DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (d8847129d134)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
/*
 * Copyright 2013 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "SkChecksum.h"
#include "SkScaledImageCache.h"
#include "SkMipMap.h"
#include "SkPixelRef.h"
#include "SkRect.h"

// This can be defined by the caller's build system
//#define SK_USE_DISCARDABLE_SCALEDIMAGECACHE

#ifndef SK_DISCARDABLEMEMORY_SCALEDIMAGECACHE_COUNT_LIMIT
#   define SK_DISCARDABLEMEMORY_SCALEDIMAGECACHE_COUNT_LIMIT   1024
#endif

#ifndef SK_DEFAULT_IMAGE_CACHE_LIMIT
    #define SK_DEFAULT_IMAGE_CACHE_LIMIT     (2 * 1024 * 1024)
#endif

static inline SkScaledImageCache::ID* rec_to_id(SkScaledImageCache::Rec* rec) {
    return reinterpret_cast<SkScaledImageCache::ID*>(rec);
}

static inline SkScaledImageCache::Rec* id_to_rec(SkScaledImageCache::ID* id) {
    return reinterpret_cast<SkScaledImageCache::Rec*>(id);
}

struct SkScaledImageCache::Key {
    Key(uint32_t genID,
        SkScalar scaleX,
        SkScalar scaleY,
        SkIRect  bounds)
        : fGenID(genID)
        , fScaleX(scaleX)
        , fScaleY(scaleY)
        , fBounds(bounds) {
        fHash = SkChecksum::Murmur3(&fGenID, 28);
    }

    bool operator<(const Key& other) const {
        const uint32_t* a = &fGenID;
        const uint32_t* b = &other.fGenID;
        for (int i = 0; i < 7; ++i) {
            if (a[i] < b[i]) {
                return true;
            }
            if (a[i] > b[i]) {
                return false;
            }
        }
        return false;
    }

    bool operator==(const Key& other) const {
        const uint32_t* a = &fHash;
        const uint32_t* b = &other.fHash;
        for (int i = 0; i < 8; ++i) {
            if (a[i] != b[i]) {
                return false;
            }
        }
        return true;
    }

    uint32_t    fHash;
    uint32_t    fGenID;
    float       fScaleX;
    float       fScaleY;
    SkIRect     fBounds;
};

struct SkScaledImageCache::Rec {
    Rec(const Key& key, const SkBitmap& bm) : fKey(key), fBitmap(bm) {
        fLockCount = 1;
        fMip = NULL;
    }

    Rec(const Key& key, const SkMipMap* mip) : fKey(key) {
        fLockCount = 1;
        fMip = mip;
        mip->ref();
    }

    ~Rec() {
        SkSafeUnref(fMip);
    }

    static const Key& GetKey(const Rec& rec) { return rec.fKey; }
    static uint32_t Hash(const Key& key) { return key.fHash; }

    size_t bytesUsed() const {
        return fMip ? fMip->getSize() : fBitmap.getSize();
    }

    Rec*    fNext;
    Rec*    fPrev;

    // this guy wants to be 64bit aligned
    Key     fKey;

    int32_t fLockCount;

    // we use either fBitmap or fMip, but not both
    SkBitmap fBitmap;
    const SkMipMap* fMip;
};

#include "SkTDynamicHash.h"

class SkScaledImageCache::Hash :
    public SkTDynamicHash<SkScaledImageCache::Rec, SkScaledImageCache::Key> {};


///////////////////////////////////////////////////////////////////////////////

// experimental hash to speed things up
#define USE_HASH

#if !defined(USE_HASH)
static inline SkScaledImageCache::Rec* find_rec_in_list(
        SkScaledImageCache::Rec* head, const Key & key) {
    SkScaledImageCache::Rec* rec = head;
    while ((rec != NULL) && (rec->fKey != key)) {
        rec = rec->fNext;
    }
    return rec;
}
#endif

void SkScaledImageCache::init() {
    fHead = NULL;
    fTail = NULL;
#ifdef USE_HASH
    fHash = new Hash;
#else
    fHash = NULL;
#endif
    fTotalBytesUsed = 0;
    fCount = 0;
    fSingleAllocationByteLimit = 0;
    fAllocator = NULL;

    // One of these should be explicit set by the caller after we return.
    fTotalByteLimit = 0;
    fDiscardableFactory = NULL;
}

#include "SkDiscardableMemory.h"

class SkOneShotDiscardablePixelRef : public SkPixelRef {
public:
    SK_DECLARE_INST_COUNT(SkOneShotDiscardablePixelRef)
    // Ownership of the discardablememory is transfered to the pixelref
    SkOneShotDiscardablePixelRef(const SkImageInfo&, SkDiscardableMemory*, size_t rowBytes);
    ~SkOneShotDiscardablePixelRef();

protected:
    virtual bool onNewLockPixels(LockRec*) SK_OVERRIDE;
    virtual void onUnlockPixels() SK_OVERRIDE;
    virtual size_t getAllocatedSizeInBytes() const SK_OVERRIDE;

private:
    SkDiscardableMemory* fDM;
    size_t               fRB;
    bool                 fFirstTime;

    typedef SkPixelRef INHERITED;
};

SkOneShotDiscardablePixelRef::SkOneShotDiscardablePixelRef(const SkImageInfo& info,
                                             SkDiscardableMemory* dm,
                                             size_t rowBytes)
    : INHERITED(info)
    , fDM(dm)
    , fRB(rowBytes)
{
    SkASSERT(dm->data());
    fFirstTime = true;
}

SkOneShotDiscardablePixelRef::~SkOneShotDiscardablePixelRef() {
    SkDELETE(fDM);
}

bool SkOneShotDiscardablePixelRef::onNewLockPixels(LockRec* rec) {
    if (fFirstTime) {
        // we're already locked
        SkASSERT(fDM->data());
        fFirstTime = false;
        goto SUCCESS;
    }

    // A previous call to onUnlock may have deleted our DM, so check for that
    if (NULL == fDM) {
        return false;
    }

    if (!fDM->lock()) {
        // since it failed, we delete it now, to free-up the resource
        delete fDM;
        fDM = NULL;
        return false;
    }

SUCCESS:
    rec->fPixels = fDM->data();
    rec->fColorTable = NULL;
    rec->fRowBytes = fRB;
    return true;
}

void SkOneShotDiscardablePixelRef::onUnlockPixels() {
    SkASSERT(!fFirstTime);
    fDM->unlock();
}

size_t SkOneShotDiscardablePixelRef::getAllocatedSizeInBytes() const {
    return this->info().getSafeSize(fRB);
}

class SkScaledImageCacheDiscardableAllocator : public SkBitmap::Allocator {
public:
    SkScaledImageCacheDiscardableAllocator(
                            SkScaledImageCache::DiscardableFactory factory) {
        SkASSERT(factory);
        fFactory = factory;
    }

    virtual bool allocPixelRef(SkBitmap*, SkColorTable*) SK_OVERRIDE;

private:
    SkScaledImageCache::DiscardableFactory fFactory;
};

bool SkScaledImageCacheDiscardableAllocator::allocPixelRef(SkBitmap* bitmap,
                                                       SkColorTable* ctable) {
    size_t size = bitmap->getSize();
    uint64_t size64 = bitmap->computeSize64();
    if (0 == size || size64 > (uint64_t)size) {
        return false;
    }

    SkDiscardableMemory* dm = fFactory(size);
    if (NULL == dm) {
        return false;
    }

    // can we relax this?
    if (kN32_SkColorType != bitmap->colorType()) {
        return false;
    }

    SkImageInfo info = bitmap->info();
    bitmap->setPixelRef(SkNEW_ARGS(SkOneShotDiscardablePixelRef,
                                   (info, dm, bitmap->rowBytes())))->unref();
    bitmap->lockPixels();
    return bitmap->readyToDraw();
}

SkScaledImageCache::SkScaledImageCache(DiscardableFactory factory) {
    this->init();
    fDiscardableFactory = factory;

    fAllocator = SkNEW_ARGS(SkScaledImageCacheDiscardableAllocator, (factory));
}

SkScaledImageCache::SkScaledImageCache(size_t byteLimit) {
    this->init();
    fTotalByteLimit = byteLimit;
}

SkScaledImageCache::~SkScaledImageCache() {
    SkSafeUnref(fAllocator);

    Rec* rec = fHead;
    while (rec) {
        Rec* next = rec->fNext;
        SkDELETE(rec);
        rec = next;
    }
    delete fHash;
}

////////////////////////////////////////////////////////////////////////////////


SkScaledImageCache::Rec* SkScaledImageCache::findAndLock(uint32_t genID,
                                                        SkScalar scaleX,
                                                        SkScalar scaleY,
                                                        const SkIRect& bounds) {
    const Key key(genID, scaleX, scaleY, bounds);
    return this->findAndLock(key);
}

/**
   This private method is the fully general record finder. All other
   record finders should call this function or the one above. */
SkScaledImageCache::Rec* SkScaledImageCache::findAndLock(const SkScaledImageCache::Key& key) {
    if (key.fBounds.isEmpty()) {
        return NULL;
    }
#ifdef USE_HASH
    Rec* rec = fHash->find(key);
#else
    Rec* rec = find_rec_in_list(fHead, key);
#endif
    if (rec) {
        this->moveToHead(rec);  // for our LRU
        rec->fLockCount += 1;
    }
    return rec;
}

/**
   This function finds the bounds of the bitmap *within its pixelRef*.
   If the bitmap lacks a pixelRef, it will return an empty rect, since
   that doesn't make sense.  This may be a useful enough function that
   it should be somewhere else (in SkBitmap?). */
static SkIRect get_bounds_from_bitmap(const SkBitmap& bm) {
    if (!(bm.pixelRef())) {
        return SkIRect::MakeEmpty();
    }
    SkIPoint origin = bm.pixelRefOrigin();
    return SkIRect::MakeXYWH(origin.fX, origin.fY, bm.width(), bm.height());
}


SkScaledImageCache::ID* SkScaledImageCache::findAndLock(uint32_t genID,
                                                        int32_t width,
                                                        int32_t height,
                                                        SkBitmap* bitmap) {
    Rec* rec = this->findAndLock(genID, SK_Scalar1, SK_Scalar1,
                                 SkIRect::MakeWH(width, height));
    if (rec) {
        SkASSERT(NULL == rec->fMip);
        SkASSERT(rec->fBitmap.pixelRef());
        *bitmap = rec->fBitmap;
    }
    return rec_to_id(rec);
}

SkScaledImageCache::ID* SkScaledImageCache::findAndLock(const SkBitmap& orig,
                                                        SkScalar scaleX,
                                                        SkScalar scaleY,
                                                        SkBitmap* scaled) {
    if (0 == scaleX || 0 == scaleY) {
        // degenerate, and the key we use for mipmaps
        return NULL;
    }
    Rec* rec = this->findAndLock(orig.getGenerationID(), scaleX,
                                 scaleY, get_bounds_from_bitmap(orig));
    if (rec) {
        SkASSERT(NULL == rec->fMip);
        SkASSERT(rec->fBitmap.pixelRef());
        *scaled = rec->fBitmap;
    }
    return rec_to_id(rec);
}

SkScaledImageCache::ID* SkScaledImageCache::findAndLockMip(const SkBitmap& orig,
                                                           SkMipMap const ** mip) {
    Rec* rec = this->findAndLock(orig.getGenerationID(), 0, 0,
                                 get_bounds_from_bitmap(orig));
    if (rec) {
        SkASSERT(rec->fMip);
        SkASSERT(NULL == rec->fBitmap.pixelRef());
        *mip = rec->fMip;
    }
    return rec_to_id(rec);
}


////////////////////////////////////////////////////////////////////////////////
/**
   This private method is the fully general record adder. All other
   record adders should call this funtion. */
SkScaledImageCache::ID* SkScaledImageCache::addAndLock(SkScaledImageCache::Rec* rec) {
    SkASSERT(rec);
    // See if we already have this key (racy inserts, etc.)
    Rec* existing = this->findAndLock(rec->fKey);
    if (NULL != existing) {
        // Since we already have a matching entry, just delete the new one and return.
        // Call sites cannot assume the passed in object will live past this call.
        existing->fBitmap = rec->fBitmap;
        SkDELETE(rec);
        return rec_to_id(existing);
    }

    this->addToHead(rec);
    SkASSERT(1 == rec->fLockCount);
#ifdef USE_HASH
    SkASSERT(fHash);
    fHash->add(rec);
#endif
    // We may (now) be overbudget, so see if we need to purge something.
    this->purgeAsNeeded();
    return rec_to_id(rec);
}

SkScaledImageCache::ID* SkScaledImageCache::addAndLock(uint32_t genID,
                                                       int32_t width,
                                                       int32_t height,
                                                       const SkBitmap& bitmap) {
    Key key(genID, SK_Scalar1, SK_Scalar1, SkIRect::MakeWH(width, height));
    Rec* rec = SkNEW_ARGS(Rec, (key, bitmap));
    return this->addAndLock(rec);
}

SkScaledImageCache::ID* SkScaledImageCache::addAndLock(const SkBitmap& orig,
                                                       SkScalar scaleX,
                                                       SkScalar scaleY,
                                                       const SkBitmap& scaled) {
    if (0 == scaleX || 0 == scaleY) {
        // degenerate, and the key we use for mipmaps
        return NULL;
    }
    SkIRect bounds = get_bounds_from_bitmap(orig);
    if (bounds.isEmpty()) {
        return NULL;
    }
    Key key(orig.getGenerationID(), scaleX, scaleY, bounds);
    Rec* rec = SkNEW_ARGS(Rec, (key, scaled));
    return this->addAndLock(rec);
}

SkScaledImageCache::ID* SkScaledImageCache::addAndLockMip(const SkBitmap& orig,
                                                          const SkMipMap* mip) {
    SkIRect bounds = get_bounds_from_bitmap(orig);
    if (bounds.isEmpty()) {
        return NULL;
    }
    Key key(orig.getGenerationID(), 0, 0, bounds);
    Rec* rec = SkNEW_ARGS(Rec, (key, mip));
    return this->addAndLock(rec);
}

void SkScaledImageCache::unlock(SkScaledImageCache::ID* id) {
    SkASSERT(id);

#ifdef SK_DEBUG
    {
        bool found = false;
        Rec* rec = fHead;
        while (rec != NULL) {
            if (rec == id_to_rec(id)) {
                found = true;
                break;
            }
            rec = rec->fNext;
        }
        SkASSERT(found);
    }
#endif
    Rec* rec = id_to_rec(id);
    SkASSERT(rec->fLockCount > 0);
    rec->fLockCount -= 1;

    // we may have been over-budget, but now have released something, so check
    // if we should purge.
    if (0 == rec->fLockCount) {
        this->purgeAsNeeded();
    }
}

void SkScaledImageCache::purgeAsNeeded() {
    size_t byteLimit;
    int    countLimit;

    if (fDiscardableFactory) {
        countLimit = SK_DISCARDABLEMEMORY_SCALEDIMAGECACHE_COUNT_LIMIT;
        byteLimit = SK_MaxU32;  // no limit based on bytes
    } else {
        countLimit = SK_MaxS32; // no limit based on count
        byteLimit = fTotalByteLimit;
    }

    size_t bytesUsed = fTotalBytesUsed;
    int    countUsed = fCount;

    Rec* rec = fTail;
    while (rec) {
        if (bytesUsed < byteLimit && countUsed < countLimit) {
            break;
        }

        Rec* prev = rec->fPrev;
        if (0 == rec->fLockCount) {
            size_t used = rec->bytesUsed();
            SkASSERT(used <= bytesUsed);
            this->detach(rec);
#ifdef USE_HASH
            fHash->remove(rec->fKey);
#endif

            SkDELETE(rec);

            bytesUsed -= used;
            countUsed -= 1;
        }
        rec = prev;
    }

    fTotalBytesUsed = bytesUsed;
    fCount = countUsed;
}

size_t SkScaledImageCache::setTotalByteLimit(size_t newLimit) {
    size_t prevLimit = fTotalByteLimit;
    fTotalByteLimit = newLimit;
    if (newLimit < prevLimit) {
        this->purgeAsNeeded();
    }
    return prevLimit;
}

///////////////////////////////////////////////////////////////////////////////

void SkScaledImageCache::detach(Rec* rec) {
    Rec* prev = rec->fPrev;
    Rec* next = rec->fNext;

    if (!prev) {
        SkASSERT(fHead == rec);
        fHead = next;
    } else {
        prev->fNext = next;
    }

    if (!next) {
        fTail = prev;
    } else {
        next->fPrev = prev;
    }

    rec->fNext = rec->fPrev = NULL;
}

void SkScaledImageCache::moveToHead(Rec* rec) {
    if (fHead == rec) {
        return;
    }

    SkASSERT(fHead);
    SkASSERT(fTail);

    this->validate();

    this->detach(rec);

    fHead->fPrev = rec;
    rec->fNext = fHead;
    fHead = rec;

    this->validate();
}

void SkScaledImageCache::addToHead(Rec* rec) {
    this->validate();

    rec->fPrev = NULL;
    rec->fNext = fHead;
    if (fHead) {
        fHead->fPrev = rec;
    }
    fHead = rec;
    if (!fTail) {
        fTail = rec;
    }
    fTotalBytesUsed += rec->bytesUsed();
    fCount += 1;

    this->validate();
}

///////////////////////////////////////////////////////////////////////////////

#ifdef SK_DEBUG
void SkScaledImageCache::validate() const {
    if (NULL == fHead) {
        SkASSERT(NULL == fTail);
        SkASSERT(0 == fTotalBytesUsed);
        return;
    }

    if (fHead == fTail) {
        SkASSERT(NULL == fHead->fPrev);
        SkASSERT(NULL == fHead->fNext);
        SkASSERT(fHead->bytesUsed() == fTotalBytesUsed);
        return;
    }

    SkASSERT(NULL == fHead->fPrev);
    SkASSERT(NULL != fHead->fNext);
    SkASSERT(NULL == fTail->fNext);
    SkASSERT(NULL != fTail->fPrev);

    size_t used = 0;
    int count = 0;
    const Rec* rec = fHead;
    while (rec) {
        count += 1;
        used += rec->bytesUsed();
        SkASSERT(used <= fTotalBytesUsed);
        rec = rec->fNext;
    }
    SkASSERT(fCount == count);

    rec = fTail;
    while (rec) {
        SkASSERT(count > 0);
        count -= 1;
        SkASSERT(used >= rec->bytesUsed());
        used -= rec->bytesUsed();
        rec = rec->fPrev;
    }

    SkASSERT(0 == count);
    SkASSERT(0 == used);
}
#endif

void SkScaledImageCache::dump() const {
    this->validate();

    const Rec* rec = fHead;
    int locked = 0;
    while (rec) {
        locked += rec->fLockCount > 0;
        rec = rec->fNext;
    }

    SkDebugf("SkScaledImageCache: count=%d bytes=%d locked=%d %s\n",
             fCount, fTotalBytesUsed, locked,
             fDiscardableFactory ? "discardable" : "malloc");
}

size_t SkScaledImageCache::setSingleAllocationByteLimit(size_t newLimit) {
    size_t oldLimit = fSingleAllocationByteLimit;
    fSingleAllocationByteLimit = newLimit;
    return oldLimit;
}

size_t SkScaledImageCache::getSingleAllocationByteLimit() const {
    return fSingleAllocationByteLimit;
}

///////////////////////////////////////////////////////////////////////////////

#include "SkThread.h"

SK_DECLARE_STATIC_MUTEX(gMutex);
static SkScaledImageCache* gScaledImageCache = NULL;
static void cleanup_gScaledImageCache() {
    // We'll clean this up in our own tests, but disable for clients.
    // Chrome seems to have funky multi-process things going on in unit tests that
    // makes this unsafe to delete when the main process atexit()s.
    // SkLazyPtr does the same sort of thing.
#if SK_DEVELOPER
    SkDELETE(gScaledImageCache);
#endif
}

/** Must hold gMutex when calling. */
static SkScaledImageCache* get_cache() {
    // gMutex is always held when this is called, so we don't need to be fancy in here.
    gMutex.assertHeld();
    if (NULL == gScaledImageCache) {
#ifdef SK_USE_DISCARDABLE_SCALEDIMAGECACHE
        gScaledImageCache = SkNEW_ARGS(SkScaledImageCache, (SkDiscardableMemory::Create));
#else
        gScaledImageCache = SkNEW_ARGS(SkScaledImageCache, (SK_DEFAULT_IMAGE_CACHE_LIMIT));
#endif
        atexit(cleanup_gScaledImageCache);
    }
    return gScaledImageCache;
}


SkScaledImageCache::ID* SkScaledImageCache::FindAndLock(
                                uint32_t pixelGenerationID,
                                int32_t width,
                                int32_t height,
                                SkBitmap* scaled) {
    SkAutoMutexAcquire am(gMutex);
    return get_cache()->findAndLock(pixelGenerationID, width, height, scaled);
}

SkScaledImageCache::ID* SkScaledImageCache::AddAndLock(
                               uint32_t pixelGenerationID,
                               int32_t width,
                               int32_t height,
                               const SkBitmap& scaled) {
    SkAutoMutexAcquire am(gMutex);
    return get_cache()->addAndLock(pixelGenerationID, width, height, scaled);
}


SkScaledImageCache::ID* SkScaledImageCache::FindAndLock(const SkBitmap& orig,
                                                        SkScalar scaleX,
                                                        SkScalar scaleY,
                                                        SkBitmap* scaled) {
    SkAutoMutexAcquire am(gMutex);
    return get_cache()->findAndLock(orig, scaleX, scaleY, scaled);
}

SkScaledImageCache::ID* SkScaledImageCache::FindAndLockMip(const SkBitmap& orig,
                                                       SkMipMap const ** mip) {
    SkAutoMutexAcquire am(gMutex);
    return get_cache()->findAndLockMip(orig, mip);
}

SkScaledImageCache::ID* SkScaledImageCache::AddAndLock(const SkBitmap& orig,
                                                       SkScalar scaleX,
                                                       SkScalar scaleY,
                                                       const SkBitmap& scaled) {
    SkAutoMutexAcquire am(gMutex);
    return get_cache()->addAndLock(orig, scaleX, scaleY, scaled);
}

SkScaledImageCache::ID* SkScaledImageCache::AddAndLockMip(const SkBitmap& orig,
                                                          const SkMipMap* mip) {
    SkAutoMutexAcquire am(gMutex);
    return get_cache()->addAndLockMip(orig, mip);
}

void SkScaledImageCache::Unlock(SkScaledImageCache::ID* id) {
    SkAutoMutexAcquire am(gMutex);
    get_cache()->unlock(id);

//    get_cache()->dump();
}

size_t SkScaledImageCache::GetTotalBytesUsed() {
    SkAutoMutexAcquire am(gMutex);
    return get_cache()->getTotalBytesUsed();
}

size_t SkScaledImageCache::GetTotalByteLimit() {
    SkAutoMutexAcquire am(gMutex);
    return get_cache()->getTotalByteLimit();
}

size_t SkScaledImageCache::SetTotalByteLimit(size_t newLimit) {
    SkAutoMutexAcquire am(gMutex);
    return get_cache()->setTotalByteLimit(newLimit);
}

SkBitmap::Allocator* SkScaledImageCache::GetAllocator() {
    SkAutoMutexAcquire am(gMutex);
    return get_cache()->allocator();
}

void SkScaledImageCache::Dump() {
    SkAutoMutexAcquire am(gMutex);
    get_cache()->dump();
}

size_t SkScaledImageCache::SetSingleAllocationByteLimit(size_t size) {
    SkAutoMutexAcquire am(gMutex);
    return get_cache()->setSingleAllocationByteLimit(size);
}

size_t SkScaledImageCache::GetSingleAllocationByteLimit() {
    SkAutoMutexAcquire am(gMutex);
    return get_cache()->getSingleAllocationByteLimit();
}

///////////////////////////////////////////////////////////////////////////////

#include "SkGraphics.h"

size_t SkGraphics::GetImageCacheTotalBytesUsed() {
    return SkScaledImageCache::GetTotalBytesUsed();
}

size_t SkGraphics::GetImageCacheTotalByteLimit() {
    return SkScaledImageCache::GetTotalByteLimit();
}

size_t SkGraphics::SetImageCacheTotalByteLimit(size_t newLimit) {
    return SkScaledImageCache::SetTotalByteLimit(newLimit);
}

size_t SkGraphics::GetImageCacheSingleAllocationByteLimit() {
    return SkScaledImageCache::GetSingleAllocationByteLimit();
}

size_t SkGraphics::SetImageCacheSingleAllocationByteLimit(size_t newLimit) {
    return SkScaledImageCache::SetSingleAllocationByteLimit(newLimit);
}