DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (d8847129d134)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054

/*
 * Copyright 2011 The Android Open Source Project
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */


#include "SkScan.h"
#include "SkBlitter.h"
#include "SkColorPriv.h"
#include "SkLineClipper.h"
#include "SkRasterClip.h"
#include "SkFDot6.h"

/*  Our attempt to compute the worst case "bounds" for the horizontal and
    vertical cases has some numerical bug in it, and we sometimes undervalue
    our extends. The bug is that when this happens, we will set the clip to
    NULL (for speed), and thus draw outside of the clip by a pixel, which might
    only look bad, but it might also access memory outside of the valid range
    allcoated for the device bitmap.

    This define enables our fix to outset our "bounds" by 1, thus avoiding the
    chance of the bug, but at the cost of sometimes taking the rectblitter
    case (i.e. not setting the clip to NULL) when we might not actually need
    to. If we can improve/fix the actual calculations, then we can remove this
    step.
 */
#define OUTSET_BEFORE_CLIP_TEST     true

#define HLINE_STACK_BUFFER      100

static inline int SmallDot6Scale(int value, int dot6) {
    SkASSERT((int16_t)value == value);
    SkASSERT((unsigned)dot6 <= 64);
    return SkMulS16(value, dot6) >> 6;
}

//#define TEST_GAMMA

#ifdef TEST_GAMMA
    static uint8_t gGammaTable[256];
    #define ApplyGamma(table, alpha)    (table)[alpha]

    static void build_gamma_table() {
        static bool gInit = false;

        if (gInit == false) {
            for (int i = 0; i < 256; i++) {
                SkFixed n = i * 257;
                n += n >> 15;
                SkASSERT(n >= 0 && n <= SK_Fixed1);
                n = SkFixedSqrt(n);
                n = n * 255 >> 16;
            //  SkDebugf("morph %d -> %d\n", i, n);
                gGammaTable[i] = SkToU8(n);
            }
            gInit = true;
        }
    }
#else
    #define ApplyGamma(table, alpha)    SkToU8(alpha)
#endif

///////////////////////////////////////////////////////////////////////////////

static void call_hline_blitter(SkBlitter* blitter, int x, int y, int count,
                               U8CPU alpha) {
    SkASSERT(count > 0);

    int16_t runs[HLINE_STACK_BUFFER + 1];
    uint8_t  aa[HLINE_STACK_BUFFER];

    aa[0] = ApplyGamma(gGammaTable, alpha);
    do {
        int n = count;
        if (n > HLINE_STACK_BUFFER) {
            n = HLINE_STACK_BUFFER;
        }
        runs[0] = SkToS16(n);
        runs[n] = 0;
        blitter->blitAntiH(x, y, aa, runs);
        x += n;
        count -= n;
    } while (count > 0);
}

class SkAntiHairBlitter {
public:
    SkAntiHairBlitter() : fBlitter(NULL) {}
    virtual ~SkAntiHairBlitter() {}

    SkBlitter* getBlitter() const { return fBlitter; }

    void setup(SkBlitter* blitter) {
        fBlitter = blitter;
    }

    virtual SkFixed drawCap(int x, SkFixed fy, SkFixed slope, int mod64) = 0;
    virtual SkFixed drawLine(int x, int stopx, SkFixed fy, SkFixed slope) = 0;

private:
    SkBlitter*  fBlitter;
};

class HLine_SkAntiHairBlitter : public SkAntiHairBlitter {
public:
    virtual SkFixed drawCap(int x, SkFixed fy, SkFixed slope, int mod64) SK_OVERRIDE {
        fy += SK_Fixed1/2;

        int y = fy >> 16;
        uint8_t  a = (uint8_t)(fy >> 8);

        // lower line
        unsigned ma = SmallDot6Scale(a, mod64);
        if (ma) {
            call_hline_blitter(this->getBlitter(), x, y, 1, ma);
        }

        // upper line
        ma = SmallDot6Scale(255 - a, mod64);
        if (ma) {
            call_hline_blitter(this->getBlitter(), x, y - 1, 1, ma);
        }

        return fy - SK_Fixed1/2;
    }

    virtual SkFixed drawLine(int x, int stopx, SkFixed fy,
                             SkFixed slope) SK_OVERRIDE {
        SkASSERT(x < stopx);
        int count = stopx - x;
        fy += SK_Fixed1/2;

        int y = fy >> 16;
        uint8_t  a = (uint8_t)(fy >> 8);

        // lower line
        if (a) {
            call_hline_blitter(this->getBlitter(), x, y, count, a);
        }

        // upper line
        a = 255 - a;
        if (a) {
            call_hline_blitter(this->getBlitter(), x, y - 1, count, a);
        }

        return fy - SK_Fixed1/2;
    }
};

class Horish_SkAntiHairBlitter : public SkAntiHairBlitter {
public:
    virtual SkFixed drawCap(int x, SkFixed fy, SkFixed dy, int mod64) SK_OVERRIDE {
        int16_t runs[2];
        uint8_t  aa[1];

        runs[0] = 1;
        runs[1] = 0;

        fy += SK_Fixed1/2;
        SkBlitter* blitter = this->getBlitter();

        int lower_y = fy >> 16;
        uint8_t  a = (uint8_t)(fy >> 8);
        unsigned ma = SmallDot6Scale(a, mod64);
        if (ma) {
            aa[0] = ApplyGamma(gamma, ma);
            blitter->blitAntiH(x, lower_y, aa, runs);
            // the clipping blitters might edit runs, but should not affect us
            SkASSERT(runs[0] == 1);
            SkASSERT(runs[1] == 0);
        }
        ma = SmallDot6Scale(255 - a, mod64);
        if (ma) {
            aa[0] = ApplyGamma(gamma, ma);
            blitter->blitAntiH(x, lower_y - 1, aa, runs);
            // the clipping blitters might edit runs, but should not affect us
            SkASSERT(runs[0] == 1);
            SkASSERT(runs[1] == 0);
        }
        fy += dy;

        return fy - SK_Fixed1/2;
    }

    virtual SkFixed drawLine(int x, int stopx, SkFixed fy, SkFixed dy) SK_OVERRIDE {
        SkASSERT(x < stopx);

        int16_t runs[2];
        uint8_t  aa[1];

        runs[0] = 1;
        runs[1] = 0;

        fy += SK_Fixed1/2;
        SkBlitter* blitter = this->getBlitter();
        do {
            int lower_y = fy >> 16;
            uint8_t  a = (uint8_t)(fy >> 8);
            if (a) {
                aa[0] = a;
                blitter->blitAntiH(x, lower_y, aa, runs);
                // the clipping blitters might edit runs, but should not affect us
                SkASSERT(runs[0] == 1);
                SkASSERT(runs[1] == 0);
            }
            a = 255 - a;
            if (a) {
                aa[0] = a;
                blitter->blitAntiH(x, lower_y - 1, aa, runs);
                // the clipping blitters might edit runs, but should not affect us
                SkASSERT(runs[0] == 1);
                SkASSERT(runs[1] == 0);
            }
            fy += dy;
        } while (++x < stopx);

        return fy - SK_Fixed1/2;
    }
};

class VLine_SkAntiHairBlitter : public SkAntiHairBlitter {
public:
    virtual SkFixed drawCap(int y, SkFixed fx, SkFixed dx, int mod64) SK_OVERRIDE {
        SkASSERT(0 == dx);
        fx += SK_Fixed1/2;

        int x = fx >> 16;
        int a = (uint8_t)(fx >> 8);

        unsigned ma = SmallDot6Scale(a, mod64);
        if (ma) {
            this->getBlitter()->blitV(x, y, 1, ma);
        }
        ma = SmallDot6Scale(255 - a, mod64);
        if (ma) {
            this->getBlitter()->blitV(x - 1, y, 1, ma);
        }

        return fx - SK_Fixed1/2;
    }

    virtual SkFixed drawLine(int y, int stopy, SkFixed fx, SkFixed dx) SK_OVERRIDE {
        SkASSERT(y < stopy);
        SkASSERT(0 == dx);
        fx += SK_Fixed1/2;

        int x = fx >> 16;
        int a = (uint8_t)(fx >> 8);

        if (a) {
            this->getBlitter()->blitV(x, y, stopy - y, a);
        }
        a = 255 - a;
        if (a) {
            this->getBlitter()->blitV(x - 1, y, stopy - y, a);
        }

        return fx - SK_Fixed1/2;
    }
};

class Vertish_SkAntiHairBlitter : public SkAntiHairBlitter {
public:
    virtual SkFixed drawCap(int y, SkFixed fx, SkFixed dx, int mod64) SK_OVERRIDE {
        int16_t runs[3];
        uint8_t  aa[2];

        runs[0] = 1;
        runs[2] = 0;

        fx += SK_Fixed1/2;
        int x = fx >> 16;
        uint8_t  a = (uint8_t)(fx >> 8);

        aa[0] = SmallDot6Scale(255 - a, mod64);
        aa[1] = SmallDot6Scale(a, mod64);
        // the clippng blitters might overwrite this guy, so we have to reset it each time
        runs[1] = 1;
        this->getBlitter()->blitAntiH(x - 1, y, aa, runs);
        // the clipping blitters might edit runs, but should not affect us
        SkASSERT(runs[0] == 1);
        SkASSERT(runs[2] == 0);
        fx += dx;

        return fx - SK_Fixed1/2;
    }

    virtual SkFixed drawLine(int y, int stopy, SkFixed fx, SkFixed dx) SK_OVERRIDE {
        SkASSERT(y < stopy);
        int16_t runs[3];
        uint8_t  aa[2];

        runs[0] = 1;
        runs[2] = 0;

        fx += SK_Fixed1/2;
        do {
            int x = fx >> 16;
            uint8_t  a = (uint8_t)(fx >> 8);

            aa[0] = 255 - a;
            aa[1] = a;
            // the clippng blitters might overwrite this guy, so we have to reset it each time
            runs[1] = 1;
            this->getBlitter()->blitAntiH(x - 1, y, aa, runs);
            // the clipping blitters might edit runs, but should not affect us
            SkASSERT(runs[0] == 1);
            SkASSERT(runs[2] == 0);
            fx += dx;
        } while (++y < stopy);

        return fx - SK_Fixed1/2;
    }
};

static inline SkFixed fastfixdiv(SkFDot6 a, SkFDot6 b) {
    SkASSERT((a << 16 >> 16) == a);
    SkASSERT(b != 0);
    return (a << 16) / b;
}

#define SkBITCOUNT(x)   (sizeof(x) << 3)

#if 1
// returns high-bit set iff x==0x8000...
static inline int bad_int(int x) {
    return x & -x;
}

static int any_bad_ints(int a, int b, int c, int d) {
    return (bad_int(a) | bad_int(b) | bad_int(c) | bad_int(d)) >> (SkBITCOUNT(int) - 1);
}
#else
static inline int good_int(int x) {
    return x ^ (1 << (SkBITCOUNT(x) - 1));
}

static int any_bad_ints(int a, int b, int c, int d) {
    return !(good_int(a) & good_int(b) & good_int(c) & good_int(d));
}
#endif

#ifdef SK_DEBUG
static bool canConvertFDot6ToFixed(SkFDot6 x) {
    const int maxDot6 = SK_MaxS32 >> (16 - 6);
    return SkAbs32(x) <= maxDot6;
}
#endif

/*
 *  We want the fractional part of ordinate, but we want multiples of 64 to
 *  return 64, not 0, so we can't just say (ordinate & 63).
 *  We basically want to compute those bits, and if they're 0, return 64.
 *  We can do that w/o a branch with an extra sub and add.
 */
static int contribution_64(SkFDot6 ordinate) {
#if 0
    int result = ordinate & 63;
    if (0 == result) {
        result = 64;
    }
#else
    int result = ((ordinate - 1) & 63) + 1;
#endif
    SkASSERT(result > 0 && result <= 64);
    return result;
}

static void do_anti_hairline(SkFDot6 x0, SkFDot6 y0, SkFDot6 x1, SkFDot6 y1,
                             const SkIRect* clip, SkBlitter* blitter) {
    // check for integer NaN (0x80000000) which we can't handle (can't negate it)
    // It appears typically from a huge float (inf or nan) being converted to int.
    // If we see it, just don't draw.
    if (any_bad_ints(x0, y0, x1, y1)) {
        return;
    }

    // The caller must clip the line to [-32767.0 ... 32767.0] ahead of time
    // (in dot6 format)
    SkASSERT(canConvertFDot6ToFixed(x0));
    SkASSERT(canConvertFDot6ToFixed(y0));
    SkASSERT(canConvertFDot6ToFixed(x1));
    SkASSERT(canConvertFDot6ToFixed(y1));

    if (SkAbs32(x1 - x0) > SkIntToFDot6(511) || SkAbs32(y1 - y0) > SkIntToFDot6(511)) {
        /*  instead of (x0 + x1) >> 1, we shift each separately. This is less
            precise, but avoids overflowing the intermediate result if the
            values are huge. A better fix might be to clip the original pts
            directly (i.e. do the divide), so we don't spend time subdividing
            huge lines at all.
         */
        int hx = (x0 >> 1) + (x1 >> 1);
        int hy = (y0 >> 1) + (y1 >> 1);
        do_anti_hairline(x0, y0, hx, hy, clip, blitter);
        do_anti_hairline(hx, hy, x1, y1, clip, blitter);
        return;
    }

    int         scaleStart, scaleStop;
    int         istart, istop;
    SkFixed     fstart, slope;

    HLine_SkAntiHairBlitter     hline_blitter;
    Horish_SkAntiHairBlitter    horish_blitter;
    VLine_SkAntiHairBlitter     vline_blitter;
    Vertish_SkAntiHairBlitter   vertish_blitter;
    SkAntiHairBlitter*          hairBlitter = NULL;

    if (SkAbs32(x1 - x0) > SkAbs32(y1 - y0)) {   // mostly horizontal
        if (x0 > x1) {    // we want to go left-to-right
            SkTSwap<SkFDot6>(x0, x1);
            SkTSwap<SkFDot6>(y0, y1);
        }

        istart = SkFDot6Floor(x0);
        istop = SkFDot6Ceil(x1);
        fstart = SkFDot6ToFixed(y0);
        if (y0 == y1) {   // completely horizontal, take fast case
            slope = 0;
            hairBlitter = &hline_blitter;
        } else {
            slope = fastfixdiv(y1 - y0, x1 - x0);
            SkASSERT(slope >= -SK_Fixed1 && slope <= SK_Fixed1);
            fstart += (slope * (32 - (x0 & 63)) + 32) >> 6;
            hairBlitter = &horish_blitter;
        }

        SkASSERT(istop > istart);
        if (istop - istart == 1) {
            // we are within a single pixel
            scaleStart = x1 - x0;
            SkASSERT(scaleStart >= 0 && scaleStart <= 64);
            scaleStop = 0;
        } else {
            scaleStart = 64 - (x0 & 63);
            scaleStop = x1 & 63;
        }

        if (clip){
            if (istart >= clip->fRight || istop <= clip->fLeft) {
                return;
            }
            if (istart < clip->fLeft) {
                fstart += slope * (clip->fLeft - istart);
                istart = clip->fLeft;
                scaleStart = 64;
                if (istop - istart == 1) {
                    // we are within a single pixel
                    scaleStart = contribution_64(x1);
                    scaleStop = 0;
                }
            }
            if (istop > clip->fRight) {
                istop = clip->fRight;
                scaleStop = 0;  // so we don't draw this last column
            }

            SkASSERT(istart <= istop);
            if (istart == istop) {
                return;
            }
            // now test if our Y values are completely inside the clip
            int top, bottom;
            if (slope >= 0) { // T2B
                top = SkFixedFloorToInt(fstart - SK_FixedHalf);
                bottom = SkFixedCeilToInt(fstart + (istop - istart - 1) * slope + SK_FixedHalf);
            } else {           // B2T
                bottom = SkFixedCeilToInt(fstart + SK_FixedHalf);
                top = SkFixedFloorToInt(fstart + (istop - istart - 1) * slope - SK_FixedHalf);
            }
#ifdef OUTSET_BEFORE_CLIP_TEST
            top -= 1;
            bottom += 1;
#endif
            if (top >= clip->fBottom || bottom <= clip->fTop) {
                return;
            }
            if (clip->fTop <= top && clip->fBottom >= bottom) {
                clip = NULL;
            }
        }
    } else {   // mostly vertical
        if (y0 > y1) {  // we want to go top-to-bottom
            SkTSwap<SkFDot6>(x0, x1);
            SkTSwap<SkFDot6>(y0, y1);
        }

        istart = SkFDot6Floor(y0);
        istop = SkFDot6Ceil(y1);
        fstart = SkFDot6ToFixed(x0);
        if (x0 == x1) {
            if (y0 == y1) { // are we zero length?
                return;     // nothing to do
            }
            slope = 0;
            hairBlitter = &vline_blitter;
        } else {
            slope = fastfixdiv(x1 - x0, y1 - y0);
            SkASSERT(slope <= SK_Fixed1 && slope >= -SK_Fixed1);
            fstart += (slope * (32 - (y0 & 63)) + 32) >> 6;
            hairBlitter = &vertish_blitter;
        }

        SkASSERT(istop > istart);
        if (istop - istart == 1) {
            // we are within a single pixel
            scaleStart = y1 - y0;
            SkASSERT(scaleStart >= 0 && scaleStart <= 64);
            scaleStop = 0;
        } else {
            scaleStart = 64 - (y0 & 63);
            scaleStop = y1 & 63;
        }

        if (clip) {
            if (istart >= clip->fBottom || istop <= clip->fTop) {
                return;
            }
            if (istart < clip->fTop) {
                fstart += slope * (clip->fTop - istart);
                istart = clip->fTop;
                scaleStart = 64;
                if (istop - istart == 1) {
                    // we are within a single pixel
                    scaleStart = contribution_64(y1);
                    scaleStop = 0;
                }
            }
            if (istop > clip->fBottom) {
                istop = clip->fBottom;
                scaleStop = 0;  // so we don't draw this last row
            }

            SkASSERT(istart <= istop);
            if (istart == istop)
                return;

            // now test if our X values are completely inside the clip
            int left, right;
            if (slope >= 0) { // L2R
                left = SkFixedFloorToInt(fstart - SK_FixedHalf);
                right = SkFixedCeilToInt(fstart + (istop - istart - 1) * slope + SK_FixedHalf);
            } else {           // R2L
                right = SkFixedCeilToInt(fstart + SK_FixedHalf);
                left = SkFixedFloorToInt(fstart + (istop - istart - 1) * slope - SK_FixedHalf);
            }
#ifdef OUTSET_BEFORE_CLIP_TEST
            left -= 1;
            right += 1;
#endif
            if (left >= clip->fRight || right <= clip->fLeft) {
                return;
            }
            if (clip->fLeft <= left && clip->fRight >= right) {
                clip = NULL;
            }
        }
    }

    SkRectClipBlitter   rectClipper;
    if (clip) {
        rectClipper.init(blitter, *clip);
        blitter = &rectClipper;
    }

    SkASSERT(hairBlitter);
    hairBlitter->setup(blitter);

#ifdef SK_DEBUG
    if (scaleStart > 0 && scaleStop > 0) {
        // be sure we don't draw twice in the same pixel
        SkASSERT(istart < istop - 1);
    }
#endif

    fstart = hairBlitter->drawCap(istart, fstart, slope, scaleStart);
    istart += 1;
    int fullSpans = istop - istart - (scaleStop > 0);
    if (fullSpans > 0) {
        fstart = hairBlitter->drawLine(istart, istart + fullSpans, fstart, slope);
    }
    if (scaleStop > 0) {
        hairBlitter->drawCap(istop - 1, fstart, slope, scaleStop);
    }
}

void SkScan::AntiHairLineRgn(const SkPoint& pt0, const SkPoint& pt1,
                             const SkRegion* clip, SkBlitter* blitter) {
    if (clip && clip->isEmpty()) {
        return;
    }

    SkASSERT(clip == NULL || !clip->getBounds().isEmpty());

#ifdef TEST_GAMMA
    build_gamma_table();
#endif

    SkPoint pts[2] = { pt0, pt1 };

    // We have to pre-clip the line to fit in a SkFixed, so we just chop
    // the line. TODO find a way to actually draw beyond that range.
    {
        SkRect fixedBounds;
        const SkScalar max = SkIntToScalar(32767);
        fixedBounds.set(-max, -max, max, max);
        if (!SkLineClipper::IntersectLine(pts, fixedBounds, pts)) {
            return;
        }
    }

    if (clip) {
        SkRect clipBounds;
        clipBounds.set(clip->getBounds());
        /*  We perform integral clipping later on, but we do a scalar clip first
            to ensure that our coordinates are expressible in fixed/integers.

            antialiased hairlines can draw up to 1/2 of a pixel outside of
            their bounds, so we need to outset the clip before calling the
            clipper. To make the numerics safer, we outset by a whole pixel,
            since the 1/2 pixel boundary is important to the antihair blitter,
            we don't want to risk numerical fate by chopping on that edge.
         */
        clipBounds.inset(-SK_Scalar1, -SK_Scalar1);

        if (!SkLineClipper::IntersectLine(pts, clipBounds, pts)) {
            return;
        }
    }

    SkFDot6 x0 = SkScalarToFDot6(pts[0].fX);
    SkFDot6 y0 = SkScalarToFDot6(pts[0].fY);
    SkFDot6 x1 = SkScalarToFDot6(pts[1].fX);
    SkFDot6 y1 = SkScalarToFDot6(pts[1].fY);

    if (clip) {
        SkFDot6 left = SkMin32(x0, x1);
        SkFDot6 top = SkMin32(y0, y1);
        SkFDot6 right = SkMax32(x0, x1);
        SkFDot6 bottom = SkMax32(y0, y1);
        SkIRect ir;

        ir.set( SkFDot6Floor(left) - 1,
                SkFDot6Floor(top) - 1,
                SkFDot6Ceil(right) + 1,
                SkFDot6Ceil(bottom) + 1);

        if (clip->quickReject(ir)) {
            return;
        }
        if (!clip->quickContains(ir)) {
            SkRegion::Cliperator iter(*clip, ir);
            const SkIRect*       r = &iter.rect();

            while (!iter.done()) {
                do_anti_hairline(x0, y0, x1, y1, r, blitter);
                iter.next();
            }
            return;
        }
        // fall through to no-clip case
    }
    do_anti_hairline(x0, y0, x1, y1, NULL, blitter);
}

void SkScan::AntiHairRect(const SkRect& rect, const SkRasterClip& clip,
                          SkBlitter* blitter) {
    SkPoint p0, p1;

    p0.set(rect.fLeft, rect.fTop);
    p1.set(rect.fRight, rect.fTop);
    SkScan::AntiHairLine(p0, p1, clip, blitter);
    p0.set(rect.fRight, rect.fBottom);
    SkScan::AntiHairLine(p0, p1, clip, blitter);
    p1.set(rect.fLeft, rect.fBottom);
    SkScan::AntiHairLine(p0, p1, clip, blitter);
    p0.set(rect.fLeft, rect.fTop);
    SkScan::AntiHairLine(p0, p1, clip, blitter);
}

///////////////////////////////////////////////////////////////////////////////

typedef int FDot8;  // 24.8 integer fixed point

static inline FDot8 SkFixedToFDot8(SkFixed x) {
    return (x + 0x80) >> 8;
}

static void do_scanline(FDot8 L, int top, FDot8 R, U8CPU alpha,
                        SkBlitter* blitter) {
    SkASSERT(L < R);

    if ((L >> 8) == ((R - 1) >> 8)) {  // 1x1 pixel
        blitter->blitV(L >> 8, top, 1, SkAlphaMul(alpha, R - L));
        return;
    }

    int left = L >> 8;

    if (L & 0xFF) {
        blitter->blitV(left, top, 1, SkAlphaMul(alpha, 256 - (L & 0xFF)));
        left += 1;
    }

    int rite = R >> 8;
    int width = rite - left;
    if (width > 0) {
        call_hline_blitter(blitter, left, top, width, alpha);
    }
    if (R & 0xFF) {
        blitter->blitV(rite, top, 1, SkAlphaMul(alpha, R & 0xFF));
    }
}

static void antifilldot8(FDot8 L, FDot8 T, FDot8 R, FDot8 B, SkBlitter* blitter,
                         bool fillInner) {
    // check for empty now that we're in our reduced precision space
    if (L >= R || T >= B) {
        return;
    }
    int top = T >> 8;
    if (top == ((B - 1) >> 8)) {   // just one scanline high
        do_scanline(L, top, R, B - T - 1, blitter);
        return;
    }

    if (T & 0xFF) {
        do_scanline(L, top, R, 256 - (T & 0xFF), blitter);
        top += 1;
    }

    int bot = B >> 8;
    int height = bot - top;
    if (height > 0) {
        int left = L >> 8;
        if (left == ((R - 1) >> 8)) {   // just 1-pixel wide
            blitter->blitV(left, top, height, R - L - 1);
        } else {
            if (L & 0xFF) {
                blitter->blitV(left, top, height, 256 - (L & 0xFF));
                left += 1;
            }
            int rite = R >> 8;
            int width = rite - left;
            if (width > 0 && fillInner) {
                blitter->blitRect(left, top, width, height);
            }
            if (R & 0xFF) {
                blitter->blitV(rite, top, height, R & 0xFF);
            }
        }
    }

    if (B & 0xFF) {
        do_scanline(L, bot, R, B & 0xFF, blitter);
    }
}

static void antifillrect(const SkXRect& xr, SkBlitter* blitter) {
    antifilldot8(SkFixedToFDot8(xr.fLeft), SkFixedToFDot8(xr.fTop),
                 SkFixedToFDot8(xr.fRight), SkFixedToFDot8(xr.fBottom),
                 blitter, true);
}

///////////////////////////////////////////////////////////////////////////////

void SkScan::AntiFillXRect(const SkXRect& xr, const SkRegion* clip,
                          SkBlitter* blitter) {
    if (NULL == clip) {
        antifillrect(xr, blitter);
    } else {
        SkIRect outerBounds;
        XRect_roundOut(xr, &outerBounds);

        if (clip->isRect()) {
            const SkIRect& clipBounds = clip->getBounds();

            if (clipBounds.contains(outerBounds)) {
                antifillrect(xr, blitter);
            } else {
                SkXRect tmpR;
                // this keeps our original edges fractional
                XRect_set(&tmpR, clipBounds);
                if (tmpR.intersect(xr)) {
                    antifillrect(tmpR, blitter);
                }
            }
        } else {
            SkRegion::Cliperator clipper(*clip, outerBounds);
            const SkIRect&       rr = clipper.rect();

            while (!clipper.done()) {
                SkXRect  tmpR;

                // this keeps our original edges fractional
                XRect_set(&tmpR, rr);
                if (tmpR.intersect(xr)) {
                    antifillrect(tmpR, blitter);
                }
                clipper.next();
            }
        }
    }
}

void SkScan::AntiFillXRect(const SkXRect& xr, const SkRasterClip& clip,
                           SkBlitter* blitter) {
    if (clip.isBW()) {
        AntiFillXRect(xr, &clip.bwRgn(), blitter);
    } else {
        SkIRect outerBounds;
        XRect_roundOut(xr, &outerBounds);

        if (clip.quickContains(outerBounds)) {
            AntiFillXRect(xr, NULL, blitter);
        } else {
            SkAAClipBlitterWrapper wrapper(clip, blitter);
            blitter = wrapper.getBlitter();

            AntiFillXRect(xr, &wrapper.getRgn(), wrapper.getBlitter());
        }
    }
}

/*  This guy takes a float-rect, but with the key improvement that it has
    already been clipped, so we know that it is safe to convert it into a
    XRect (fixedpoint), as it won't overflow.
*/
static void antifillrect(const SkRect& r, SkBlitter* blitter) {
    SkXRect xr;

    XRect_set(&xr, r);
    antifillrect(xr, blitter);
}

/*  We repeat the clipping logic of AntiFillXRect because the float rect might
    overflow if we blindly converted it to an XRect. This sucks that we have to
    repeat the clipping logic, but I don't see how to share the code/logic.

    We clip r (as needed) into one or more (smaller) float rects, and then pass
    those to our version of antifillrect, which converts it into an XRect and
    then calls the blit.
*/
void SkScan::AntiFillRect(const SkRect& origR, const SkRegion* clip,
                          SkBlitter* blitter) {
    if (clip) {
        SkRect newR;
        newR.set(clip->getBounds());
        if (!newR.intersect(origR)) {
            return;
        }

        SkIRect outerBounds;
        newR.roundOut(&outerBounds);

        if (clip->isRect()) {
            antifillrect(newR, blitter);
        } else {
            SkRegion::Cliperator clipper(*clip, outerBounds);
            while (!clipper.done()) {
                newR.set(clipper.rect());
                if (newR.intersect(origR)) {
                    antifillrect(newR, blitter);
                }
                clipper.next();
            }
        }
    } else {
        antifillrect(origR, blitter);
    }
}

void SkScan::AntiFillRect(const SkRect& r, const SkRasterClip& clip,
                          SkBlitter* blitter) {
    if (clip.isBW()) {
        AntiFillRect(r, &clip.bwRgn(), blitter);
    } else {
        SkAAClipBlitterWrapper wrap(clip, blitter);
        AntiFillRect(r, &wrap.getRgn(), wrap.getBlitter());
    }
}

///////////////////////////////////////////////////////////////////////////////

#define SkAlphaMulRound(a, b)   SkMulDiv255Round(a, b)

// calls blitRect() if the rectangle is non-empty
static void fillcheckrect(int L, int T, int R, int B, SkBlitter* blitter) {
    if (L < R && T < B) {
        blitter->blitRect(L, T, R - L, B - T);
    }
}

static inline FDot8 SkScalarToFDot8(SkScalar x) {
    return (int)(x * 256);
}

static inline int FDot8Floor(FDot8 x) {
    return x >> 8;
}

static inline int FDot8Ceil(FDot8 x) {
    return (x + 0xFF) >> 8;
}

// 1 - (1 - a)*(1 - b)
static inline U8CPU InvAlphaMul(U8CPU a, U8CPU b) {
    // need precise rounding (not just SkAlphaMul) so that values like
    // a=228, b=252 don't overflow the result
    return SkToU8(a + b - SkAlphaMulRound(a, b));
}

static void inner_scanline(FDot8 L, int top, FDot8 R, U8CPU alpha,
                           SkBlitter* blitter) {
    SkASSERT(L < R);

    if ((L >> 8) == ((R - 1) >> 8)) {  // 1x1 pixel
        blitter->blitV(L >> 8, top, 1, InvAlphaMul(alpha, R - L));
        return;
    }

    int left = L >> 8;
    if (L & 0xFF) {
        blitter->blitV(left, top, 1, InvAlphaMul(alpha, L & 0xFF));
        left += 1;
    }

    int rite = R >> 8;
    int width = rite - left;
    if (width > 0) {
        call_hline_blitter(blitter, left, top, width, alpha);
    }

    if (R & 0xFF) {
        blitter->blitV(rite, top, 1, InvAlphaMul(alpha, ~R & 0xFF));
    }
}

static void innerstrokedot8(FDot8 L, FDot8 T, FDot8 R, FDot8 B,
                            SkBlitter* blitter) {
    SkASSERT(L < R && T < B);

    int top = T >> 8;
    if (top == ((B - 1) >> 8)) {   // just one scanline high
        // We want the inverse of B-T, since we're the inner-stroke
        int alpha = 256 - (B - T);
        if (alpha) {
            inner_scanline(L, top, R, alpha, blitter);
        }
        return;
    }

    if (T & 0xFF) {
        inner_scanline(L, top, R, T & 0xFF, blitter);
        top += 1;
    }

    int bot = B >> 8;
    int height = bot - top;
    if (height > 0) {
        if (L & 0xFF) {
            blitter->blitV(L >> 8, top, height, L & 0xFF);
        }
        if (R & 0xFF) {
            blitter->blitV(R >> 8, top, height, ~R & 0xFF);
        }
    }

    if (B & 0xFF) {
        inner_scanline(L, bot, R, ~B & 0xFF, blitter);
    }
}

void SkScan::AntiFrameRect(const SkRect& r, const SkPoint& strokeSize,
                           const SkRegion* clip, SkBlitter* blitter) {
    SkASSERT(strokeSize.fX >= 0 && strokeSize.fY >= 0);

    SkScalar rx = SkScalarHalf(strokeSize.fX);
    SkScalar ry = SkScalarHalf(strokeSize.fY);

    // outset by the radius
    FDot8 L = SkScalarToFDot8(r.fLeft - rx);
    FDot8 T = SkScalarToFDot8(r.fTop - ry);
    FDot8 R = SkScalarToFDot8(r.fRight + rx);
    FDot8 B = SkScalarToFDot8(r.fBottom + ry);

    SkIRect outer;
    // set outer to the outer rect of the outer section
    outer.set(FDot8Floor(L), FDot8Floor(T), FDot8Ceil(R), FDot8Ceil(B));

    SkBlitterClipper clipper;
    if (clip) {
        if (clip->quickReject(outer)) {
            return;
        }
        if (!clip->contains(outer)) {
            blitter = clipper.apply(blitter, clip, &outer);
        }
        // now we can ignore clip for the rest of the function
    }

    // stroke the outer hull
    antifilldot8(L, T, R, B, blitter, false);

    // set outer to the outer rect of the middle section
    outer.set(FDot8Ceil(L), FDot8Ceil(T), FDot8Floor(R), FDot8Floor(B));

    // in case we lost a bit with diameter/2
    rx = strokeSize.fX - rx;
    ry = strokeSize.fY - ry;
    // inset by the radius
    L = SkScalarToFDot8(r.fLeft + rx);
    T = SkScalarToFDot8(r.fTop + ry);
    R = SkScalarToFDot8(r.fRight - rx);
    B = SkScalarToFDot8(r.fBottom - ry);

    if (L >= R || T >= B) {
        fillcheckrect(outer.fLeft, outer.fTop, outer.fRight, outer.fBottom,
                      blitter);
    } else {
        SkIRect inner;
        // set inner to the inner rect of the middle section
        inner.set(FDot8Floor(L), FDot8Floor(T), FDot8Ceil(R), FDot8Ceil(B));

        // draw the frame in 4 pieces
        fillcheckrect(outer.fLeft, outer.fTop, outer.fRight, inner.fTop,
                      blitter);
        fillcheckrect(outer.fLeft, inner.fTop, inner.fLeft, inner.fBottom,
                      blitter);
        fillcheckrect(inner.fRight, inner.fTop, outer.fRight, inner.fBottom,
                      blitter);
        fillcheckrect(outer.fLeft, inner.fBottom, outer.fRight, outer.fBottom,
                      blitter);

        // now stroke the inner rect, which is similar to antifilldot8() except that
        // it treats the fractional coordinates with the inverse bias (since its
        // inner).
        innerstrokedot8(L, T, R, B, blitter);
    }
}

void SkScan::AntiFrameRect(const SkRect& r, const SkPoint& strokeSize,
                           const SkRasterClip& clip, SkBlitter* blitter) {
    if (clip.isBW()) {
        AntiFrameRect(r, strokeSize, &clip.bwRgn(), blitter);
    } else {
        SkAAClipBlitterWrapper wrap(clip, blitter);
        AntiFrameRect(r, strokeSize, &wrap.getRgn(), wrap.getBlitter());
    }
}