted ?
    const char* cname = name.c_str();
    SkFlattenable::Type baseType;
    if (!SkFlattenable::NameToType(cname, &baseType) || (baseType != type)) {
        return NULL;
    }

    SkFlattenable::Factory factory = SkFlattenable::NameToFactory(cname);
    if (NULL == factory) {
        return NULL; // writer failed to give us the flattenable
    }

    // if we get here, factory may still be null, but if that is the case, the
    // failure was ours, not the writer.
    SkFlattenable* obj = NULL;
    uint32_t sizeRecorded = this->readUInt();
    if (factory) {
        size_t offset = fReader.offset();
        obj = (*factory)(*this);
        // check that we read the amount we expected
        size_t sizeRead = fReader.offset() - offset;
        this->validate(sizeRecorded == sizeRead);
        if (fError) {
            // we could try to fix up the offset...
            delete obj;
            obj = NULL;
        }
    } else {
        // we must skip the remaining data
        this->skip(sizeRecorded);
        SkASSERT(false);
    }
    return obj;
}

void SkValidatingReadBuffer::skipFlattenable() {
    SkString name;
    this->readString(&name);
    if (fError) {
        return;
    }
    uint32_t sizeRecorded = this->readUInt();
    this->skip(sizeRecorded);
}