DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (d8847129d134)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
/*
 * Copyright 2012 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "SkRTree.h"
#include "SkTSort.h"

static inline uint32_t get_area(const SkIRect& rect);
static inline uint32_t get_overlap(const SkIRect& rect1, const SkIRect& rect2);
static inline uint32_t get_margin(const SkIRect& rect);
static inline uint32_t get_area_increase(const SkIRect& rect1, SkIRect rect2);
static inline void join_no_empty_check(const SkIRect& joinWith, SkIRect* out);

///////////////////////////////////////////////////////////////////////////////////////////////////

SkRTree* SkRTree::Create(int minChildren, int maxChildren, SkScalar aspectRatio,
            bool sortWhenBulkLoading) {
    if (minChildren < maxChildren && (maxChildren + 1) / 2 >= minChildren &&
        minChildren > 0 && maxChildren < static_cast<int>(SK_MaxU16)) {
        return new SkRTree(minChildren, maxChildren, aspectRatio, sortWhenBulkLoading);
    }
    return NULL;
}

SkRTree::SkRTree(int minChildren, int maxChildren, SkScalar aspectRatio,
        bool sortWhenBulkLoading)
    : fMinChildren(minChildren)
    , fMaxChildren(maxChildren)
    , fNodeSize(sizeof(Node) + sizeof(Branch) * maxChildren)
    , fCount(0)
    , fNodes(fNodeSize * 256)
    , fAspectRatio(aspectRatio)
    , fSortWhenBulkLoading(sortWhenBulkLoading) {
    SkASSERT(minChildren < maxChildren && minChildren > 0 && maxChildren <
             static_cast<int>(SK_MaxU16));
    SkASSERT((maxChildren + 1) / 2 >= minChildren);
    this->validate();
}

SkRTree::~SkRTree() {
    this->clear();
}

void SkRTree::insert(void* data, const SkIRect& bounds, bool defer) {
    this->validate();
    if (bounds.isEmpty()) {
        SkASSERT(false);
        return;
    }
    Branch newBranch;
    newBranch.fBounds = bounds;
    newBranch.fChild.data = data;
    if (this->isEmpty()) {
        // since a bulk-load into an existing tree is as of yet unimplemented (and arguably not
        // of vital importance right now), we only batch up inserts if the tree is empty.
        if (defer) {
            fDeferredInserts.push(newBranch);
            return;
        } else {
            fRoot.fChild.subtree = allocateNode(0);
            fRoot.fChild.subtree->fNumChildren = 0;
        }
    }

    Branch* newSibling = insert(fRoot.fChild.subtree, &newBranch);
    fRoot.fBounds = this->computeBounds(fRoot.fChild.subtree);

    if (NULL != newSibling) {
        Node* oldRoot = fRoot.fChild.subtree;
        Node* newRoot = this->allocateNode(oldRoot->fLevel + 1);
        newRoot->fNumChildren = 2;
        *newRoot->child(0) = fRoot;
        *newRoot->child(1) = *newSibling;
        fRoot.fChild.subtree = newRoot;
        fRoot.fBounds = this->computeBounds(fRoot.fChild.subtree);
    }

    ++fCount;
    this->validate();
}

void SkRTree::flushDeferredInserts() {
    this->validate();
    if (this->isEmpty() && fDeferredInserts.count() > 0) {
        fCount = fDeferredInserts.count();
        if (1 == fCount) {
            fRoot.fChild.subtree = allocateNode(0);
            fRoot.fChild.subtree->fNumChildren = 0;
            this->insert(fRoot.fChild.subtree, &fDeferredInserts[0]);
            fRoot.fBounds = fDeferredInserts[0].fBounds;
        } else {
            fRoot = this->bulkLoad(&fDeferredInserts);
        }
    } else {
        // TODO: some algorithm for bulk loading into an already populated tree
        SkASSERT(0 == fDeferredInserts.count());
    }
    fDeferredInserts.rewind();
    this->validate();
}

void SkRTree::search(const SkIRect& query, SkTDArray<void*>* results) {
    this->validate();
    if (0 != fDeferredInserts.count()) {
        this->flushDeferredInserts();
    }
    if (!this->isEmpty() && SkIRect::IntersectsNoEmptyCheck(fRoot.fBounds, query)) {
        this->search(fRoot.fChild.subtree, query, results);
    }
    this->validate();
}

void SkRTree::clear() {
    this->validate();
    fNodes.reset();
    fDeferredInserts.rewind();
    fCount = 0;
    this->validate();
}

SkRTree::Node* SkRTree::allocateNode(uint16_t level) {
    Node* out = static_cast<Node*>(fNodes.allocThrow(fNodeSize));
    out->fNumChildren = 0;
    out->fLevel = level;
    return out;
}

SkRTree::Branch* SkRTree::insert(Node* root, Branch* branch, uint16_t level) {
    Branch* toInsert = branch;
    if (root->fLevel != level) {
        int childIndex = this->chooseSubtree(root, branch);
        toInsert = this->insert(root->child(childIndex)->fChild.subtree, branch, level);
        root->child(childIndex)->fBounds = this->computeBounds(
            root->child(childIndex)->fChild.subtree);
    }
    if (NULL != toInsert) {
        if (root->fNumChildren == fMaxChildren) {
            // handle overflow by splitting. TODO: opportunistic reinsertion

            // decide on a distribution to divide with
            Node* newSibling = this->allocateNode(root->fLevel);
            Branch* toDivide = SkNEW_ARRAY(Branch, fMaxChildren + 1);
            for (int i = 0; i < fMaxChildren; ++i) {
                toDivide[i] = *root->child(i);
            }
            toDivide[fMaxChildren] = *toInsert;
            int splitIndex = this->distributeChildren(toDivide);

            // divide up the branches
            root->fNumChildren = splitIndex;
            newSibling->fNumChildren = fMaxChildren + 1 - splitIndex;
            for (int i = 0; i < splitIndex; ++i) {
                *root->child(i) = toDivide[i];
            }
            for (int i = splitIndex; i < fMaxChildren + 1; ++i) {
                *newSibling->child(i - splitIndex) = toDivide[i];
            }
            SkDELETE_ARRAY(toDivide);

            // pass the new sibling branch up to the parent
            branch->fChild.subtree = newSibling;
            branch->fBounds = this->computeBounds(newSibling);
            return branch;
        } else {
            *root->child(root->fNumChildren) = *toInsert;
            ++root->fNumChildren;
            return NULL;
        }
    }
    return NULL;
}

int SkRTree::chooseSubtree(Node* root, Branch* branch) {
    SkASSERT(!root->isLeaf());
    if (1 < root->fLevel) {
        // root's child pointers do not point to leaves, so minimize area increase
        int32_t minAreaIncrease = SK_MaxS32;
        int32_t minArea         = SK_MaxS32;
        int32_t bestSubtree     = -1;
        for (int i = 0; i < root->fNumChildren; ++i) {
            const SkIRect& subtreeBounds = root->child(i)->fBounds;
            int32_t areaIncrease = get_area_increase(subtreeBounds, branch->fBounds);
            // break ties in favor of subtree with smallest area
            if (areaIncrease < minAreaIncrease || (areaIncrease == minAreaIncrease &&
                static_cast<int32_t>(get_area(subtreeBounds)) < minArea)) {
                minAreaIncrease = areaIncrease;
                minArea = get_area(subtreeBounds);
                bestSubtree = i;
            }
        }
        SkASSERT(-1 != bestSubtree);
        return bestSubtree;
    } else if (1 == root->fLevel) {
        // root's child pointers do point to leaves, so minimize overlap increase
        int32_t minOverlapIncrease = SK_MaxS32;
        int32_t minAreaIncrease    = SK_MaxS32;
        int32_t bestSubtree = -1;
        for (int32_t i = 0; i < root->fNumChildren; ++i) {
            const SkIRect& subtreeBounds = root->child(i)->fBounds;
            SkIRect expandedBounds = subtreeBounds;
            join_no_empty_check(branch->fBounds, &expandedBounds);
            int32_t overlap = 0;
            for (int32_t j = 0; j < root->fNumChildren; ++j) {
                if (j == i) continue;
                // Note: this would be more correct if we subtracted the original pre-expanded
                // overlap, but computing overlaps is expensive and omitting it doesn't seem to
                // hurt query performance. See get_overlap_increase()
                overlap += get_overlap(expandedBounds, root->child(j)->fBounds);
            }
            // break ties with lowest area increase
            if (overlap < minOverlapIncrease || (overlap == minOverlapIncrease &&
                static_cast<int32_t>(get_area_increase(branch->fBounds, subtreeBounds)) <
                minAreaIncrease)) {
                minOverlapIncrease = overlap;
                minAreaIncrease = get_area_increase(branch->fBounds, subtreeBounds);
                bestSubtree = i;
            }
        }
        return bestSubtree;
    } else {
        SkASSERT(false);
        return 0;
    }
}

SkIRect SkRTree::computeBounds(Node* n) {
    SkIRect r = n->child(0)->fBounds;
    for (int i = 1; i < n->fNumChildren; ++i) {
        join_no_empty_check(n->child(i)->fBounds, &r);
    }
    return r;
}

int SkRTree::distributeChildren(Branch* children) {
    // We have two sides to sort by on each of two axes:
    const static SortSide sorts[2][2] = {
        {&SkIRect::fLeft, &SkIRect::fRight},
        {&SkIRect::fTop, &SkIRect::fBottom}
    };

    // We want to choose an axis to split on, then a distribution along that axis; we'll need
    // three pieces of info: the split axis, the side to sort by on that axis, and the index
    // to split the sorted array on.
    int32_t sortSide = -1;
    int32_t k        = -1;
    int32_t axis     = -1;
    int32_t bestS    = SK_MaxS32;

    // Evaluate each axis, we want the min summed margin-value (s) over all distributions
    for (int i = 0; i < 2; ++i) {
        int32_t minOverlap   = SK_MaxS32;
        int32_t minArea      = SK_MaxS32;
        int32_t axisBestK    = 0;
        int32_t axisBestSide = 0;
        int32_t s = 0;

        // Evaluate each sort
        for (int j = 0; j < 2; ++j) {
            SkTQSort(children, children + fMaxChildren, RectLessThan(sorts[i][j]));

            // Evaluate each split index
            for (int32_t k = 1; k <= fMaxChildren - 2 * fMinChildren + 2; ++k) {
                SkIRect r1 = children[0].fBounds;
                SkIRect r2 = children[fMinChildren + k - 1].fBounds;
                for (int32_t l = 1; l < fMinChildren - 1 + k; ++l) {
                    join_no_empty_check(children[l].fBounds, &r1);
                }
                for (int32_t l = fMinChildren + k; l < fMaxChildren + 1; ++l) {
                    join_no_empty_check(children[l].fBounds, &r2);
                }

                int32_t area = get_area(r1) + get_area(r2);
                int32_t overlap = get_overlap(r1, r2);
                s += get_margin(r1) + get_margin(r2);

                if (overlap < minOverlap || (overlap == minOverlap && area < minArea)) {
                    minOverlap = overlap;
                    minArea = area;
                    axisBestSide = j;
                    axisBestK = k;
                }
            }
        }

        if (s < bestS) {
            bestS = s;
            axis = i;
            sortSide = axisBestSide;
            k = axisBestK;
        }
    }

    // replicate the sort of the winning distribution, (we can skip this if the last
    // sort ended up being best)
    if (!(axis == 1 && sortSide == 1)) {
        SkTQSort(children, children + fMaxChildren, RectLessThan(sorts[axis][sortSide]));
    }

    return fMinChildren - 1 + k;
}

void SkRTree::search(Node* root, const SkIRect query, SkTDArray<void*>* results) const {
    for (int i = 0; i < root->fNumChildren; ++i) {
        if (SkIRect::IntersectsNoEmptyCheck(root->child(i)->fBounds, query)) {
            if (root->isLeaf()) {
                results->push(root->child(i)->fChild.data);
            } else {
                this->search(root->child(i)->fChild.subtree, query, results);
            }
        }
    }
}

SkRTree::Branch SkRTree::bulkLoad(SkTDArray<Branch>* branches, int level) {
    if (branches->count() == 1) {
        // Only one branch: it will be the root
        Branch out = (*branches)[0];
        branches->rewind();
        return out;
    } else {
        // We sort the whole list by y coordinates, if we are told to do so.
        //
        // We expect Webkit / Blink to give us a reasonable x,y order.
        // Avoiding this call resulted in a 17% win for recording with
        // negligible difference in playback speed.
        if (fSortWhenBulkLoading) {
            SkTQSort(branches->begin(), branches->end() - 1, RectLessY());
        }

        int numBranches = branches->count() / fMaxChildren;
        int remainder = branches->count() % fMaxChildren;
        int newBranches = 0;

        if (0 != remainder) {
            ++numBranches;
            // If the remainder isn't enough to fill a node, we'll need to add fewer nodes to
            // some other branches to make up for it
            if (remainder >= fMinChildren) {
                remainder = 0;
            } else {
                remainder = fMinChildren - remainder;
            }
        }

        int numStrips = SkScalarCeilToInt(SkScalarSqrt(SkIntToScalar(numBranches) *
                                     SkScalarInvert(fAspectRatio)));
        int numTiles = SkScalarCeilToInt(SkIntToScalar(numBranches) /
                                    SkIntToScalar(numStrips));
        int currentBranch = 0;

        for (int i = 0; i < numStrips; ++i) {
            // Once again, if we are told to do so, we sort by x.
            if (fSortWhenBulkLoading) {
                int begin = currentBranch;
                int end = currentBranch + numTiles * fMaxChildren - SkMin32(remainder,
                        (fMaxChildren - fMinChildren) * numTiles);
                if (end > branches->count()) {
                    end = branches->count();
                }

                // Now we sort horizontal strips of rectangles by their x coords
                SkTQSort(branches->begin() + begin, branches->begin() + end - 1, RectLessX());
            }

            for (int j = 0; j < numTiles && currentBranch < branches->count(); ++j) {
                int incrementBy = fMaxChildren;
                if (remainder != 0) {
                    // if need be, omit some nodes to make up for remainder
                    if (remainder <= fMaxChildren - fMinChildren) {
                        incrementBy -= remainder;
                        remainder = 0;
                    } else {
                        incrementBy = fMinChildren;
                        remainder -= fMaxChildren - fMinChildren;
                    }
                }
                Node* n = allocateNode(level);
                n->fNumChildren = 1;
                *n->child(0) = (*branches)[currentBranch];
                Branch b;
                b.fBounds = (*branches)[currentBranch].fBounds;
                b.fChild.subtree = n;
                ++currentBranch;
                for (int k = 1; k < incrementBy && currentBranch < branches->count(); ++k) {
                    b.fBounds.join((*branches)[currentBranch].fBounds);
                    *n->child(k) = (*branches)[currentBranch];
                    ++n->fNumChildren;
                    ++currentBranch;
                }
                (*branches)[newBranches] = b;
                ++newBranches;
            }
        }
        branches->setCount(newBranches);
        return this->bulkLoad(branches, level + 1);
    }
}

void SkRTree::validate() {
#ifdef SK_DEBUG
    if (this->isEmpty()) {
        return;
    }
    SkASSERT(fCount == this->validateSubtree(fRoot.fChild.subtree, fRoot.fBounds, true));
#endif
}

int SkRTree::validateSubtree(Node* root, SkIRect bounds, bool isRoot) {
    // make sure the pointer is pointing to a valid place
    SkASSERT(fNodes.contains(static_cast<void*>(root)));

    if (isRoot) {
        // If the root of this subtree is the overall root, we have looser standards:
        if (root->isLeaf()) {
            SkASSERT(root->fNumChildren >= 1 && root->fNumChildren <= fMaxChildren);
        } else {
            SkASSERT(root->fNumChildren >= 2 && root->fNumChildren <= fMaxChildren);
        }
    } else {
        SkASSERT(root->fNumChildren >= fMinChildren && root->fNumChildren <= fMaxChildren);
    }

    for (int i = 0; i < root->fNumChildren; ++i) {
        SkASSERT(bounds.contains(root->child(i)->fBounds));
    }

    if (root->isLeaf()) {
        SkASSERT(0 == root->fLevel);
        return root->fNumChildren;
    } else {
        int childCount = 0;
        for (int i = 0; i < root->fNumChildren; ++i) {
            SkASSERT(root->child(i)->fChild.subtree->fLevel == root->fLevel - 1);
            childCount += this->validateSubtree(root->child(i)->fChild.subtree,
                                                root->child(i)->fBounds);
        }
        return childCount;
    }
}

void SkRTree::rewindInserts() {
    SkASSERT(this->isEmpty()); // Currently only supports deferred inserts
    while (!fDeferredInserts.isEmpty() &&
           fClient->shouldRewind(fDeferredInserts.top().fChild.data)) {
        fDeferredInserts.pop();
    }
}

///////////////////////////////////////////////////////////////////////////////////////////////////

static inline uint32_t get_area(const SkIRect& rect) {
    return rect.width() * rect.height();
}

static inline uint32_t get_overlap(const SkIRect& rect1, const SkIRect& rect2) {
    // I suspect there's a more efficient way of computing this...
    return SkMax32(0, SkMin32(rect1.fRight, rect2.fRight) - SkMax32(rect1.fLeft, rect2.fLeft)) *
           SkMax32(0, SkMin32(rect1.fBottom, rect2.fBottom) - SkMax32(rect1.fTop, rect2.fTop));
}

// Get the margin (aka perimeter)
static inline uint32_t get_margin(const SkIRect& rect) {
    return 2 * (rect.width() + rect.height());
}

static inline uint32_t get_area_increase(const SkIRect& rect1, SkIRect rect2) {
    join_no_empty_check(rect1, &rect2);
    return get_area(rect2) - get_area(rect1);
}

// Expand 'out' to include 'joinWith'
static inline void join_no_empty_check(const SkIRect& joinWith, SkIRect* out) {
    // since we check for empty bounds on insert, we know we'll never have empty rects
    // and we can save the empty check that SkIRect::join requires
    if (joinWith.fLeft < out->fLeft) { out->fLeft = joinWith.fLeft; }
    if (joinWith.fTop < out->fTop) { out->fTop = joinWith.fTop; }
    if (joinWith.fRight > out->fRight) { out->fRight = joinWith.fRight; }
    if (joinWith.fBottom > out->fBottom) { out->fBottom = joinWith.fBottom; }
}