DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Implementation

Mercurial (d8847129d134)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316

/*
 * Copyright 2006 The Android Open Source Project
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */


#ifndef SkGeometry_DEFINED
#define SkGeometry_DEFINED

#include "SkMatrix.h"

/** An XRay is a half-line that runs from the specific point/origin to
    +infinity in the X direction. e.g. XRay(3,5) is the half-line
    (3,5)....(infinity, 5)
 */
typedef SkPoint SkXRay;

/** Given a line segment from pts[0] to pts[1], and an xray, return true if
    they intersect. Optional outgoing "ambiguous" argument indicates
    whether the answer is ambiguous because the query occurred exactly at
    one of the endpoints' y coordinates, indicating that another query y
    coordinate is preferred for robustness.
*/
bool SkXRayCrossesLine(const SkXRay& pt, const SkPoint pts[2],
                       bool* ambiguous = NULL);

/** Given a quadratic equation Ax^2 + Bx + C = 0, return 0, 1, 2 roots for the
    equation.
*/
int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]);

///////////////////////////////////////////////////////////////////////////////

/** Set pt to the point on the src quadratic specified by t. t must be
    0 <= t <= 1.0
*/
void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt,
                  SkVector* tangent = NULL);
void SkEvalQuadAtHalf(const SkPoint src[3], SkPoint* pt,
                      SkVector* tangent = NULL);

/** Given a src quadratic bezier, chop it at the specified t value,
    where 0 < t < 1, and return the two new quadratics in dst:
    dst[0..2] and dst[2..4]
*/
void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t);

/** Given a src quadratic bezier, chop it at the specified t == 1/2,
    The new quads are returned in dst[0..2] and dst[2..4]
*/
void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]);

/** Given the 3 coefficients for a quadratic bezier (either X or Y values), look
    for extrema, and return the number of t-values that are found that represent
    these extrema. If the quadratic has no extrema betwee (0..1) exclusive, the
    function returns 0.
    Returned count      tValues[]
    0                   ignored
    1                   0 < tValues[0] < 1
*/
int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValues[1]);

/** Given 3 points on a quadratic bezier, chop it into 1, 2 beziers such that
    the resulting beziers are monotonic in Y. This is called by the scan converter.
    Depending on what is returned, dst[] is treated as follows
    0   dst[0..2] is the original quad
    1   dst[0..2] and dst[2..4] are the two new quads
*/
int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]);
int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5]);

/** Given 3 points on a quadratic bezier, if the point of maximum
    curvature exists on the segment, returns the t value for this
    point along the curve. Otherwise it will return a value of 0.
*/
float SkFindQuadMaxCurvature(const SkPoint src[3]);

/** Given 3 points on a quadratic bezier, divide it into 2 quadratics
    if the point of maximum curvature exists on the quad segment.
    Depending on what is returned, dst[] is treated as follows
    1   dst[0..2] is the original quad
    2   dst[0..2] and dst[2..4] are the two new quads
    If dst == null, it is ignored and only the count is returned.
*/
int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]);

/** Given 3 points on a quadratic bezier, use degree elevation to
    convert it into the cubic fitting the same curve. The new cubic
    curve is returned in dst[0..3].
*/
SK_API void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]);

///////////////////////////////////////////////////////////////////////////////

/** Convert from parametric from (pts) to polynomial coefficients
    coeff[0]*T^3 + coeff[1]*T^2 + coeff[2]*T + coeff[3]
*/
void SkGetCubicCoeff(const SkPoint pts[4], SkScalar cx[4], SkScalar cy[4]);

/** Set pt to the point on the src cubic specified by t. t must be
    0 <= t <= 1.0
*/
void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* locOrNull,
                   SkVector* tangentOrNull, SkVector* curvatureOrNull);

/** Given a src cubic bezier, chop it at the specified t value,
    where 0 < t < 1, and return the two new cubics in dst:
    dst[0..3] and dst[3..6]
*/
void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t);
/** Given a src cubic bezier, chop it at the specified t values,
    where 0 < t < 1, and return the new cubics in dst:
    dst[0..3],dst[3..6],...,dst[3*t_count..3*(t_count+1)]
*/
void SkChopCubicAt(const SkPoint src[4], SkPoint dst[], const SkScalar t[],
                   int t_count);

/** Given a src cubic bezier, chop it at the specified t == 1/2,
    The new cubics are returned in dst[0..3] and dst[3..6]
*/
void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]);

/** Given the 4 coefficients for a cubic bezier (either X or Y values), look
    for extrema, and return the number of t-values that are found that represent
    these extrema. If the cubic has no extrema betwee (0..1) exclusive, the
    function returns 0.
    Returned count      tValues[]
    0                   ignored
    1                   0 < tValues[0] < 1
    2                   0 < tValues[0] < tValues[1] < 1
*/
int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d,
                       SkScalar tValues[2]);

/** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that
    the resulting beziers are monotonic in Y. This is called by the scan converter.
    Depending on what is returned, dst[] is treated as follows
    0   dst[0..3] is the original cubic
    1   dst[0..3] and dst[3..6] are the two new cubics
    2   dst[0..3], dst[3..6], dst[6..9] are the three new cubics
    If dst == null, it is ignored and only the count is returned.
*/
int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]);
int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]);

/** Given a cubic bezier, return 0, 1, or 2 t-values that represent the
    inflection points.
*/
int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[2]);

/** Return 1 for no chop, 2 for having chopped the cubic at a single
    inflection point, 3 for having chopped at 2 inflection points.
    dst will hold the resulting 1, 2, or 3 cubics.
*/
int SkChopCubicAtInflections(const SkPoint src[4], SkPoint dst[10]);

int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]);
int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13],
                              SkScalar tValues[3] = NULL);

/** Given a monotonic cubic bezier, determine whether an xray intersects the
    cubic.
    By definition the cubic is open at the starting point; in other
    words, if pt.fY is equivalent to cubic[0].fY, and pt.fX is to the
    left of the curve, the line is not considered to cross the curve,
    but if it is equal to cubic[3].fY then it is considered to
    cross.
    Optional outgoing "ambiguous" argument indicates whether the answer is
    ambiguous because the query occurred exactly at one of the endpoints' y
    coordinates, indicating that another query y coordinate is preferred
    for robustness.
 */
bool SkXRayCrossesMonotonicCubic(const SkXRay& pt, const SkPoint cubic[4],
                                 bool* ambiguous = NULL);

/** Given an arbitrary cubic bezier, return the number of times an xray crosses
    the cubic. Valid return values are [0..3]
    By definition the cubic is open at the starting point; in other
    words, if pt.fY is equivalent to cubic[0].fY, and pt.fX is to the
    left of the curve, the line is not considered to cross the curve,
    but if it is equal to cubic[3].fY then it is considered to
    cross.
    Optional outgoing "ambiguous" argument indicates whether the answer is
    ambiguous because the query occurred exactly at one of the endpoints' y
    coordinates or at a tangent point, indicating that another query y
    coordinate is preferred for robustness.
 */
int SkNumXRayCrossingsForCubic(const SkXRay& pt, const SkPoint cubic[4],
                               bool* ambiguous = NULL);

///////////////////////////////////////////////////////////////////////////////

enum SkRotationDirection {
    kCW_SkRotationDirection,
    kCCW_SkRotationDirection
};

/** Maximum number of points needed in the quadPoints[] parameter for
    SkBuildQuadArc()
*/
#define kSkBuildQuadArcStorage  17

/** Given 2 unit vectors and a rotation direction, fill out the specified
    array of points with quadratic segments. Return is the number of points
    written to, which will be { 0, 3, 5, 7, ... kSkBuildQuadArcStorage }

    matrix, if not null, is appled to the points before they are returned.
*/
int SkBuildQuadArc(const SkVector& unitStart, const SkVector& unitStop,
                   SkRotationDirection, const SkMatrix*, SkPoint quadPoints[]);

// experimental
struct SkConic {
    SkPoint  fPts[3];
    SkScalar fW;

    void set(const SkPoint pts[3], SkScalar w) {
        memcpy(fPts, pts, 3 * sizeof(SkPoint));
        fW = w;
    }

    /**
     *  Given a t-value [0...1] return its position and/or tangent.
     *  If pos is not null, return its position at the t-value.
     *  If tangent is not null, return its tangent at the t-value. NOTE the
     *  tangent value's length is arbitrary, and only its direction should
     *  be used.
     */
    void evalAt(SkScalar t, SkPoint* pos, SkVector* tangent = NULL) const;
    void chopAt(SkScalar t, SkConic dst[2]) const;
    void chop(SkConic dst[2]) const;

    void computeAsQuadError(SkVector* err) const;
    bool asQuadTol(SkScalar tol) const;

    /**
     *  return the power-of-2 number of quads needed to approximate this conic
     *  with a sequence of quads. Will be >= 0.
     */
    int computeQuadPOW2(SkScalar tol) const;

    /**
     *  Chop this conic into N quads, stored continguously in pts[], where
     *  N = 1 << pow2. The amount of storage needed is (1 + 2 * N)
     */
    int chopIntoQuadsPOW2(SkPoint pts[], int pow2) const;

    bool findXExtrema(SkScalar* t) const;
    bool findYExtrema(SkScalar* t) const;
    bool chopAtXExtrema(SkConic dst[2]) const;
    bool chopAtYExtrema(SkConic dst[2]) const;

    void computeTightBounds(SkRect* bounds) const;
    void computeFastBounds(SkRect* bounds) const;

    /** Find the parameter value where the conic takes on its maximum curvature.
     *
     *  @param t   output scalar for max curvature.  Will be unchanged if
     *             max curvature outside 0..1 range.
     *
     *  @return  true if max curvature found inside 0..1 range, false otherwise
     */
    bool findMaxCurvature(SkScalar* t) const;
};

#include "SkTemplates.h"

/**
 *  Help class to allocate storage for approximating a conic with N quads.
 */
class SkAutoConicToQuads {
public:
    SkAutoConicToQuads() : fQuadCount(0) {}

    /**
     *  Given a conic and a tolerance, return the array of points for the
     *  approximating quad(s). Call countQuads() to know the number of quads
     *  represented in these points.
     *
     *  The quads are allocated to share end-points. e.g. if there are 4 quads,
     *  there will be 9 points allocated as follows
     *      quad[0] == pts[0..2]
     *      quad[1] == pts[2..4]
     *      quad[2] == pts[4..6]
     *      quad[3] == pts[6..8]
     */
    const SkPoint* computeQuads(const SkConic& conic, SkScalar tol) {
        int pow2 = conic.computeQuadPOW2(tol);
        fQuadCount = 1 << pow2;
        SkPoint* pts = fStorage.reset(1 + 2 * fQuadCount);
        conic.chopIntoQuadsPOW2(pts, pow2);
        return pts;
    }

    const SkPoint* computeQuads(const SkPoint pts[3], SkScalar weight,
                                SkScalar tol) {
        SkConic conic;
        conic.set(pts, weight);
        return computeQuads(conic, tol);
    }

    int countQuads() const { return fQuadCount; }

private:
    enum {
        kQuadCount = 8, // should handle most conics
        kPointCount = 1 + 2 * kQuadCount,
    };
    SkAutoSTMalloc<kPointCount, SkPoint> fStorage;
    int fQuadCount; // #quads for current usage
};

#endif