DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (d8847129d134)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364

/*
 * Copyright 2012 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "SkBitmap.h"
#include "SkErrorInternals.h"
#include "SkReadBuffer.h"
#include "SkStream.h"
#include "SkTypeface.h"

static uint32_t default_flags() {
    uint32_t flags = 0;
    flags |= SkReadBuffer::kScalarIsFloat_Flag;
    if (8 == sizeof(void*)) {
        flags |= SkReadBuffer::kPtrIs64Bit_Flag;
    }
    return flags;
}

SkReadBuffer::SkReadBuffer() {
    fFlags = default_flags();
    fVersion = 0;
    fMemoryPtr = NULL;

    fBitmapStorage = NULL;
    fTFArray = NULL;
    fTFCount = 0;

    fFactoryTDArray = NULL;
    fFactoryArray = NULL;
    fFactoryCount = 0;
    fBitmapDecoder = NULL;
#ifdef DEBUG_NON_DETERMINISTIC_ASSERT
    fDecodedBitmapIndex = -1;
#endif // DEBUG_NON_DETERMINISTIC_ASSERT
}

SkReadBuffer::SkReadBuffer(const void* data, size_t size) {
    fFlags = default_flags();
    fVersion = 0;
    fReader.setMemory(data, size);
    fMemoryPtr = NULL;

    fBitmapStorage = NULL;
    fTFArray = NULL;
    fTFCount = 0;

    fFactoryTDArray = NULL;
    fFactoryArray = NULL;
    fFactoryCount = 0;
    fBitmapDecoder = NULL;
#ifdef DEBUG_NON_DETERMINISTIC_ASSERT
    fDecodedBitmapIndex = -1;
#endif // DEBUG_NON_DETERMINISTIC_ASSERT
}

SkReadBuffer::SkReadBuffer(SkStream* stream) {
    fFlags = default_flags();
    fVersion = 0;
    const size_t length = stream->getLength();
    fMemoryPtr = sk_malloc_throw(length);
    stream->read(fMemoryPtr, length);
    fReader.setMemory(fMemoryPtr, length);

    fBitmapStorage = NULL;
    fTFArray = NULL;
    fTFCount = 0;

    fFactoryTDArray = NULL;
    fFactoryArray = NULL;
    fFactoryCount = 0;
    fBitmapDecoder = NULL;
#ifdef DEBUG_NON_DETERMINISTIC_ASSERT
    fDecodedBitmapIndex = -1;
#endif // DEBUG_NON_DETERMINISTIC_ASSERT
}

SkReadBuffer::~SkReadBuffer() {
    sk_free(fMemoryPtr);
    SkSafeUnref(fBitmapStorage);
}

bool SkReadBuffer::readBool() {
    return fReader.readBool();
}

SkColor SkReadBuffer::readColor() {
    return fReader.readInt();
}

SkFixed SkReadBuffer::readFixed() {
    return fReader.readS32();
}

int32_t SkReadBuffer::readInt() {
    return fReader.readInt();
}

SkScalar SkReadBuffer::readScalar() {
    return fReader.readScalar();
}

uint32_t SkReadBuffer::readUInt() {
    return fReader.readU32();
}

int32_t SkReadBuffer::read32() {
    return fReader.readInt();
}

void SkReadBuffer::readString(SkString* string) {
    size_t len;
    const char* strContents = fReader.readString(&len);
    string->set(strContents, len);
}

void* SkReadBuffer::readEncodedString(size_t* length, SkPaint::TextEncoding encoding) {
    SkDEBUGCODE(int32_t encodingType = ) fReader.readInt();
    SkASSERT(encodingType == encoding);
    *length =  fReader.readInt();
    void* data = sk_malloc_throw(*length);
    memcpy(data, fReader.skip(SkAlign4(*length)), *length);
    return data;
}

void SkReadBuffer::readPoint(SkPoint* point) {
    point->fX = fReader.readScalar();
    point->fY = fReader.readScalar();
}

void SkReadBuffer::readMatrix(SkMatrix* matrix) {
    fReader.readMatrix(matrix);
}

void SkReadBuffer::readIRect(SkIRect* rect) {
    memcpy(rect, fReader.skip(sizeof(SkIRect)), sizeof(SkIRect));
}

void SkReadBuffer::readRect(SkRect* rect) {
    memcpy(rect, fReader.skip(sizeof(SkRect)), sizeof(SkRect));
}

void SkReadBuffer::readRegion(SkRegion* region) {
    fReader.readRegion(region);
}

void SkReadBuffer::readPath(SkPath* path) {
    fReader.readPath(path);
}

bool SkReadBuffer::readArray(void* value, size_t size, size_t elementSize) {
    const size_t count = this->getArrayCount();
    if (count == size) {
        (void)fReader.skip(sizeof(uint32_t)); // Skip array count
        const size_t byteLength = count * elementSize;
        memcpy(value, fReader.skip(SkAlign4(byteLength)), byteLength);
        return true;
    }
    SkASSERT(false);
    fReader.skip(fReader.available());
    return false;
}

bool SkReadBuffer::readByteArray(void* value, size_t size) {
    return readArray(static_cast<unsigned char*>(value), size, sizeof(unsigned char));
}

bool SkReadBuffer::readColorArray(SkColor* colors, size_t size) {
    return readArray(colors, size, sizeof(SkColor));
}

bool SkReadBuffer::readIntArray(int32_t* values, size_t size) {
    return readArray(values, size, sizeof(int32_t));
}

bool SkReadBuffer::readPointArray(SkPoint* points, size_t size) {
    return readArray(points, size, sizeof(SkPoint));
}

bool SkReadBuffer::readScalarArray(SkScalar* values, size_t size) {
    return readArray(values, size, sizeof(SkScalar));
}

uint32_t SkReadBuffer::getArrayCount() {
    return *(uint32_t*)fReader.peek();
}

bool SkReadBuffer::readBitmap(SkBitmap* bitmap) {
    const int width = this->readInt();
    const int height = this->readInt();
    // The writer stored a boolean value to determine whether an SkBitmapHeap was used during
    // writing.
    if (this->readBool()) {
        // An SkBitmapHeap was used for writing. Read the index from the stream and find the
        // corresponding SkBitmap in fBitmapStorage.
        const uint32_t index = this->readUInt();
        this->readUInt(); // bitmap generation ID (see SkWriteBuffer::writeBitmap)
        if (fBitmapStorage) {
            *bitmap = *fBitmapStorage->getBitmap(index);
            fBitmapStorage->releaseRef(index);
            return true;
        } else {
            // The bitmap was stored in a heap, but there is no way to access it. Set an error and
            // fall through to use a place holder bitmap.
            SkErrorInternals::SetError(kParseError_SkError, "SkWriteBuffer::writeBitmap "
                                       "stored the SkBitmap in an SkBitmapHeap, but "
                                       "SkReadBuffer has no SkBitmapHeapReader to "
                                       "retrieve the SkBitmap.");
        }
    } else {
        // The writer stored false, meaning the SkBitmap was not stored in an SkBitmapHeap.
        const size_t length = this->readUInt();
        if (length > 0) {
#ifdef DEBUG_NON_DETERMINISTIC_ASSERT
            fDecodedBitmapIndex++;
#endif // DEBUG_NON_DETERMINISTIC_ASSERT
            // A non-zero size means the SkBitmap was encoded. Read the data and pixel
            // offset.
            const void* data = this->skip(length);
            const int32_t xOffset = this->readInt();
            const int32_t yOffset = this->readInt();
            if (fBitmapDecoder != NULL && fBitmapDecoder(data, length, bitmap)) {
                if (bitmap->width() == width && bitmap->height() == height) {
#ifdef DEBUG_NON_DETERMINISTIC_ASSERT
                    if (0 != xOffset || 0 != yOffset) {
                        SkDebugf("SkReadBuffer::readBitmap: heights match,"
                                 " but offset is not zero. \nInfo about the bitmap:"
                                 "\n\tIndex: %d\n\tDimensions: [%d %d]\n\tEncoded"
                                 " data size: %d\n\tOffset: (%d, %d)\n",
                                 fDecodedBitmapIndex, width, height, length, xOffset,
                                 yOffset);
                    }
#endif // DEBUG_NON_DETERMINISTIC_ASSERT
                    // If the width and height match, there should be no offset.
                    SkASSERT(0 == xOffset && 0 == yOffset);
                    return true;
                }

                // This case can only be reached if extractSubset was called, so
                // the recorded width and height must be smaller than or equal to
                // the encoded width and height.
                // FIXME (scroggo): This assert assumes that our decoder and the
                // sources encoder agree on the width and height which may not
                // always be the case. Removing until it can be investigated
                // further.
                //SkASSERT(width <= bitmap->width() && height <= bitmap->height());

                SkBitmap subsetBm;
                SkIRect subset = SkIRect::MakeXYWH(xOffset, yOffset, width, height);
                if (bitmap->extractSubset(&subsetBm, subset)) {
                    bitmap->swap(subsetBm);
                    return true;
                }
            }
            // This bitmap was encoded when written, but we are unable to decode, possibly due to
            // not having a decoder.
            SkErrorInternals::SetError(kParseError_SkError,
                                       "Could not decode bitmap. Resulting bitmap will be red.");
        } else {
            // A size of zero means the SkBitmap was simply flattened.
            if (this->isVersionLT(kNoMoreBitmapFlatten_Version)) {
                SkBitmap tmp;
                tmp.legacyUnflatten(*this);
                // just throw this guy away
            } else {
                if (SkBitmap::ReadRawPixels(this, bitmap)) {
                    return true;
                }
            }
        }
    }
    // Could not read the SkBitmap. Use a placeholder bitmap.
    bitmap->setInfo(SkImageInfo::MakeUnknown(width, height));
    return false;
}

SkTypeface* SkReadBuffer::readTypeface() {

    uint32_t index = fReader.readU32();
    if (0 == index || index > (unsigned)fTFCount) {
        if (index) {
            SkDebugf("====== typeface index %d\n", index);
        }
        return NULL;
    } else {
        SkASSERT(fTFArray);
        return fTFArray[index - 1];
    }
}

SkFlattenable* SkReadBuffer::readFlattenable(SkFlattenable::Type ft) {
    //
    // TODO: confirm that ft matches the factory we decide to use
    //

    SkFlattenable::Factory factory = NULL;

    if (fFactoryCount > 0) {
        int32_t index = fReader.readU32();
        if (0 == index) {
            return NULL; // writer failed to give us the flattenable
        }
        index -= 1;     // we stored the index-base-1
        SkASSERT(index < fFactoryCount);
        factory = fFactoryArray[index];
    } else if (fFactoryTDArray) {
        int32_t index = fReader.readU32();
        if (0 == index) {
            return NULL; // writer failed to give us the flattenable
        }
        index -= 1;     // we stored the index-base-1
        factory = (*fFactoryTDArray)[index];
    } else {
        factory = (SkFlattenable::Factory)readFunctionPtr();
        if (NULL == factory) {
            return NULL; // writer failed to give us the flattenable
        }
    }

    // if we get here, factory may still be null, but if that is the case, the
    // failure was ours, not the writer.
    SkFlattenable* obj = NULL;
    uint32_t sizeRecorded = fReader.readU32();
    if (factory) {
        size_t offset = fReader.offset();
        obj = (*factory)(*this);
        // check that we read the amount we expected
        size_t sizeRead = fReader.offset() - offset;
        if (sizeRecorded != sizeRead) {
            // we could try to fix up the offset...
            sk_throw();
        }
    } else {
        // we must skip the remaining data
        fReader.skip(sizeRecorded);
    }
    return obj;
}

/**
 *  Needs to follow the same pattern as readFlattenable(), but explicitly skip whatever data
 *  has been written.
 */
void SkReadBuffer::skipFlattenable() {
    if (fFactoryCount > 0) {
        if (0 == fReader.readU32()) {
            return;
        }
    } else if (fFactoryTDArray) {
        if (0 == fReader.readU32()) {
            return;
        }
    } else {
        if (NULL == this->readFunctionPtr()) {
            return;
        }
    }
    uint32_t sizeRecorded = fReader.readU32();
    fReader.skip(sizeRecorded);
}