DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (d8847129d134)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650

/*
 * Copyright 2006 The Android Open Source Project
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */


#include "SkString.h"
#include "SkFixed.h"
#include "SkThread.h"
#include "SkUtils.h"
#include <stdarg.h>
#include <stdio.h>

// number of bytes (on the stack) to receive the printf result
static const size_t kBufferSize = 1024;

#ifdef SK_BUILD_FOR_WIN
    #define VSNPRINTF(buffer, size, format, args) \
        _vsnprintf_s(buffer, size, _TRUNCATE, format, args)
    #define SNPRINTF    _snprintf
#else
    #define VSNPRINTF   vsnprintf
    #define SNPRINTF    snprintf
#endif

#define ARGS_TO_BUFFER(format, buffer, size)        \
    do {                                            \
        va_list args;                               \
        va_start(args, format);                     \
        VSNPRINTF(buffer, size, format, args);      \
        va_end(args);                               \
    } while (0)

///////////////////////////////////////////////////////////////////////////////

bool SkStrEndsWith(const char string[], const char suffixStr[]) {
    SkASSERT(string);
    SkASSERT(suffixStr);
    size_t  strLen = strlen(string);
    size_t  suffixLen = strlen(suffixStr);
    return  strLen >= suffixLen &&
            !strncmp(string + strLen - suffixLen, suffixStr, suffixLen);
}

bool SkStrEndsWith(const char string[], const char suffixChar) {
    SkASSERT(string);
    size_t  strLen = strlen(string);
    if (0 == strLen) {
        return false;
    } else {
        return (suffixChar == string[strLen-1]);
    }
}

int SkStrStartsWithOneOf(const char string[], const char prefixes[]) {
    int index = 0;
    do {
        const char* limit = strchr(prefixes, '\0');
        if (!strncmp(string, prefixes, limit - prefixes)) {
            return index;
        }
        prefixes = limit + 1;
        index++;
    } while (prefixes[0]);
    return -1;
}

char* SkStrAppendU32(char string[], uint32_t dec) {
    SkDEBUGCODE(char* start = string;)

    char    buffer[SkStrAppendU32_MaxSize];
    char*   p = buffer + sizeof(buffer);

    do {
        *--p = SkToU8('0' + dec % 10);
        dec /= 10;
    } while (dec != 0);

    SkASSERT(p >= buffer);
    char* stop = buffer + sizeof(buffer);
    while (p < stop) {
        *string++ = *p++;
    }
    SkASSERT(string - start <= SkStrAppendU32_MaxSize);
    return string;
}

char* SkStrAppendS32(char string[], int32_t dec) {
    if (dec < 0) {
        *string++ = '-';
        dec = -dec;
    }
    return SkStrAppendU32(string, static_cast<uint32_t>(dec));
}

char* SkStrAppendU64(char string[], uint64_t dec, int minDigits) {
    SkDEBUGCODE(char* start = string;)

    char    buffer[SkStrAppendU64_MaxSize];
    char*   p = buffer + sizeof(buffer);

    do {
        *--p = SkToU8('0' + (int32_t) (dec % 10));
        dec /= 10;
        minDigits--;
    } while (dec != 0);

    while (minDigits > 0) {
        *--p = '0';
        minDigits--;
    }

    SkASSERT(p >= buffer);
    size_t cp_len = buffer + sizeof(buffer) - p;
    memcpy(string, p, cp_len);
    string += cp_len;

    SkASSERT(string - start <= SkStrAppendU64_MaxSize);
    return string;
}

char* SkStrAppendS64(char string[], int64_t dec, int minDigits) {
    if (dec < 0) {
        *string++ = '-';
        dec = -dec;
    }
    return SkStrAppendU64(string, static_cast<uint64_t>(dec), minDigits);
}

char* SkStrAppendFloat(char string[], float value) {
    // since floats have at most 8 significant digits, we limit our %g to that.
    static const char gFormat[] = "%.8g";
    // make it 1 larger for the terminating 0
    char buffer[SkStrAppendScalar_MaxSize + 1];
    int len = SNPRINTF(buffer, sizeof(buffer), gFormat, value);
    memcpy(string, buffer, len);
    SkASSERT(len <= SkStrAppendScalar_MaxSize);
    return string + len;
}

char* SkStrAppendFixed(char string[], SkFixed x) {
    SkDEBUGCODE(char* start = string;)
    if (x < 0) {
        *string++ = '-';
        x = -x;
    }

    unsigned frac = x & 0xFFFF;
    x >>= 16;
    if (frac == 0xFFFF) {
        // need to do this to "round up", since 65535/65536 is closer to 1 than to .9999
        x += 1;
        frac = 0;
    }
    string = SkStrAppendS32(string, x);

    // now handle the fractional part (if any)
    if (frac) {
        static const uint16_t   gTens[] = { 1000, 100, 10, 1 };
        const uint16_t*         tens = gTens;

        x = SkFixedRoundToInt(frac * 10000);
        SkASSERT(x <= 10000);
        if (x == 10000) {
            x -= 1;
        }
        *string++ = '.';
        do {
            unsigned powerOfTen = *tens++;
            *string++ = SkToU8('0' + x / powerOfTen);
            x %= powerOfTen;
        } while (x != 0);
    }

    SkASSERT(string - start <= SkStrAppendScalar_MaxSize);
    return string;
}

///////////////////////////////////////////////////////////////////////////////

// the 3 values are [length] [refcnt] [terminating zero data]
const SkString::Rec SkString::gEmptyRec = { 0, 0, 0 };

#define SizeOfRec()     (gEmptyRec.data() - (const char*)&gEmptyRec)

static uint32_t trim_size_t_to_u32(size_t value) {
    if (sizeof(size_t) > sizeof(uint32_t)) {
        if (value > SK_MaxU32) {
            value = SK_MaxU32;
        }
    }
    return (uint32_t)value;
}

static size_t check_add32(size_t base, size_t extra) {
    SkASSERT(base <= SK_MaxU32);
    if (sizeof(size_t) > sizeof(uint32_t)) {
        if (base + extra > SK_MaxU32) {
            extra = SK_MaxU32 - base;
        }
    }
    return extra;
}

SkString::Rec* SkString::AllocRec(const char text[], size_t len) {
    Rec* rec;

    if (0 == len) {
        rec = const_cast<Rec*>(&gEmptyRec);
    } else {
        len = trim_size_t_to_u32(len);

        // add 1 for terminating 0, then align4 so we can have some slop when growing the string
        rec = (Rec*)sk_malloc_throw(SizeOfRec() + SkAlign4(len + 1));
        rec->fLength = SkToU32(len);
        rec->fRefCnt = 1;
        if (text) {
            memcpy(rec->data(), text, len);
        }
        rec->data()[len] = 0;
    }
    return rec;
}

SkString::Rec* SkString::RefRec(Rec* src) {
    if (src != &gEmptyRec) {
        sk_atomic_inc(&src->fRefCnt);
    }
    return src;
}

#ifdef SK_DEBUG
void SkString::validate() const {
    // make sure know one has written over our global
    SkASSERT(0 == gEmptyRec.fLength);
    SkASSERT(0 == gEmptyRec.fRefCnt);
    SkASSERT(0 == gEmptyRec.data()[0]);

    if (fRec != &gEmptyRec) {
        SkASSERT(fRec->fLength > 0);
        SkASSERT(fRec->fRefCnt > 0);
        SkASSERT(0 == fRec->data()[fRec->fLength]);
    }
    SkASSERT(fStr == c_str());
}
#endif

///////////////////////////////////////////////////////////////////////////////

SkString::SkString() : fRec(const_cast<Rec*>(&gEmptyRec)) {
#ifdef SK_DEBUG
    fStr = fRec->data();
#endif
}

SkString::SkString(size_t len) {
    fRec = AllocRec(NULL, len);
#ifdef SK_DEBUG
    fStr = fRec->data();
#endif
}

SkString::SkString(const char text[]) {
    size_t  len = text ? strlen(text) : 0;

    fRec = AllocRec(text, len);
#ifdef SK_DEBUG
    fStr = fRec->data();
#endif
}

SkString::SkString(const char text[], size_t len) {
    fRec = AllocRec(text, len);
#ifdef SK_DEBUG
    fStr = fRec->data();
#endif
}

SkString::SkString(const SkString& src) {
    src.validate();

    fRec = RefRec(src.fRec);
#ifdef SK_DEBUG
    fStr = fRec->data();
#endif
}

SkString::~SkString() {
    this->validate();

    if (fRec->fLength) {
        SkASSERT(fRec->fRefCnt > 0);
        if (sk_atomic_dec(&fRec->fRefCnt) == 1) {
            sk_free(fRec);
        }
    }
}

bool SkString::equals(const SkString& src) const {
    return fRec == src.fRec || this->equals(src.c_str(), src.size());
}

bool SkString::equals(const char text[]) const {
    return this->equals(text, text ? strlen(text) : 0);
}

bool SkString::equals(const char text[], size_t len) const {
    SkASSERT(len == 0 || text != NULL);

    return fRec->fLength == len && !memcmp(fRec->data(), text, len);
}

SkString& SkString::operator=(const SkString& src) {
    this->validate();

    if (fRec != src.fRec) {
        SkString    tmp(src);
        this->swap(tmp);
    }
    return *this;
}

SkString& SkString::operator=(const char text[]) {
    this->validate();

    SkString tmp(text);
    this->swap(tmp);

    return *this;
}

void SkString::reset() {
    this->validate();

    if (fRec->fLength) {
        SkASSERT(fRec->fRefCnt > 0);
        if (sk_atomic_dec(&fRec->fRefCnt) == 1) {
            sk_free(fRec);
        }
    }

    fRec = const_cast<Rec*>(&gEmptyRec);
#ifdef SK_DEBUG
    fStr = fRec->data();
#endif
}

char* SkString::writable_str() {
    this->validate();

    if (fRec->fLength) {
        if (fRec->fRefCnt > 1) {
            Rec* rec = AllocRec(fRec->data(), fRec->fLength);
            if (sk_atomic_dec(&fRec->fRefCnt) == 1) {
                // In this case after our check of fRecCnt > 1, we suddenly
                // did become the only owner, so now we have two copies of the
                // data (fRec and rec), so we need to delete one of them.
                sk_free(fRec);
            }
            fRec = rec;
        #ifdef SK_DEBUG
            fStr = fRec->data();
        #endif
        }
    }
    return fRec->data();
}

void SkString::set(const char text[]) {
    this->set(text, text ? strlen(text) : 0);
}

void SkString::set(const char text[], size_t len) {
    len = trim_size_t_to_u32(len);

    if (0 == len) {
        this->reset();
    } else if (1 == fRec->fRefCnt && len <= fRec->fLength) {
        // should we resize if len <<<< fLength, to save RAM? (e.g. len < (fLength>>1))?
        // just use less of the buffer without allocating a smaller one
        char* p = this->writable_str();
        if (text) {
            memcpy(p, text, len);
        }
        p[len] = 0;
        fRec->fLength = SkToU32(len);
    } else if (1 == fRec->fRefCnt && (fRec->fLength >> 2) == (len >> 2)) {
        // we have spare room in the current allocation, so don't alloc a larger one
        char* p = this->writable_str();
        if (text) {
            memcpy(p, text, len);
        }
        p[len] = 0;
        fRec->fLength = SkToU32(len);
    } else {
        SkString tmp(text, len);
        this->swap(tmp);
    }
}

void SkString::setUTF16(const uint16_t src[]) {
    int count = 0;

    while (src[count]) {
        count += 1;
    }
    this->setUTF16(src, count);
}

void SkString::setUTF16(const uint16_t src[], size_t count) {
    count = trim_size_t_to_u32(count);

    if (0 == count) {
        this->reset();
    } else if (count <= fRec->fLength) {
        // should we resize if len <<<< fLength, to save RAM? (e.g. len < (fLength>>1))
        if (count < fRec->fLength) {
            this->resize(count);
        }
        char* p = this->writable_str();
        for (size_t i = 0; i < count; i++) {
            p[i] = SkToU8(src[i]);
        }
        p[count] = 0;
    } else {
        SkString tmp(count); // puts a null terminator at the end of the string
        char*    p = tmp.writable_str();

        for (size_t i = 0; i < count; i++) {
            p[i] = SkToU8(src[i]);
        }
        this->swap(tmp);
    }
}

void SkString::insert(size_t offset, const char text[]) {
    this->insert(offset, text, text ? strlen(text) : 0);
}

void SkString::insert(size_t offset, const char text[], size_t len) {
    if (len) {
        size_t length = fRec->fLength;
        if (offset > length) {
            offset = length;
        }

        // Check if length + len exceeds 32bits, we trim len
        len = check_add32(length, len);
        if (0 == len) {
            return;
        }

        /*  If we're the only owner, and we have room in our allocation for the insert,
            do it in place, rather than allocating a new buffer.

            To know we have room, compare the allocated sizes
            beforeAlloc = SkAlign4(length + 1)
            afterAlloc  = SkAligh4(length + 1 + len)
            but SkAlign4(x) is (x + 3) >> 2 << 2
            which is equivalent for testing to (length + 1 + 3) >> 2 == (length + 1 + 3 + len) >> 2
            and we can then eliminate the +1+3 since that doesn't affec the answer
        */
        if (1 == fRec->fRefCnt && (length >> 2) == ((length + len) >> 2)) {
            char* dst = this->writable_str();

            if (offset < length) {
                memmove(dst + offset + len, dst + offset, length - offset);
            }
            memcpy(dst + offset, text, len);

            dst[length + len] = 0;
            fRec->fLength = SkToU32(length + len);
        } else {
            /*  Seems we should use realloc here, since that is safe if it fails
                (we have the original data), and might be faster than alloc/copy/free.
            */
            SkString    tmp(fRec->fLength + len);
            char*       dst = tmp.writable_str();

            if (offset > 0) {
                memcpy(dst, fRec->data(), offset);
            }
            memcpy(dst + offset, text, len);
            if (offset < fRec->fLength) {
                memcpy(dst + offset + len, fRec->data() + offset,
                       fRec->fLength - offset);
            }

            this->swap(tmp);
        }
    }
}

void SkString::insertUnichar(size_t offset, SkUnichar uni) {
    char    buffer[kMaxBytesInUTF8Sequence];
    size_t  len = SkUTF8_FromUnichar(uni, buffer);

    if (len) {
        this->insert(offset, buffer, len);
    }
}

void SkString::insertS32(size_t offset, int32_t dec) {
    char    buffer[SkStrAppendS32_MaxSize];
    char*   stop = SkStrAppendS32(buffer, dec);
    this->insert(offset, buffer, stop - buffer);
}

void SkString::insertS64(size_t offset, int64_t dec, int minDigits) {
    char    buffer[SkStrAppendS64_MaxSize];
    char*   stop = SkStrAppendS64(buffer, dec, minDigits);
    this->insert(offset, buffer, stop - buffer);
}

void SkString::insertU32(size_t offset, uint32_t dec) {
    char    buffer[SkStrAppendU32_MaxSize];
    char*   stop = SkStrAppendU32(buffer, dec);
    this->insert(offset, buffer, stop - buffer);
}

void SkString::insertU64(size_t offset, uint64_t dec, int minDigits) {
    char    buffer[SkStrAppendU64_MaxSize];
    char*   stop = SkStrAppendU64(buffer, dec, minDigits);
    this->insert(offset, buffer, stop - buffer);
}

void SkString::insertHex(size_t offset, uint32_t hex, int minDigits) {
    minDigits = SkPin32(minDigits, 0, 8);

    static const char gHex[] = "0123456789ABCDEF";

    char    buffer[8];
    char*   p = buffer + sizeof(buffer);

    do {
        *--p = gHex[hex & 0xF];
        hex >>= 4;
        minDigits -= 1;
    } while (hex != 0);

    while (--minDigits >= 0) {
        *--p = '0';
    }

    SkASSERT(p >= buffer);
    this->insert(offset, p, buffer + sizeof(buffer) - p);
}

void SkString::insertScalar(size_t offset, SkScalar value) {
    char    buffer[SkStrAppendScalar_MaxSize];
    char*   stop = SkStrAppendScalar(buffer, value);
    this->insert(offset, buffer, stop - buffer);
}

void SkString::printf(const char format[], ...) {
    char    buffer[kBufferSize];
    ARGS_TO_BUFFER(format, buffer, kBufferSize);

    this->set(buffer, strlen(buffer));
}

void SkString::appendf(const char format[], ...) {
    char    buffer[kBufferSize];
    ARGS_TO_BUFFER(format, buffer, kBufferSize);

    this->append(buffer, strlen(buffer));
}

void SkString::appendVAList(const char format[], va_list args) {
    char    buffer[kBufferSize];
    VSNPRINTF(buffer, kBufferSize, format, args);

    this->append(buffer, strlen(buffer));
}

void SkString::prependf(const char format[], ...) {
    char    buffer[kBufferSize];
    ARGS_TO_BUFFER(format, buffer, kBufferSize);

    this->prepend(buffer, strlen(buffer));
}

///////////////////////////////////////////////////////////////////////////////

void SkString::remove(size_t offset, size_t length) {
    size_t size = this->size();

    if (offset < size) {
        if (offset + length > size) {
            length = size - offset;
        }
        if (length > 0) {
            SkASSERT(size > length);
            SkString    tmp(size - length);
            char*       dst = tmp.writable_str();
            const char* src = this->c_str();

            if (offset) {
                SkASSERT(offset <= tmp.size());
                memcpy(dst, src, offset);
            }
            size_t tail = size - offset - length;
            SkASSERT((int32_t)tail >= 0);
            if (tail) {
        //      SkASSERT(offset + length <= tmp.size());
                memcpy(dst + offset, src + offset + length, tail);
            }
            SkASSERT(dst[tmp.size()] == 0);
            this->swap(tmp);
        }
    }
}

void SkString::swap(SkString& other) {
    this->validate();
    other.validate();

    SkTSwap<Rec*>(fRec, other.fRec);
#ifdef SK_DEBUG
    SkTSwap<const char*>(fStr, other.fStr);
#endif
}

///////////////////////////////////////////////////////////////////////////////

SkString SkStringPrintf(const char* format, ...) {
    SkString formattedOutput;
    char buffer[kBufferSize];
    ARGS_TO_BUFFER(format, buffer, kBufferSize);
    formattedOutput.set(buffer);
    return formattedOutput;
}

void SkStrSplit(const char* str, const char* delimiters, SkTArray<SkString>* out) {
    const char* end = str + strlen(str);
    while (str != end) {
        // Find a token.
        const size_t len = strcspn(str, delimiters);
        out->push_back().set(str, len);
        str += len;
        // Skip any delimiters.
        str += strspn(str, delimiters);
    }
}

#undef VSNPRINTF
#undef SNPRINTF