DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (d8847129d134)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
/*
 * Copyright 2012 The Android Open Source Project
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "SkImageFilter.h"

#include "SkBitmap.h"
#include "SkChecksum.h"
#include "SkDevice.h"
#include "SkReadBuffer.h"
#include "SkWriteBuffer.h"
#include "SkRect.h"
#include "SkTDynamicHash.h"
#include "SkValidationUtils.h"
#if SK_SUPPORT_GPU
#include "GrContext.h"
#include "SkGrPixelRef.h"
#include "SkGr.h"
#endif

SkImageFilter::Common::~Common() {
    for (int i = 0; i < fInputs.count(); ++i) {
        SkSafeUnref(fInputs[i]);
    }
}

void SkImageFilter::Common::allocInputs(int count) {
    const size_t size = count * sizeof(SkImageFilter*);
    fInputs.reset(count);
    sk_bzero(fInputs.get(), size);
}

void SkImageFilter::Common::detachInputs(SkImageFilter** inputs) {
    const size_t size = fInputs.count() * sizeof(SkImageFilter*);
    memcpy(inputs, fInputs.get(), size);
    sk_bzero(fInputs.get(), size);
}

bool SkImageFilter::Common::unflatten(SkReadBuffer& buffer, int expectedCount) {
    int count = buffer.readInt();
    if (expectedCount < 0) {    // means the caller doesn't care how many
        expectedCount = count;
    }
    if (!buffer.validate((count == expectedCount) && (count >= 0))) {
        return false;
    }

    this->allocInputs(count);
    for (int i = 0; i < count; i++) {
        if (buffer.readBool()) {
            fInputs[i] = buffer.readImageFilter();
        }
        if (!buffer.isValid()) {
            return false;
        }
    }
    SkRect rect;
    buffer.readRect(&rect);
    if (!buffer.isValid() || !buffer.validate(SkIsValidRect(rect))) {
        return false;
    }
    
    uint32_t flags = buffer.readUInt();
    fCropRect = CropRect(rect, flags);
    return buffer.isValid();
}

///////////////////////////////////////////////////////////////////////////////////////////////////

SkImageFilter::Cache* gExternalCache;

SkImageFilter::SkImageFilter(int inputCount, SkImageFilter** inputs, const CropRect* cropRect)
  : fInputCount(inputCount),
    fInputs(new SkImageFilter*[inputCount]),
    fCropRect(cropRect ? *cropRect : CropRect(SkRect(), 0x0)) {
    for (int i = 0; i < inputCount; ++i) {
        fInputs[i] = inputs[i];
        SkSafeRef(fInputs[i]);
    }
}

SkImageFilter::~SkImageFilter() {
    for (int i = 0; i < fInputCount; i++) {
        SkSafeUnref(fInputs[i]);
    }
    delete[] fInputs;
}

SkImageFilter::SkImageFilter(int inputCount, SkReadBuffer& buffer) {
    Common common;
    if (common.unflatten(buffer, inputCount)) {
        fCropRect = common.cropRect();
        fInputCount = common.inputCount();
        fInputs = SkNEW_ARRAY(SkImageFilter*, fInputCount);
        common.detachInputs(fInputs);
    } else {
        fInputCount = 0;
        fInputs = NULL;
    }
}

void SkImageFilter::flatten(SkWriteBuffer& buffer) const {
    buffer.writeInt(fInputCount);
    for (int i = 0; i < fInputCount; i++) {
        SkImageFilter* input = getInput(i);
        buffer.writeBool(input != NULL);
        if (input != NULL) {
            buffer.writeFlattenable(input);
        }
    }
    buffer.writeRect(fCropRect.rect());
    buffer.writeUInt(fCropRect.flags());
}

bool SkImageFilter::filterImage(Proxy* proxy, const SkBitmap& src,
                                const Context& context,
                                SkBitmap* result, SkIPoint* offset) const {
    Cache* cache = context.cache();
    SkASSERT(result);
    SkASSERT(offset);
    SkASSERT(cache);
    if (cache->get(this, result, offset)) {
        return true;
    }
    /*
     *  Give the proxy first shot at the filter. If it returns false, ask
     *  the filter to do it.
     */
    if ((proxy && proxy->filterImage(this, src, context, result, offset)) ||
        this->onFilterImage(proxy, src, context, result, offset)) {
        cache->set(this, *result, *offset);
        return true;
    }
    return false;
}

bool SkImageFilter::filterBounds(const SkIRect& src, const SkMatrix& ctm,
                                 SkIRect* dst) const {
    SkASSERT(&src);
    SkASSERT(dst);
    if (SkImageFilter::GetExternalCache()) {
        /*
         *  When the external cache is active, do not intersect the saveLayer
         *  bounds with the clip bounds. This is so that the cached result
         *  is always the full size of the primitive's bounds,
         *  regardless of the clip active on first draw.
         */
        *dst = SkIRect::MakeLargest();
        return true;
    }
    return this->onFilterBounds(src, ctm, dst);
}

void SkImageFilter::computeFastBounds(const SkRect& src, SkRect* dst) const {
    if (0 == fInputCount) {
        *dst = src;
        return;
    }
    if (this->getInput(0)) {
        this->getInput(0)->computeFastBounds(src, dst);
    } else {
        *dst = src;
    }
    for (int i = 1; i < fInputCount; i++) {
        SkImageFilter* input = this->getInput(i);
        if (input) {
            SkRect bounds;
            input->computeFastBounds(src, &bounds);
            dst->join(bounds);
        } else {
            dst->join(src);
        }
    }
}

bool SkImageFilter::onFilterImage(Proxy*, const SkBitmap&, const Context&,
                                  SkBitmap*, SkIPoint*) const {
    return false;
}

bool SkImageFilter::canFilterImageGPU() const {
    return this->asNewEffect(NULL, NULL, SkMatrix::I(), SkIRect());
}

bool SkImageFilter::filterImageGPU(Proxy* proxy, const SkBitmap& src, const Context& ctx,
                                   SkBitmap* result, SkIPoint* offset) const {
#if SK_SUPPORT_GPU
    SkBitmap input = src;
    SkASSERT(fInputCount == 1);
    SkIPoint srcOffset = SkIPoint::Make(0, 0);
    if (this->getInput(0) &&
        !this->getInput(0)->getInputResultGPU(proxy, src, ctx, &input, &srcOffset)) {
        return false;
    }
    GrTexture* srcTexture = input.getTexture();
    SkIRect bounds;
    if (!this->applyCropRect(ctx, proxy, input, &srcOffset, &bounds, &input)) {
        return false;
    }
    SkRect srcRect = SkRect::Make(bounds);
    SkRect dstRect = SkRect::MakeWH(srcRect.width(), srcRect.height());
    GrContext* context = srcTexture->getContext();

    GrTextureDesc desc;
    desc.fFlags = kRenderTarget_GrTextureFlagBit,
    desc.fWidth = bounds.width();
    desc.fHeight = bounds.height();
    desc.fConfig = kRGBA_8888_GrPixelConfig;

    GrAutoScratchTexture dst(context, desc);
    GrContext::AutoMatrix am;
    am.setIdentity(context);
    GrContext::AutoRenderTarget art(context, dst.texture()->asRenderTarget());
    GrContext::AutoClip acs(context, dstRect);
    GrEffect* effect;
    offset->fX = bounds.left();
    offset->fY = bounds.top();
    bounds.offset(-srcOffset);
    SkMatrix matrix(ctx.ctm());
    matrix.postTranslate(SkIntToScalar(-bounds.left()), SkIntToScalar(-bounds.top()));
    this->asNewEffect(&effect, srcTexture, matrix, bounds);
    SkASSERT(effect);
    GrPaint paint;
    paint.addColorEffect(effect)->unref();
    context->drawRectToRect(paint, dstRect, srcRect);

    SkAutoTUnref<GrTexture> resultTex(dst.detach());
    WrapTexture(resultTex, bounds.width(), bounds.height(), result);
    return true;
#else
    return false;
#endif
}

bool SkImageFilter::applyCropRect(const Context& ctx, const SkBitmap& src,
                                  const SkIPoint& srcOffset, SkIRect* bounds) const {
    SkIRect srcBounds;
    src.getBounds(&srcBounds);
    srcBounds.offset(srcOffset);
    SkRect cropRect;
    ctx.ctm().mapRect(&cropRect, fCropRect.rect());
    SkIRect cropRectI;
    cropRect.roundOut(&cropRectI);
    uint32_t flags = fCropRect.flags();
    if (flags & CropRect::kHasLeft_CropEdge) srcBounds.fLeft = cropRectI.fLeft;
    if (flags & CropRect::kHasTop_CropEdge) srcBounds.fTop = cropRectI.fTop;
    if (flags & CropRect::kHasRight_CropEdge) srcBounds.fRight = cropRectI.fRight;
    if (flags & CropRect::kHasBottom_CropEdge) srcBounds.fBottom = cropRectI.fBottom;
    if (!srcBounds.intersect(ctx.clipBounds())) {
        return false;
    }
    *bounds = srcBounds;
    return true;
}

bool SkImageFilter::applyCropRect(const Context& ctx, Proxy* proxy, const SkBitmap& src,
                                  SkIPoint* srcOffset, SkIRect* bounds, SkBitmap* dst) const {
    SkIRect srcBounds;
    src.getBounds(&srcBounds);
    srcBounds.offset(*srcOffset);
    SkRect cropRect;
    ctx.ctm().mapRect(&cropRect, fCropRect.rect());
    SkIRect cropRectI;
    cropRect.roundOut(&cropRectI);
    uint32_t flags = fCropRect.flags();
    *bounds = srcBounds;
    if (flags & CropRect::kHasLeft_CropEdge) bounds->fLeft = cropRectI.fLeft;
    if (flags & CropRect::kHasTop_CropEdge) bounds->fTop = cropRectI.fTop;
    if (flags & CropRect::kHasRight_CropEdge) bounds->fRight = cropRectI.fRight;
    if (flags & CropRect::kHasBottom_CropEdge) bounds->fBottom = cropRectI.fBottom;
    if (!bounds->intersect(ctx.clipBounds())) {
        return false;
    }
    if (srcBounds.contains(*bounds)) {
        *dst = src;
        return true;
    } else {
        SkAutoTUnref<SkBaseDevice> device(proxy->createDevice(bounds->width(), bounds->height()));
        if (!device) {
            return false;
        }
        SkCanvas canvas(device);
        canvas.clear(0x00000000);
        canvas.drawBitmap(src, srcOffset->x() - bounds->x(), srcOffset->y() - bounds->y());
        *srcOffset = SkIPoint::Make(bounds->x(), bounds->y());
        *dst = device->accessBitmap(false);
        return true;
    }
}

bool SkImageFilter::onFilterBounds(const SkIRect& src, const SkMatrix& ctm,
                                   SkIRect* dst) const {
    if (fInputCount < 1) {
        return false;
    }

    SkIRect bounds;
    for (int i = 0; i < fInputCount; ++i) {
        SkImageFilter* filter = this->getInput(i);
        SkIRect rect = src;
        if (filter && !filter->filterBounds(src, ctm, &rect)) {
            return false;
        }
        if (0 == i) {
            bounds = rect;
        } else {
            bounds.join(rect);
        }
    }

    // don't modify dst until now, so we don't accidentally change it in the
    // loop, but then return false on the next filter.
    *dst = bounds;
    return true;
}

bool SkImageFilter::asNewEffect(GrEffect**, GrTexture*, const SkMatrix&, const SkIRect&) const {
    return false;
}

bool SkImageFilter::asColorFilter(SkColorFilter**) const {
    return false;
}

void SkImageFilter::SetExternalCache(Cache* cache) {
    SkRefCnt_SafeAssign(gExternalCache, cache);
}

SkImageFilter::Cache* SkImageFilter::GetExternalCache() {
    return gExternalCache;
}

#if SK_SUPPORT_GPU

void SkImageFilter::WrapTexture(GrTexture* texture, int width, int height, SkBitmap* result) {
    SkImageInfo info = SkImageInfo::MakeN32Premul(width, height);
    result->setInfo(info);
    result->setPixelRef(SkNEW_ARGS(SkGrPixelRef, (info, texture)))->unref();
}

bool SkImageFilter::getInputResultGPU(SkImageFilter::Proxy* proxy,
                                      const SkBitmap& src, const Context& ctx,
                                      SkBitmap* result, SkIPoint* offset) const {
    // Ensure that GrContext calls under filterImage and filterImageGPU below will see an identity
    // matrix with no clip and that the matrix, clip, and render target set before this function was
    // called are restored before we return to the caller.
    GrContext* context = src.getTexture()->getContext();
    GrContext::AutoWideOpenIdentityDraw awoid(context, NULL);
    if (this->canFilterImageGPU()) {
        return this->filterImageGPU(proxy, src, ctx, result, offset);
    } else {
        if (this->filterImage(proxy, src, ctx, result, offset)) {
            if (!result->getTexture()) {
                const SkImageInfo info = result->info();
                if (kUnknown_SkColorType == info.colorType()) {
                    return false;
                }
                GrTexture* resultTex = GrLockAndRefCachedBitmapTexture(context, *result, NULL);
                result->setPixelRef(new SkGrPixelRef(info, resultTex))->unref();
                GrUnlockAndUnrefCachedBitmapTexture(resultTex);
            }
            return true;
        } else {
            return false;
        }
    }
}
#endif

class CacheImpl : public SkImageFilter::Cache {
public:
    explicit CacheImpl(int minChildren) : fMinChildren(minChildren) {
        SkASSERT(fMinChildren <= 2);
    }

    virtual ~CacheImpl();
    bool get(const SkImageFilter* key, SkBitmap* result, SkIPoint* offset) SK_OVERRIDE;
    void set(const SkImageFilter* key, const SkBitmap& result, const SkIPoint& offset) SK_OVERRIDE;
    void remove(const SkImageFilter* key) SK_OVERRIDE;
private:
    typedef const SkImageFilter* Key;
    struct Value {
        Value(Key key, const SkBitmap& bitmap, const SkIPoint& offset)
            : fKey(key), fBitmap(bitmap), fOffset(offset) {}
        Key fKey;
        SkBitmap fBitmap;
        SkIPoint fOffset;
        static const Key& GetKey(const Value& v) {
            return v.fKey;
        }
        static uint32_t Hash(Key key) {
            return SkChecksum::Murmur3(reinterpret_cast<const uint32_t*>(&key), sizeof(Key));
        }
    };
    SkTDynamicHash<Value, Key> fData;
    int fMinChildren;
};

bool CacheImpl::get(const SkImageFilter* key, SkBitmap* result, SkIPoint* offset) {
    Value* v = fData.find(key);
    if (v) {
        *result = v->fBitmap;
        *offset = v->fOffset;
        return true;
    }
    return false;
}

void CacheImpl::remove(const SkImageFilter* key) {
    Value* v = fData.find(key);
    if (v) {
        fData.remove(key);
        delete v;
    }
}

void CacheImpl::set(const SkImageFilter* key, const SkBitmap& result, const SkIPoint& offset) {
    if (fMinChildren < 2 || !key->unique()) {
        // We take !key->unique() as a signal that there are probably at least 2 refs on the key,
        // meaning this filter probably has at least two children and is worth caching when
        // fMinChildren is 2.  If fMinChildren is less than two, we'll just always cache.
        fData.add(new Value(key, result, offset));
    }
}

SkImageFilter::Cache* SkImageFilter::Cache::Create(int minChildren) {
    return new CacheImpl(minChildren);
}

CacheImpl::~CacheImpl() {
    SkTDynamicHash<Value, Key>::Iter iter(&fData);

    while (!iter.done()) {
        Value* v = &*iter;
        ++iter;
        delete v;
    }
}