DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (d8847129d134)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
/*
 * Copyright 2006 The Android Open Source Project
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "SkRegionPriv.h"
#include "SkBlitter.h"
#include "SkScan.h"
#include "SkTDArray.h"
#include "SkPath.h"

// The rgnbuilder caller *seems* to pass short counts, possible often seens early failure, so
// we may not want to promote this to a "std" routine just yet.
static bool sk_memeq32(const int32_t* SK_RESTRICT a, const int32_t* SK_RESTRICT b, int count) {
    for (int i = 0; i < count; ++i) {
        if (a[i] != b[i]) {
            return false;
        }
    }
    return true;
}

class SkRgnBuilder : public SkBlitter {
public:
    SkRgnBuilder();
    virtual ~SkRgnBuilder();

    // returns true if it could allocate the working storage needed
    bool init(int maxHeight, int maxTransitions, bool pathIsInverse);

    void done() {
        if (fCurrScanline != NULL) {
            fCurrScanline->fXCount = (SkRegion::RunType)((int)(fCurrXPtr - fCurrScanline->firstX()));
            if (!this->collapsWithPrev()) { // flush the last line
                fCurrScanline = fCurrScanline->nextScanline();
            }
        }
    }

    int     computeRunCount() const;
    void    copyToRect(SkIRect*) const;
    void    copyToRgn(SkRegion::RunType runs[]) const;

    virtual void blitH(int x, int y, int width);

#ifdef SK_DEBUG
    void dump() const {
        SkDebugf("SkRgnBuilder: Top = %d\n", fTop);
        const Scanline* line = (Scanline*)fStorage;
        while (line < fCurrScanline) {
            SkDebugf("SkRgnBuilder::Scanline: LastY=%d, fXCount=%d", line->fLastY, line->fXCount);
            for (int i = 0; i < line->fXCount; i++) {
                SkDebugf(" %d", line->firstX()[i]);
            }
            SkDebugf("\n");

            line = line->nextScanline();
        }
    }
#endif
private:
    /*
     *  Scanline mimics a row in the region, nearly. A row in a region is:
     *      [Bottom IntervalCount [L R]... Sentinel]
     *  while a Scanline is
     *      [LastY XCount [L R]... uninitialized]
     *  The two are the same length (which is good), but we have to transmute
     *  the scanline a little when we convert it to a region-row.
     *
     *  Potentially we could recode this to exactly match the row format, in
     *  which case copyToRgn() could be a single memcpy. Not sure that is worth
     *  the effort.
     */
    struct Scanline {
        SkRegion::RunType fLastY;
        SkRegion::RunType fXCount;

        SkRegion::RunType* firstX() const { return (SkRegion::RunType*)(this + 1); }
        Scanline* nextScanline() const {
            // add final +1 for the x-sentinel
            return (Scanline*)((SkRegion::RunType*)(this + 1) + fXCount + 1);
        }
    };
    SkRegion::RunType*  fStorage;
    Scanline*           fCurrScanline;
    Scanline*           fPrevScanline;
    //  points at next avialable x[] in fCurrScanline
    SkRegion::RunType*  fCurrXPtr;
    SkRegion::RunType   fTop;           // first Y value

    int fStorageCount;

    bool collapsWithPrev() {
        if (fPrevScanline != NULL &&
            fPrevScanline->fLastY + 1 == fCurrScanline->fLastY &&
            fPrevScanline->fXCount == fCurrScanline->fXCount &&
            sk_memeq32(fPrevScanline->firstX(), fCurrScanline->firstX(), fCurrScanline->fXCount))
        {
            // update the height of fPrevScanline
            fPrevScanline->fLastY = fCurrScanline->fLastY;
            return true;
        }
        return false;
    }
};

SkRgnBuilder::SkRgnBuilder()
    : fStorage(NULL) {
}

SkRgnBuilder::~SkRgnBuilder() {
    sk_free(fStorage);
}

bool SkRgnBuilder::init(int maxHeight, int maxTransitions, bool pathIsInverse) {
    if ((maxHeight | maxTransitions) < 0) {
        return false;
    }

    if (pathIsInverse) {
        // allow for additional X transitions to "invert" each scanline
        // [ L' ... normal transitions ... R' ]
        //
        maxTransitions += 2;
    }

    // compute the count with +1 and +3 slop for the working buffer
    int64_t count = sk_64_mul(maxHeight + 1, 3 + maxTransitions);

    if (pathIsInverse) {
        // allow for two "empty" rows for the top and bottom
        //      [ Y, 1, L, R, S] == 5 (*2 for top and bottom)
        count += 10;
    }

    if (count < 0 || !sk_64_isS32(count)) {
        return false;
    }
    fStorageCount = sk_64_asS32(count);

    int64_t size = sk_64_mul(fStorageCount, sizeof(SkRegion::RunType));
    if (size < 0 || !sk_64_isS32(size)) {
        return false;
    }

    fStorage = (SkRegion::RunType*)sk_malloc_flags(sk_64_asS32(size), 0);
    if (NULL == fStorage) {
        return false;
    }

    fCurrScanline = NULL;    // signal empty collection
    fPrevScanline = NULL;    // signal first scanline
    return true;
}

void SkRgnBuilder::blitH(int x, int y, int width) {
    if (fCurrScanline == NULL) {  // first time
        fTop = (SkRegion::RunType)(y);
        fCurrScanline = (Scanline*)fStorage;
        fCurrScanline->fLastY = (SkRegion::RunType)(y);
        fCurrXPtr = fCurrScanline->firstX();
    } else {
        SkASSERT(y >= fCurrScanline->fLastY);

        if (y > fCurrScanline->fLastY) {
            // if we get here, we're done with fCurrScanline
            fCurrScanline->fXCount = (SkRegion::RunType)((int)(fCurrXPtr - fCurrScanline->firstX()));

            int prevLastY = fCurrScanline->fLastY;
            if (!this->collapsWithPrev()) {
                fPrevScanline = fCurrScanline;
                fCurrScanline = fCurrScanline->nextScanline();

            }
            if (y - 1 > prevLastY) {  // insert empty run
                fCurrScanline->fLastY = (SkRegion::RunType)(y - 1);
                fCurrScanline->fXCount = 0;
                fCurrScanline = fCurrScanline->nextScanline();
            }
            // setup for the new curr line
            fCurrScanline->fLastY = (SkRegion::RunType)(y);
            fCurrXPtr = fCurrScanline->firstX();
        }
    }
    //  check if we should extend the current run, or add a new one
    if (fCurrXPtr > fCurrScanline->firstX() && fCurrXPtr[-1] == x) {
        fCurrXPtr[-1] = (SkRegion::RunType)(x + width);
    } else {
        fCurrXPtr[0] = (SkRegion::RunType)(x);
        fCurrXPtr[1] = (SkRegion::RunType)(x + width);
        fCurrXPtr += 2;
    }
    SkASSERT(fCurrXPtr - fStorage < fStorageCount);
}

int SkRgnBuilder::computeRunCount() const {
    if (fCurrScanline == NULL) {
        return 0;
    }

    const SkRegion::RunType*  line = fStorage;
    const SkRegion::RunType*  stop = (const SkRegion::RunType*)fCurrScanline;

    return 2 + (int)(stop - line);
}

void SkRgnBuilder::copyToRect(SkIRect* r) const {
    SkASSERT(fCurrScanline != NULL);
    // A rect's scanline is [bottom intervals left right sentinel] == 5
    SkASSERT((const SkRegion::RunType*)fCurrScanline - fStorage == 5);

    const Scanline* line = (const Scanline*)fStorage;
    SkASSERT(line->fXCount == 2);

    r->set(line->firstX()[0], fTop, line->firstX()[1], line->fLastY + 1);
}

void SkRgnBuilder::copyToRgn(SkRegion::RunType runs[]) const {
    SkASSERT(fCurrScanline != NULL);
    SkASSERT((const SkRegion::RunType*)fCurrScanline - fStorage > 4);

    const Scanline* line = (const Scanline*)fStorage;
    const Scanline* stop = fCurrScanline;

    *runs++ = fTop;
    do {
        *runs++ = (SkRegion::RunType)(line->fLastY + 1);
        int count = line->fXCount;
        *runs++ = count >> 1;   // intervalCount
        if (count) {
            memcpy(runs, line->firstX(), count * sizeof(SkRegion::RunType));
            runs += count;
        }
        *runs++ = SkRegion::kRunTypeSentinel;
        line = line->nextScanline();
    } while (line < stop);
    SkASSERT(line == stop);
    *runs = SkRegion::kRunTypeSentinel;
}

static unsigned verb_to_initial_last_index(unsigned verb) {
    static const uint8_t gPathVerbToInitialLastIndex[] = {
        0,  //  kMove_Verb
        1,  //  kLine_Verb
        2,  //  kQuad_Verb
        2,  //  kConic_Verb
        3,  //  kCubic_Verb
        0,  //  kClose_Verb
        0   //  kDone_Verb
    };
    SkASSERT((unsigned)verb < SK_ARRAY_COUNT(gPathVerbToInitialLastIndex));
    return gPathVerbToInitialLastIndex[verb];
}

static unsigned verb_to_max_edges(unsigned verb) {
    static const uint8_t gPathVerbToMaxEdges[] = {
        0,  //  kMove_Verb
        1,  //  kLine_Verb
        2,  //  kQuad_VerbB
        2,  //  kConic_VerbB
        3,  //  kCubic_Verb
        0,  //  kClose_Verb
        0   //  kDone_Verb
    };
    SkASSERT((unsigned)verb < SK_ARRAY_COUNT(gPathVerbToMaxEdges));
    return gPathVerbToMaxEdges[verb];
}


static int count_path_runtype_values(const SkPath& path, int* itop, int* ibot) {
    SkPath::Iter    iter(path, true);
    SkPoint         pts[4];
    SkPath::Verb    verb;

    int maxEdges = 0;
    SkScalar    top = SkIntToScalar(SK_MaxS16);
    SkScalar    bot = SkIntToScalar(SK_MinS16);

    while ((verb = iter.next(pts, false)) != SkPath::kDone_Verb) {
        maxEdges += verb_to_max_edges(verb);

        int lastIndex = verb_to_initial_last_index(verb);
        if (lastIndex > 0) {
            for (int i = 1; i <= lastIndex; i++) {
                if (top > pts[i].fY) {
                    top = pts[i].fY;
                } else if (bot < pts[i].fY) {
                    bot = pts[i].fY;
                }
            }
        } else if (SkPath::kMove_Verb == verb) {
            if (top > pts[0].fY) {
                top = pts[0].fY;
            } else if (bot < pts[0].fY) {
                bot = pts[0].fY;
            }
        }
    }
    SkASSERT(top <= bot);

    *itop = SkScalarRoundToInt(top);
    *ibot = SkScalarRoundToInt(bot);
    return maxEdges;
}

bool SkRegion::setPath(const SkPath& path, const SkRegion& clip) {
    SkDEBUGCODE(this->validate();)

    if (clip.isEmpty()) {
        return this->setEmpty();
    }

    if (path.isEmpty()) {
        if (path.isInverseFillType()) {
            return this->set(clip);
        } else {
            return this->setEmpty();
        }
    }

    //  compute worst-case rgn-size for the path
    int pathTop, pathBot;
    int pathTransitions = count_path_runtype_values(path, &pathTop, &pathBot);
    int clipTop, clipBot;
    int clipTransitions;

    clipTransitions = clip.count_runtype_values(&clipTop, &clipBot);

    int top = SkMax32(pathTop, clipTop);
    int bot = SkMin32(pathBot, clipBot);

    if (top >= bot)
        return this->setEmpty();

    SkRgnBuilder builder;

    if (!builder.init(bot - top,
                      SkMax32(pathTransitions, clipTransitions),
                      path.isInverseFillType())) {
        // can't allocate working space, so return false
        return this->setEmpty();
    }

    SkScan::FillPath(path, clip, &builder);
    builder.done();

    int count = builder.computeRunCount();
    if (count == 0) {
        return this->setEmpty();
    } else if (count == kRectRegionRuns) {
        builder.copyToRect(&fBounds);
        this->setRect(fBounds);
    } else {
        SkRegion tmp;

        tmp.fRunHead = RunHead::Alloc(count);
        builder.copyToRgn(tmp.fRunHead->writable_runs());
        tmp.fRunHead->computeRunBounds(&tmp.fBounds);
        this->swap(tmp);
    }
    SkDEBUGCODE(this->validate();)
    return true;
}

/////////////////////////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////////////////////////

struct Edge {
    enum {
        kY0Link = 0x01,
        kY1Link = 0x02,

        kCompleteLink = (kY0Link | kY1Link)
    };

    SkRegion::RunType fX;
    SkRegion::RunType fY0, fY1;
    uint8_t fFlags;
    Edge*   fNext;

    void set(int x, int y0, int y1) {
        SkASSERT(y0 != y1);

        fX = (SkRegion::RunType)(x);
        fY0 = (SkRegion::RunType)(y0);
        fY1 = (SkRegion::RunType)(y1);
        fFlags = 0;
        SkDEBUGCODE(fNext = NULL;)
    }

    int top() const {
        return SkFastMin32(fY0, fY1);
    }
};

static void find_link(Edge* base, Edge* stop) {
    SkASSERT(base < stop);

    if (base->fFlags == Edge::kCompleteLink) {
        SkASSERT(base->fNext);
        return;
    }

    SkASSERT(base + 1 < stop);

    int y0 = base->fY0;
    int y1 = base->fY1;

    Edge* e = base;
    if ((base->fFlags & Edge::kY0Link) == 0) {
        for (;;) {
            e += 1;
            if ((e->fFlags & Edge::kY1Link) == 0 && y0 == e->fY1) {
                SkASSERT(NULL == e->fNext);
                e->fNext = base;
                e->fFlags = SkToU8(e->fFlags | Edge::kY1Link);
                break;
            }
        }
    }

    e = base;
    if ((base->fFlags & Edge::kY1Link) == 0) {
        for (;;) {
            e += 1;
            if ((e->fFlags & Edge::kY0Link) == 0 && y1 == e->fY0) {
                SkASSERT(NULL == base->fNext);
                base->fNext = e;
                e->fFlags = SkToU8(e->fFlags | Edge::kY0Link);
                break;
            }
        }
    }

    base->fFlags = Edge::kCompleteLink;
}

static int extract_path(Edge* edge, Edge* stop, SkPath* path) {
    while (0 == edge->fFlags) {
        edge++; // skip over "used" edges
    }

    SkASSERT(edge < stop);

    Edge* base = edge;
    Edge* prev = edge;
    edge = edge->fNext;
    SkASSERT(edge != base);

    int count = 1;
    path->moveTo(SkIntToScalar(prev->fX), SkIntToScalar(prev->fY0));
    prev->fFlags = 0;
    do {
        if (prev->fX != edge->fX || prev->fY1 != edge->fY0) { // skip collinear
            path->lineTo(SkIntToScalar(prev->fX), SkIntToScalar(prev->fY1));    // V
            path->lineTo(SkIntToScalar(edge->fX), SkIntToScalar(edge->fY0));    // H
        }
        prev = edge;
        edge = edge->fNext;
        count += 1;
        prev->fFlags = 0;
    } while (edge != base);
    path->lineTo(SkIntToScalar(prev->fX), SkIntToScalar(prev->fY1));    // V
    path->close();
    return count;
}

#include "SkTSearch.h"

static int EdgeProc(const Edge* a, const Edge* b) {
    return (a->fX == b->fX) ? a->top() - b->top() : a->fX - b->fX;
}

bool SkRegion::getBoundaryPath(SkPath* path) const {
    // path could safely be NULL if we're empty, but the caller shouldn't
    // *know* that
    SkASSERT(path);

    if (this->isEmpty()) {
        return false;
    }

    const SkIRect& bounds = this->getBounds();

    if (this->isRect()) {
        SkRect  r;
        r.set(bounds);      // this converts the ints to scalars
        path->addRect(r);
        return true;
    }

    SkRegion::Iterator  iter(*this);
    SkTDArray<Edge>     edges;

    for (const SkIRect& r = iter.rect(); !iter.done(); iter.next()) {
        Edge* edge = edges.append(2);
        edge[0].set(r.fLeft, r.fBottom, r.fTop);
        edge[1].set(r.fRight, r.fTop, r.fBottom);
    }
    qsort(edges.begin(), edges.count(), sizeof(Edge), SkCastForQSort(EdgeProc));

    int count = edges.count();
    Edge* start = edges.begin();
    Edge* stop = start + count;
    Edge* e;

    for (e = start; e != stop; e++) {
        find_link(e, stop);
    }

#ifdef SK_DEBUG
    for (e = start; e != stop; e++) {
        SkASSERT(e->fNext != NULL);
        SkASSERT(e->fFlags == Edge::kCompleteLink);
    }
#endif

    path->incReserve(count << 1);
    do {
        SkASSERT(count > 1);
        count -= extract_path(start, stop, path);
    } while (count > 0);

    return true;
}