DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (d8847129d134)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
/*
 * Copyright 2006 The Android Open Source Project
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "SkGeometry.h"
#include "SkMatrix.h"

bool SkXRayCrossesLine(const SkXRay& pt,
                       const SkPoint pts[2],
                       bool* ambiguous) {
    if (ambiguous) {
        *ambiguous = false;
    }
    // Determine quick discards.
    // Consider query line going exactly through point 0 to not
    // intersect, for symmetry with SkXRayCrossesMonotonicCubic.
    if (pt.fY == pts[0].fY) {
        if (ambiguous) {
            *ambiguous = true;
        }
        return false;
    }
    if (pt.fY < pts[0].fY && pt.fY < pts[1].fY)
        return false;
    if (pt.fY > pts[0].fY && pt.fY > pts[1].fY)
        return false;
    if (pt.fX > pts[0].fX && pt.fX > pts[1].fX)
        return false;
    // Determine degenerate cases
    if (SkScalarNearlyZero(pts[0].fY - pts[1].fY))
        return false;
    if (SkScalarNearlyZero(pts[0].fX - pts[1].fX)) {
        // We've already determined the query point lies within the
        // vertical range of the line segment.
        if (pt.fX <= pts[0].fX) {
            if (ambiguous) {
                *ambiguous = (pt.fY == pts[1].fY);
            }
            return true;
        }
        return false;
    }
    // Ambiguity check
    if (pt.fY == pts[1].fY) {
        if (pt.fX <= pts[1].fX) {
            if (ambiguous) {
                *ambiguous = true;
            }
            return true;
        }
        return false;
    }
    // Full line segment evaluation
    SkScalar delta_y = pts[1].fY - pts[0].fY;
    SkScalar delta_x = pts[1].fX - pts[0].fX;
    SkScalar slope = SkScalarDiv(delta_y, delta_x);
    SkScalar b = pts[0].fY - SkScalarMul(slope, pts[0].fX);
    // Solve for x coordinate at y = pt.fY
    SkScalar x = SkScalarDiv(pt.fY - b, slope);
    return pt.fX <= x;
}

/** If defined, this makes eval_quad and eval_cubic do more setup (sometimes
    involving integer multiplies by 2 or 3, but fewer calls to SkScalarMul.
    May also introduce overflow of fixed when we compute our setup.
*/
//    #define DIRECT_EVAL_OF_POLYNOMIALS

////////////////////////////////////////////////////////////////////////

static int is_not_monotonic(SkScalar a, SkScalar b, SkScalar c) {
    SkScalar ab = a - b;
    SkScalar bc = b - c;
    if (ab < 0) {
        bc = -bc;
    }
    return ab == 0 || bc < 0;
}

////////////////////////////////////////////////////////////////////////

static bool is_unit_interval(SkScalar x) {
    return x > 0 && x < SK_Scalar1;
}

static int valid_unit_divide(SkScalar numer, SkScalar denom, SkScalar* ratio) {
    SkASSERT(ratio);

    if (numer < 0) {
        numer = -numer;
        denom = -denom;
    }

    if (denom == 0 || numer == 0 || numer >= denom) {
        return 0;
    }

    SkScalar r = SkScalarDiv(numer, denom);
    if (SkScalarIsNaN(r)) {
        return 0;
    }
    SkASSERT(r >= 0 && r < SK_Scalar1);
    if (r == 0) { // catch underflow if numer <<<< denom
        return 0;
    }
    *ratio = r;
    return 1;
}

/** From Numerical Recipes in C.

    Q = -1/2 (B + sign(B) sqrt[B*B - 4*A*C])
    x1 = Q / A
    x2 = C / Q
*/
int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]) {
    SkASSERT(roots);

    if (A == 0) {
        return valid_unit_divide(-C, B, roots);
    }

    SkScalar* r = roots;

    SkScalar R = B*B - 4*A*C;
    if (R < 0 || SkScalarIsNaN(R)) {  // complex roots
        return 0;
    }
    R = SkScalarSqrt(R);

    SkScalar Q = (B < 0) ? -(B-R)/2 : -(B+R)/2;
    r += valid_unit_divide(Q, A, r);
    r += valid_unit_divide(C, Q, r);
    if (r - roots == 2) {
        if (roots[0] > roots[1])
            SkTSwap<SkScalar>(roots[0], roots[1]);
        else if (roots[0] == roots[1])  // nearly-equal?
            r -= 1; // skip the double root
    }
    return (int)(r - roots);
}

///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////

static SkScalar eval_quad(const SkScalar src[], SkScalar t) {
    SkASSERT(src);
    SkASSERT(t >= 0 && t <= SK_Scalar1);

#ifdef DIRECT_EVAL_OF_POLYNOMIALS
    SkScalar    C = src[0];
    SkScalar    A = src[4] - 2 * src[2] + C;
    SkScalar    B = 2 * (src[2] - C);
    return SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
#else
    SkScalar    ab = SkScalarInterp(src[0], src[2], t);
    SkScalar    bc = SkScalarInterp(src[2], src[4], t);
    return SkScalarInterp(ab, bc, t);
#endif
}

static SkScalar eval_quad_derivative(const SkScalar src[], SkScalar t) {
    SkScalar A = src[4] - 2 * src[2] + src[0];
    SkScalar B = src[2] - src[0];

    return 2 * SkScalarMulAdd(A, t, B);
}

static SkScalar eval_quad_derivative_at_half(const SkScalar src[]) {
    SkScalar A = src[4] - 2 * src[2] + src[0];
    SkScalar B = src[2] - src[0];
    return A + 2 * B;
}

void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt,
                  SkVector* tangent) {
    SkASSERT(src);
    SkASSERT(t >= 0 && t <= SK_Scalar1);

    if (pt) {
        pt->set(eval_quad(&src[0].fX, t), eval_quad(&src[0].fY, t));
    }
    if (tangent) {
        tangent->set(eval_quad_derivative(&src[0].fX, t),
                     eval_quad_derivative(&src[0].fY, t));
    }
}

void SkEvalQuadAtHalf(const SkPoint src[3], SkPoint* pt, SkVector* tangent) {
    SkASSERT(src);

    if (pt) {
        SkScalar x01 = SkScalarAve(src[0].fX, src[1].fX);
        SkScalar y01 = SkScalarAve(src[0].fY, src[1].fY);
        SkScalar x12 = SkScalarAve(src[1].fX, src[2].fX);
        SkScalar y12 = SkScalarAve(src[1].fY, src[2].fY);
        pt->set(SkScalarAve(x01, x12), SkScalarAve(y01, y12));
    }
    if (tangent) {
        tangent->set(eval_quad_derivative_at_half(&src[0].fX),
                     eval_quad_derivative_at_half(&src[0].fY));
    }
}

static void interp_quad_coords(const SkScalar* src, SkScalar* dst, SkScalar t) {
    SkScalar    ab = SkScalarInterp(src[0], src[2], t);
    SkScalar    bc = SkScalarInterp(src[2], src[4], t);

    dst[0] = src[0];
    dst[2] = ab;
    dst[4] = SkScalarInterp(ab, bc, t);
    dst[6] = bc;
    dst[8] = src[4];
}

void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t) {
    SkASSERT(t > 0 && t < SK_Scalar1);

    interp_quad_coords(&src[0].fX, &dst[0].fX, t);
    interp_quad_coords(&src[0].fY, &dst[0].fY, t);
}

void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]) {
    SkScalar x01 = SkScalarAve(src[0].fX, src[1].fX);
    SkScalar y01 = SkScalarAve(src[0].fY, src[1].fY);
    SkScalar x12 = SkScalarAve(src[1].fX, src[2].fX);
    SkScalar y12 = SkScalarAve(src[1].fY, src[2].fY);

    dst[0] = src[0];
    dst[1].set(x01, y01);
    dst[2].set(SkScalarAve(x01, x12), SkScalarAve(y01, y12));
    dst[3].set(x12, y12);
    dst[4] = src[2];
}

/** Quad'(t) = At + B, where
    A = 2(a - 2b + c)
    B = 2(b - a)
    Solve for t, only if it fits between 0 < t < 1
*/
int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValue[1]) {
    /*  At + B == 0
        t = -B / A
    */
    return valid_unit_divide(a - b, a - b - b + c, tValue);
}

static inline void flatten_double_quad_extrema(SkScalar coords[14]) {
    coords[2] = coords[6] = coords[4];
}

/*  Returns 0 for 1 quad, and 1 for two quads, either way the answer is
 stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
 */
int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]) {
    SkASSERT(src);
    SkASSERT(dst);

    SkScalar a = src[0].fY;
    SkScalar b = src[1].fY;
    SkScalar c = src[2].fY;

    if (is_not_monotonic(a, b, c)) {
        SkScalar    tValue;
        if (valid_unit_divide(a - b, a - b - b + c, &tValue)) {
            SkChopQuadAt(src, dst, tValue);
            flatten_double_quad_extrema(&dst[0].fY);
            return 1;
        }
        // if we get here, we need to force dst to be monotonic, even though
        // we couldn't compute a unit_divide value (probably underflow).
        b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
    }
    dst[0].set(src[0].fX, a);
    dst[1].set(src[1].fX, b);
    dst[2].set(src[2].fX, c);
    return 0;
}

/*  Returns 0 for 1 quad, and 1 for two quads, either way the answer is
    stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
 */
int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5]) {
    SkASSERT(src);
    SkASSERT(dst);

    SkScalar a = src[0].fX;
    SkScalar b = src[1].fX;
    SkScalar c = src[2].fX;

    if (is_not_monotonic(a, b, c)) {
        SkScalar tValue;
        if (valid_unit_divide(a - b, a - b - b + c, &tValue)) {
            SkChopQuadAt(src, dst, tValue);
            flatten_double_quad_extrema(&dst[0].fX);
            return 1;
        }
        // if we get here, we need to force dst to be monotonic, even though
        // we couldn't compute a unit_divide value (probably underflow).
        b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
    }
    dst[0].set(a, src[0].fY);
    dst[1].set(b, src[1].fY);
    dst[2].set(c, src[2].fY);
    return 0;
}

//  F(t)    = a (1 - t) ^ 2 + 2 b t (1 - t) + c t ^ 2
//  F'(t)   = 2 (b - a) + 2 (a - 2b + c) t
//  F''(t)  = 2 (a - 2b + c)
//
//  A = 2 (b - a)
//  B = 2 (a - 2b + c)
//
//  Maximum curvature for a quadratic means solving
//  Fx' Fx'' + Fy' Fy'' = 0
//
//  t = - (Ax Bx + Ay By) / (Bx ^ 2 + By ^ 2)
//
SkScalar SkFindQuadMaxCurvature(const SkPoint src[3]) {
    SkScalar    Ax = src[1].fX - src[0].fX;
    SkScalar    Ay = src[1].fY - src[0].fY;
    SkScalar    Bx = src[0].fX - src[1].fX - src[1].fX + src[2].fX;
    SkScalar    By = src[0].fY - src[1].fY - src[1].fY + src[2].fY;
    SkScalar    t = 0;  // 0 means don't chop

    (void)valid_unit_divide(-(Ax * Bx + Ay * By), Bx * Bx + By * By, &t);
    return t;
}

int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]) {
    SkScalar t = SkFindQuadMaxCurvature(src);
    if (t == 0) {
        memcpy(dst, src, 3 * sizeof(SkPoint));
        return 1;
    } else {
        SkChopQuadAt(src, dst, t);
        return 2;
    }
}

#define SK_ScalarTwoThirds  (0.666666666f)

void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]) {
    const SkScalar scale = SK_ScalarTwoThirds;
    dst[0] = src[0];
    dst[1].set(src[0].fX + SkScalarMul(src[1].fX - src[0].fX, scale),
               src[0].fY + SkScalarMul(src[1].fY - src[0].fY, scale));
    dst[2].set(src[2].fX + SkScalarMul(src[1].fX - src[2].fX, scale),
               src[2].fY + SkScalarMul(src[1].fY - src[2].fY, scale));
    dst[3] = src[2];
}

//////////////////////////////////////////////////////////////////////////////
///// CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS /////
//////////////////////////////////////////////////////////////////////////////

static void get_cubic_coeff(const SkScalar pt[], SkScalar coeff[4]) {
    coeff[0] = pt[6] + 3*(pt[2] - pt[4]) - pt[0];
    coeff[1] = 3*(pt[4] - pt[2] - pt[2] + pt[0]);
    coeff[2] = 3*(pt[2] - pt[0]);
    coeff[3] = pt[0];
}

void SkGetCubicCoeff(const SkPoint pts[4], SkScalar cx[4], SkScalar cy[4]) {
    SkASSERT(pts);

    if (cx) {
        get_cubic_coeff(&pts[0].fX, cx);
    }
    if (cy) {
        get_cubic_coeff(&pts[0].fY, cy);
    }
}

static SkScalar eval_cubic(const SkScalar src[], SkScalar t) {
    SkASSERT(src);
    SkASSERT(t >= 0 && t <= SK_Scalar1);

    if (t == 0) {
        return src[0];
    }

#ifdef DIRECT_EVAL_OF_POLYNOMIALS
    SkScalar D = src[0];
    SkScalar A = src[6] + 3*(src[2] - src[4]) - D;
    SkScalar B = 3*(src[4] - src[2] - src[2] + D);
    SkScalar C = 3*(src[2] - D);

    return SkScalarMulAdd(SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C), t, D);
#else
    SkScalar    ab = SkScalarInterp(src[0], src[2], t);
    SkScalar    bc = SkScalarInterp(src[2], src[4], t);
    SkScalar    cd = SkScalarInterp(src[4], src[6], t);
    SkScalar    abc = SkScalarInterp(ab, bc, t);
    SkScalar    bcd = SkScalarInterp(bc, cd, t);
    return SkScalarInterp(abc, bcd, t);
#endif
}

/** return At^2 + Bt + C
*/
static SkScalar eval_quadratic(SkScalar A, SkScalar B, SkScalar C, SkScalar t) {
    SkASSERT(t >= 0 && t <= SK_Scalar1);

    return SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
}

static SkScalar eval_cubic_derivative(const SkScalar src[], SkScalar t) {
    SkScalar A = src[6] + 3*(src[2] - src[4]) - src[0];
    SkScalar B = 2*(src[4] - 2 * src[2] + src[0]);
    SkScalar C = src[2] - src[0];

    return eval_quadratic(A, B, C, t);
}

static SkScalar eval_cubic_2ndDerivative(const SkScalar src[], SkScalar t) {
    SkScalar A = src[6] + 3*(src[2] - src[4]) - src[0];
    SkScalar B = src[4] - 2 * src[2] + src[0];

    return SkScalarMulAdd(A, t, B);
}

void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* loc,
                   SkVector* tangent, SkVector* curvature) {
    SkASSERT(src);
    SkASSERT(t >= 0 && t <= SK_Scalar1);

    if (loc) {
        loc->set(eval_cubic(&src[0].fX, t), eval_cubic(&src[0].fY, t));
    }
    if (tangent) {
        tangent->set(eval_cubic_derivative(&src[0].fX, t),
                     eval_cubic_derivative(&src[0].fY, t));
    }
    if (curvature) {
        curvature->set(eval_cubic_2ndDerivative(&src[0].fX, t),
                       eval_cubic_2ndDerivative(&src[0].fY, t));
    }
}

/** Cubic'(t) = At^2 + Bt + C, where
    A = 3(-a + 3(b - c) + d)
    B = 6(a - 2b + c)
    C = 3(b - a)
    Solve for t, keeping only those that fit betwee 0 < t < 1
*/
int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d,
                       SkScalar tValues[2]) {
    // we divide A,B,C by 3 to simplify
    SkScalar A = d - a + 3*(b - c);
    SkScalar B = 2*(a - b - b + c);
    SkScalar C = b - a;

    return SkFindUnitQuadRoots(A, B, C, tValues);
}

static void interp_cubic_coords(const SkScalar* src, SkScalar* dst,
                                SkScalar t) {
    SkScalar    ab = SkScalarInterp(src[0], src[2], t);
    SkScalar    bc = SkScalarInterp(src[2], src[4], t);
    SkScalar    cd = SkScalarInterp(src[4], src[6], t);
    SkScalar    abc = SkScalarInterp(ab, bc, t);
    SkScalar    bcd = SkScalarInterp(bc, cd, t);
    SkScalar    abcd = SkScalarInterp(abc, bcd, t);

    dst[0] = src[0];
    dst[2] = ab;
    dst[4] = abc;
    dst[6] = abcd;
    dst[8] = bcd;
    dst[10] = cd;
    dst[12] = src[6];
}

void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t) {
    SkASSERT(t > 0 && t < SK_Scalar1);

    interp_cubic_coords(&src[0].fX, &dst[0].fX, t);
    interp_cubic_coords(&src[0].fY, &dst[0].fY, t);
}

/*  http://code.google.com/p/skia/issues/detail?id=32

    This test code would fail when we didn't check the return result of
    valid_unit_divide in SkChopCubicAt(... tValues[], int roots). The reason is
    that after the first chop, the parameters to valid_unit_divide are equal
    (thanks to finite float precision and rounding in the subtracts). Thus
    even though the 2nd tValue looks < 1.0, after we renormalize it, we end
    up with 1.0, hence the need to check and just return the last cubic as
    a degenerate clump of 4 points in the sampe place.

    static void test_cubic() {
        SkPoint src[4] = {
            { 556.25000, 523.03003 },
            { 556.23999, 522.96002 },
            { 556.21997, 522.89001 },
            { 556.21997, 522.82001 }
        };
        SkPoint dst[10];
        SkScalar tval[] = { 0.33333334f, 0.99999994f };
        SkChopCubicAt(src, dst, tval, 2);
    }
 */

void SkChopCubicAt(const SkPoint src[4], SkPoint dst[],
                   const SkScalar tValues[], int roots) {
#ifdef SK_DEBUG
    {
        for (int i = 0; i < roots - 1; i++)
        {
            SkASSERT(is_unit_interval(tValues[i]));
            SkASSERT(is_unit_interval(tValues[i+1]));
            SkASSERT(tValues[i] < tValues[i+1]);
        }
    }
#endif

    if (dst) {
        if (roots == 0) { // nothing to chop
            memcpy(dst, src, 4*sizeof(SkPoint));
        } else {
            SkScalar    t = tValues[0];
            SkPoint     tmp[4];

            for (int i = 0; i < roots; i++) {
                SkChopCubicAt(src, dst, t);
                if (i == roots - 1) {
                    break;
                }

                dst += 3;
                // have src point to the remaining cubic (after the chop)
                memcpy(tmp, dst, 4 * sizeof(SkPoint));
                src = tmp;

                // watch out in case the renormalized t isn't in range
                if (!valid_unit_divide(tValues[i+1] - tValues[i],
                                       SK_Scalar1 - tValues[i], &t)) {
                    // if we can't, just create a degenerate cubic
                    dst[4] = dst[5] = dst[6] = src[3];
                    break;
                }
            }
        }
    }
}

void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]) {
    SkScalar x01 = SkScalarAve(src[0].fX, src[1].fX);
    SkScalar y01 = SkScalarAve(src[0].fY, src[1].fY);
    SkScalar x12 = SkScalarAve(src[1].fX, src[2].fX);
    SkScalar y12 = SkScalarAve(src[1].fY, src[2].fY);
    SkScalar x23 = SkScalarAve(src[2].fX, src[3].fX);
    SkScalar y23 = SkScalarAve(src[2].fY, src[3].fY);

    SkScalar x012 = SkScalarAve(x01, x12);
    SkScalar y012 = SkScalarAve(y01, y12);
    SkScalar x123 = SkScalarAve(x12, x23);
    SkScalar y123 = SkScalarAve(y12, y23);

    dst[0] = src[0];
    dst[1].set(x01, y01);
    dst[2].set(x012, y012);
    dst[3].set(SkScalarAve(x012, x123), SkScalarAve(y012, y123));
    dst[4].set(x123, y123);
    dst[5].set(x23, y23);
    dst[6] = src[3];
}

static void flatten_double_cubic_extrema(SkScalar coords[14]) {
    coords[4] = coords[8] = coords[6];
}

/** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that
    the resulting beziers are monotonic in Y. This is called by the scan
    converter.  Depending on what is returned, dst[] is treated as follows:
    0   dst[0..3] is the original cubic
    1   dst[0..3] and dst[3..6] are the two new cubics
    2   dst[0..3], dst[3..6], dst[6..9] are the three new cubics
    If dst == null, it is ignored and only the count is returned.
*/
int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]) {
    SkScalar    tValues[2];
    int         roots = SkFindCubicExtrema(src[0].fY, src[1].fY, src[2].fY,
                                           src[3].fY, tValues);

    SkChopCubicAt(src, dst, tValues, roots);
    if (dst && roots > 0) {
        // we do some cleanup to ensure our Y extrema are flat
        flatten_double_cubic_extrema(&dst[0].fY);
        if (roots == 2) {
            flatten_double_cubic_extrema(&dst[3].fY);
        }
    }
    return roots;
}

int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]) {
    SkScalar    tValues[2];
    int         roots = SkFindCubicExtrema(src[0].fX, src[1].fX, src[2].fX,
                                           src[3].fX, tValues);

    SkChopCubicAt(src, dst, tValues, roots);
    if (dst && roots > 0) {
        // we do some cleanup to ensure our Y extrema are flat
        flatten_double_cubic_extrema(&dst[0].fX);
        if (roots == 2) {
            flatten_double_cubic_extrema(&dst[3].fX);
        }
    }
    return roots;
}

/** http://www.faculty.idc.ac.il/arik/quality/appendixA.html

    Inflection means that curvature is zero.
    Curvature is [F' x F''] / [F'^3]
    So we solve F'x X F''y - F'y X F''y == 0
    After some canceling of the cubic term, we get
    A = b - a
    B = c - 2b + a
    C = d - 3c + 3b - a
    (BxCy - ByCx)t^2 + (AxCy - AyCx)t + AxBy - AyBx == 0
*/
int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[]) {
    SkScalar    Ax = src[1].fX - src[0].fX;
    SkScalar    Ay = src[1].fY - src[0].fY;
    SkScalar    Bx = src[2].fX - 2 * src[1].fX + src[0].fX;
    SkScalar    By = src[2].fY - 2 * src[1].fY + src[0].fY;
    SkScalar    Cx = src[3].fX + 3 * (src[1].fX - src[2].fX) - src[0].fX;
    SkScalar    Cy = src[3].fY + 3 * (src[1].fY - src[2].fY) - src[0].fY;

    return SkFindUnitQuadRoots(Bx*Cy - By*Cx,
                               Ax*Cy - Ay*Cx,
                               Ax*By - Ay*Bx,
                               tValues);
}

int SkChopCubicAtInflections(const SkPoint src[], SkPoint dst[10]) {
    SkScalar    tValues[2];
    int         count = SkFindCubicInflections(src, tValues);

    if (dst) {
        if (count == 0) {
            memcpy(dst, src, 4 * sizeof(SkPoint));
        } else {
            SkChopCubicAt(src, dst, tValues, count);
        }
    }
    return count + 1;
}

template <typename T> void bubble_sort(T array[], int count) {
    for (int i = count - 1; i > 0; --i)
        for (int j = i; j > 0; --j)
            if (array[j] < array[j-1])
            {
                T   tmp(array[j]);
                array[j] = array[j-1];
                array[j-1] = tmp;
            }
}

/**
 *  Given an array and count, remove all pair-wise duplicates from the array,
 *  keeping the existing sorting, and return the new count
 */
static int collaps_duplicates(SkScalar array[], int count) {
    for (int n = count; n > 1; --n) {
        if (array[0] == array[1]) {
            for (int i = 1; i < n; ++i) {
                array[i - 1] = array[i];
            }
            count -= 1;
        } else {
            array += 1;
        }
    }
    return count;
}

#ifdef SK_DEBUG

#define TEST_COLLAPS_ENTRY(array)   array, SK_ARRAY_COUNT(array)

static void test_collaps_duplicates() {
    static bool gOnce;
    if (gOnce) { return; }
    gOnce = true;
    const SkScalar src0[] = { 0 };
    const SkScalar src1[] = { 0, 0 };
    const SkScalar src2[] = { 0, 1 };
    const SkScalar src3[] = { 0, 0, 0 };
    const SkScalar src4[] = { 0, 0, 1 };
    const SkScalar src5[] = { 0, 1, 1 };
    const SkScalar src6[] = { 0, 1, 2 };
    const struct {
        const SkScalar* fData;
        int fCount;
        int fCollapsedCount;
    } data[] = {
        { TEST_COLLAPS_ENTRY(src0), 1 },
        { TEST_COLLAPS_ENTRY(src1), 1 },
        { TEST_COLLAPS_ENTRY(src2), 2 },
        { TEST_COLLAPS_ENTRY(src3), 1 },
        { TEST_COLLAPS_ENTRY(src4), 2 },
        { TEST_COLLAPS_ENTRY(src5), 2 },
        { TEST_COLLAPS_ENTRY(src6), 3 },
    };
    for (size_t i = 0; i < SK_ARRAY_COUNT(data); ++i) {
        SkScalar dst[3];
        memcpy(dst, data[i].fData, data[i].fCount * sizeof(dst[0]));
        int count = collaps_duplicates(dst, data[i].fCount);
        SkASSERT(data[i].fCollapsedCount == count);
        for (int j = 1; j < count; ++j) {
            SkASSERT(dst[j-1] < dst[j]);
        }
    }
}
#endif

static SkScalar SkScalarCubeRoot(SkScalar x) {
    return SkScalarPow(x, 0.3333333f);
}

/*  Solve coeff(t) == 0, returning the number of roots that
    lie withing 0 < t < 1.
    coeff[0]t^3 + coeff[1]t^2 + coeff[2]t + coeff[3]

    Eliminates repeated roots (so that all tValues are distinct, and are always
    in increasing order.
*/
static int solve_cubic_poly(const SkScalar coeff[4], SkScalar tValues[3]) {
    if (SkScalarNearlyZero(coeff[0])) {  // we're just a quadratic
        return SkFindUnitQuadRoots(coeff[1], coeff[2], coeff[3], tValues);
    }

    SkScalar a, b, c, Q, R;

    {
        SkASSERT(coeff[0] != 0);

        SkScalar inva = SkScalarInvert(coeff[0]);
        a = coeff[1] * inva;
        b = coeff[2] * inva;
        c = coeff[3] * inva;
    }
    Q = (a*a - b*3) / 9;
    R = (2*a*a*a - 9*a*b + 27*c) / 54;

    SkScalar Q3 = Q * Q * Q;
    SkScalar R2MinusQ3 = R * R - Q3;
    SkScalar adiv3 = a / 3;

    SkScalar*   roots = tValues;
    SkScalar    r;

    if (R2MinusQ3 < 0) { // we have 3 real roots
        SkScalar theta = SkScalarACos(R / SkScalarSqrt(Q3));
        SkScalar neg2RootQ = -2 * SkScalarSqrt(Q);

        r = neg2RootQ * SkScalarCos(theta/3) - adiv3;
        if (is_unit_interval(r)) {
            *roots++ = r;
        }
        r = neg2RootQ * SkScalarCos((theta + 2*SK_ScalarPI)/3) - adiv3;
        if (is_unit_interval(r)) {
            *roots++ = r;
        }
        r = neg2RootQ * SkScalarCos((theta - 2*SK_ScalarPI)/3) - adiv3;
        if (is_unit_interval(r)) {
            *roots++ = r;
        }
        SkDEBUGCODE(test_collaps_duplicates();)

        // now sort the roots
        int count = (int)(roots - tValues);
        SkASSERT((unsigned)count <= 3);
        bubble_sort(tValues, count);
        count = collaps_duplicates(tValues, count);
        roots = tValues + count;    // so we compute the proper count below
    } else {              // we have 1 real root
        SkScalar A = SkScalarAbs(R) + SkScalarSqrt(R2MinusQ3);
        A = SkScalarCubeRoot(A);
        if (R > 0) {
            A = -A;
        }
        if (A != 0) {
            A += Q / A;
        }
        r = A - adiv3;
        if (is_unit_interval(r)) {
            *roots++ = r;
        }
    }

    return (int)(roots - tValues);
}

/*  Looking for F' dot F'' == 0

    A = b - a
    B = c - 2b + a
    C = d - 3c + 3b - a

    F' = 3Ct^2 + 6Bt + 3A
    F'' = 6Ct + 6B

    F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
*/
static void formulate_F1DotF2(const SkScalar src[], SkScalar coeff[4]) {
    SkScalar    a = src[2] - src[0];
    SkScalar    b = src[4] - 2 * src[2] + src[0];
    SkScalar    c = src[6] + 3 * (src[2] - src[4]) - src[0];

    coeff[0] = c * c;
    coeff[1] = 3 * b * c;
    coeff[2] = 2 * b * b + c * a;
    coeff[3] = a * b;
}

/*  Looking for F' dot F'' == 0

    A = b - a
    B = c - 2b + a
    C = d - 3c + 3b - a

    F' = 3Ct^2 + 6Bt + 3A
    F'' = 6Ct + 6B

    F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
*/
int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]) {
    SkScalar coeffX[4], coeffY[4];
    int      i;

    formulate_F1DotF2(&src[0].fX, coeffX);
    formulate_F1DotF2(&src[0].fY, coeffY);

    for (i = 0; i < 4; i++) {
        coeffX[i] += coeffY[i];
    }

    SkScalar    t[3];
    int         count = solve_cubic_poly(coeffX, t);
    int         maxCount = 0;

    // now remove extrema where the curvature is zero (mins)
    // !!!! need a test for this !!!!
    for (i = 0; i < count; i++) {
        // if (not_min_curvature())
        if (t[i] > 0 && t[i] < SK_Scalar1) {
            tValues[maxCount++] = t[i];
        }
    }
    return maxCount;
}

int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13],
                              SkScalar tValues[3]) {
    SkScalar    t_storage[3];

    if (tValues == NULL) {
        tValues = t_storage;
    }

    int count = SkFindCubicMaxCurvature(src, tValues);

    if (dst) {
        if (count == 0) {
            memcpy(dst, src, 4 * sizeof(SkPoint));
        } else {
            SkChopCubicAt(src, dst, tValues, count);
        }
    }
    return count + 1;
}

bool SkXRayCrossesMonotonicCubic(const SkXRay& pt, const SkPoint cubic[4],
                                 bool* ambiguous) {
    if (ambiguous) {
        *ambiguous = false;
    }

    // Find the minimum and maximum y of the extrema, which are the
    // first and last points since this cubic is monotonic
    SkScalar min_y = SkMinScalar(cubic[0].fY, cubic[3].fY);
    SkScalar max_y = SkMaxScalar(cubic[0].fY, cubic[3].fY);

    if (pt.fY == cubic[0].fY
        || pt.fY < min_y
        || pt.fY > max_y) {
        // The query line definitely does not cross the curve
        if (ambiguous) {
            *ambiguous = (pt.fY == cubic[0].fY);
        }
        return false;
    }

    bool pt_at_extremum = (pt.fY == cubic[3].fY);

    SkScalar min_x =
        SkMinScalar(
            SkMinScalar(
                SkMinScalar(cubic[0].fX, cubic[1].fX),
                cubic[2].fX),
            cubic[3].fX);
    if (pt.fX < min_x) {
        // The query line definitely crosses the curve
        if (ambiguous) {
            *ambiguous = pt_at_extremum;
        }
        return true;
    }

    SkScalar max_x =
        SkMaxScalar(
            SkMaxScalar(
                SkMaxScalar(cubic[0].fX, cubic[1].fX),
                cubic[2].fX),
            cubic[3].fX);
    if (pt.fX > max_x) {
        // The query line definitely does not cross the curve
        return false;
    }

    // Do a binary search to find the parameter value which makes y as
    // close as possible to the query point. See whether the query
    // line's origin is to the left of the associated x coordinate.

    // kMaxIter is chosen as the number of mantissa bits for a float,
    // since there's no way we are going to get more precision by
    // iterating more times than that.
    const int kMaxIter = 23;
    SkPoint eval;
    int iter = 0;
    SkScalar upper_t;
    SkScalar lower_t;
    // Need to invert direction of t parameter if cubic goes up
    // instead of down
    if (cubic[3].fY > cubic[0].fY) {
        upper_t = SK_Scalar1;
        lower_t = 0;
    } else {
        upper_t = 0;
        lower_t = SK_Scalar1;
    }
    do {
        SkScalar t = SkScalarAve(upper_t, lower_t);
        SkEvalCubicAt(cubic, t, &eval, NULL, NULL);
        if (pt.fY > eval.fY) {
            lower_t = t;
        } else {
            upper_t = t;
        }
    } while (++iter < kMaxIter
             && !SkScalarNearlyZero(eval.fY - pt.fY));
    if (pt.fX <= eval.fX) {
        if (ambiguous) {
            *ambiguous = pt_at_extremum;
        }
        return true;
    }
    return false;
}

int SkNumXRayCrossingsForCubic(const SkXRay& pt,
                               const SkPoint cubic[4],
                               bool* ambiguous) {
    int num_crossings = 0;
    SkPoint monotonic_cubics[10];
    int num_monotonic_cubics = SkChopCubicAtYExtrema(cubic, monotonic_cubics);
    if (ambiguous) {
        *ambiguous = false;
    }
    bool locally_ambiguous;
    if (SkXRayCrossesMonotonicCubic(pt,
                                    &monotonic_cubics[0],
                                    &locally_ambiguous))
        ++num_crossings;
    if (ambiguous) {
        *ambiguous |= locally_ambiguous;
    }
    if (num_monotonic_cubics > 0)
        if (SkXRayCrossesMonotonicCubic(pt,
                                        &monotonic_cubics[3],
                                        &locally_ambiguous))
            ++num_crossings;
    if (ambiguous) {
        *ambiguous |= locally_ambiguous;
    }
    if (num_monotonic_cubics > 1)
        if (SkXRayCrossesMonotonicCubic(pt,
                                        &monotonic_cubics[6],
                                        &locally_ambiguous))
            ++num_crossings;
    if (ambiguous) {
        *ambiguous |= locally_ambiguous;
    }
    return num_crossings;
}

///////////////////////////////////////////////////////////////////////////////

/*  Find t value for quadratic [a, b, c] = d.
    Return 0 if there is no solution within [0, 1)
*/
static SkScalar quad_solve(SkScalar a, SkScalar b, SkScalar c, SkScalar d) {
    // At^2 + Bt + C = d
    SkScalar A = a - 2 * b + c;
    SkScalar B = 2 * (b - a);
    SkScalar C = a - d;

    SkScalar    roots[2];
    int         count = SkFindUnitQuadRoots(A, B, C, roots);

    SkASSERT(count <= 1);
    return count == 1 ? roots[0] : 0;
}

/*  given a quad-curve and a point (x,y), chop the quad at that point and place
    the new off-curve point and endpoint into 'dest'.
    Should only return false if the computed pos is the start of the curve
    (i.e. root == 0)
*/
static bool truncate_last_curve(const SkPoint quad[3], SkScalar x, SkScalar y,
                                SkPoint* dest) {
    const SkScalar* base;
    SkScalar        value;

    if (SkScalarAbs(x) < SkScalarAbs(y)) {
        base = &quad[0].fX;
        value = x;
    } else {
        base = &quad[0].fY;
        value = y;
    }

    // note: this returns 0 if it thinks value is out of range, meaning the
    // root might return something outside of [0, 1)
    SkScalar t = quad_solve(base[0], base[2], base[4], value);

    if (t > 0) {
        SkPoint tmp[5];
        SkChopQuadAt(quad, tmp, t);
        dest[0] = tmp[1];
        dest[1].set(x, y);
        return true;
    } else {
        /*  t == 0 means either the value triggered a root outside of [0, 1)
            For our purposes, we can ignore the <= 0 roots, but we want to
            catch the >= 1 roots (which given our caller, will basically mean
            a root of 1, give-or-take numerical instability). If we are in the
            >= 1 case, return the existing offCurve point.

            The test below checks to see if we are close to the "end" of the
            curve (near base[4]). Rather than specifying a tolerance, I just
            check to see if value is on to the right/left of the middle point
            (depending on the direction/sign of the end points).
        */
        if ((base[0] < base[4] && value > base[2]) ||
            (base[0] > base[4] && value < base[2]))   // should root have been 1
        {
            dest[0] = quad[1];
            dest[1].set(x, y);
            return true;
        }
    }
    return false;
}

static const SkPoint gQuadCirclePts[kSkBuildQuadArcStorage] = {
// The mid point of the quadratic arc approximation is half way between the two
// control points. The float epsilon adjustment moves the on curve point out by
// two bits, distributing the convex test error between the round rect
// approximation and the convex cross product sign equality test.
#define SK_MID_RRECT_OFFSET \
    (SK_Scalar1 + SK_ScalarTanPIOver8 + FLT_EPSILON * 4) / 2
    { SK_Scalar1,            0                      },
    { SK_Scalar1,            SK_ScalarTanPIOver8    },
    { SK_MID_RRECT_OFFSET,   SK_MID_RRECT_OFFSET    },
    { SK_ScalarTanPIOver8,   SK_Scalar1             },

    { 0,                     SK_Scalar1             },
    { -SK_ScalarTanPIOver8,  SK_Scalar1             },
    { -SK_MID_RRECT_OFFSET,  SK_MID_RRECT_OFFSET    },
    { -SK_Scalar1,           SK_ScalarTanPIOver8    },

    { -SK_Scalar1,           0                      },
    { -SK_Scalar1,           -SK_ScalarTanPIOver8   },
    { -SK_MID_RRECT_OFFSET,  -SK_MID_RRECT_OFFSET   },
    { -SK_ScalarTanPIOver8,  -SK_Scalar1            },

    { 0,                     -SK_Scalar1            },
    { SK_ScalarTanPIOver8,   -SK_Scalar1            },
    { SK_MID_RRECT_OFFSET,   -SK_MID_RRECT_OFFSET   },
    { SK_Scalar1,            -SK_ScalarTanPIOver8   },

    { SK_Scalar1,            0                      }
#undef SK_MID_RRECT_OFFSET
};

int SkBuildQuadArc(const SkVector& uStart, const SkVector& uStop,
                   SkRotationDirection dir, const SkMatrix* userMatrix,
                   SkPoint quadPoints[]) {
    // rotate by x,y so that uStart is (1.0)
    SkScalar x = SkPoint::DotProduct(uStart, uStop);
    SkScalar y = SkPoint::CrossProduct(uStart, uStop);

    SkScalar absX = SkScalarAbs(x);
    SkScalar absY = SkScalarAbs(y);

    int pointCount;

    // check for (effectively) coincident vectors
    // this can happen if our angle is nearly 0 or nearly 180 (y == 0)
    // ... we use the dot-prod to distinguish between 0 and 180 (x > 0)
    if (absY <= SK_ScalarNearlyZero && x > 0 &&
        ((y >= 0 && kCW_SkRotationDirection == dir) ||
         (y <= 0 && kCCW_SkRotationDirection == dir))) {

        // just return the start-point
        quadPoints[0].set(SK_Scalar1, 0);
        pointCount = 1;
    } else {
        if (dir == kCCW_SkRotationDirection) {
            y = -y;
        }
        // what octant (quadratic curve) is [xy] in?
        int oct = 0;
        bool sameSign = true;

        if (0 == y) {
            oct = 4;        // 180
            SkASSERT(SkScalarAbs(x + SK_Scalar1) <= SK_ScalarNearlyZero);
        } else if (0 == x) {
            SkASSERT(absY - SK_Scalar1 <= SK_ScalarNearlyZero);
            oct = y > 0 ? 2 : 6; // 90 : 270
        } else {
            if (y < 0) {
                oct += 4;
            }
            if ((x < 0) != (y < 0)) {
                oct += 2;
                sameSign = false;
            }
            if ((absX < absY) == sameSign) {
                oct += 1;
            }
        }

        int wholeCount = oct << 1;
        memcpy(quadPoints, gQuadCirclePts, (wholeCount + 1) * sizeof(SkPoint));

        const SkPoint* arc = &gQuadCirclePts[wholeCount];
        if (truncate_last_curve(arc, x, y, &quadPoints[wholeCount + 1])) {
            wholeCount += 2;
        }
        pointCount = wholeCount + 1;
    }

    // now handle counter-clockwise and the initial unitStart rotation
    SkMatrix    matrix;
    matrix.setSinCos(uStart.fY, uStart.fX);
    if (dir == kCCW_SkRotationDirection) {
        matrix.preScale(SK_Scalar1, -SK_Scalar1);
    }
    if (userMatrix) {
        matrix.postConcat(*userMatrix);
    }
    matrix.mapPoints(quadPoints, pointCount);
    return pointCount;
}


///////////////////////////////////////////////////////////////////////////////
//
// NURB representation for conics.  Helpful explanations at:
//
// http://citeseerx.ist.psu.edu/viewdoc/
//   download?doi=10.1.1.44.5740&rep=rep1&type=ps
// and
// http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/NURBS/RB-conics.html
//
// F = (A (1 - t)^2 + C t^2 + 2 B (1 - t) t w)
//     ------------------------------------------
//         ((1 - t)^2 + t^2 + 2 (1 - t) t w)
//
//   = {t^2 (P0 + P2 - 2 P1 w), t (-2 P0 + 2 P1 w), P0}
//     ------------------------------------------------
//             {t^2 (2 - 2 w), t (-2 + 2 w), 1}
//

static SkScalar conic_eval_pos(const SkScalar src[], SkScalar w, SkScalar t) {
    SkASSERT(src);
    SkASSERT(t >= 0 && t <= SK_Scalar1);

    SkScalar    src2w = SkScalarMul(src[2], w);
    SkScalar    C = src[0];
    SkScalar    A = src[4] - 2 * src2w + C;
    SkScalar    B = 2 * (src2w - C);
    SkScalar numer = SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);

    B = 2 * (w - SK_Scalar1);
    C = SK_Scalar1;
    A = -B;
    SkScalar denom = SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);

    return SkScalarDiv(numer, denom);
}

// F' = 2 (C t (1 + t (-1 + w)) - A (-1 + t) (t (-1 + w) - w) + B (1 - 2 t) w)
//
//  t^2 : (2 P0 - 2 P2 - 2 P0 w + 2 P2 w)
//  t^1 : (-2 P0 + 2 P2 + 4 P0 w - 4 P1 w)
//  t^0 : -2 P0 w + 2 P1 w
//
//  We disregard magnitude, so we can freely ignore the denominator of F', and
//  divide the numerator by 2
//
//    coeff[0] for t^2
//    coeff[1] for t^1
//    coeff[2] for t^0
//
static void conic_deriv_coeff(const SkScalar src[],
                              SkScalar w,
                              SkScalar coeff[3]) {
    const SkScalar P20 = src[4] - src[0];
    const SkScalar P10 = src[2] - src[0];
    const SkScalar wP10 = w * P10;
    coeff[0] = w * P20 - P20;
    coeff[1] = P20 - 2 * wP10;
    coeff[2] = wP10;
}

static SkScalar conic_eval_tan(const SkScalar coord[], SkScalar w, SkScalar t) {
    SkScalar coeff[3];
    conic_deriv_coeff(coord, w, coeff);
    return t * (t * coeff[0] + coeff[1]) + coeff[2];
}

static bool conic_find_extrema(const SkScalar src[], SkScalar w, SkScalar* t) {
    SkScalar coeff[3];
    conic_deriv_coeff(src, w, coeff);

    SkScalar tValues[2];
    int roots = SkFindUnitQuadRoots(coeff[0], coeff[1], coeff[2], tValues);
    SkASSERT(0 == roots || 1 == roots);

    if (1 == roots) {
        *t = tValues[0];
        return true;
    }
    return false;
}

struct SkP3D {
    SkScalar fX, fY, fZ;

    void set(SkScalar x, SkScalar y, SkScalar z) {
        fX = x; fY = y; fZ = z;
    }

    void projectDown(SkPoint* dst) const {
        dst->set(fX / fZ, fY / fZ);
    }
};

// We only interpolate one dimension at a time (the first, at +0, +3, +6).
static void p3d_interp(const SkScalar src[7], SkScalar dst[7], SkScalar t) {
    SkScalar ab = SkScalarInterp(src[0], src[3], t);
    SkScalar bc = SkScalarInterp(src[3], src[6], t);
    dst[0] = ab;
    dst[3] = SkScalarInterp(ab, bc, t);
    dst[6] = bc;
}

static void ratquad_mapTo3D(const SkPoint src[3], SkScalar w, SkP3D dst[]) {
    dst[0].set(src[0].fX * 1, src[0].fY * 1, 1);
    dst[1].set(src[1].fX * w, src[1].fY * w, w);
    dst[2].set(src[2].fX * 1, src[2].fY * 1, 1);
}

void SkConic::evalAt(SkScalar t, SkPoint* pt, SkVector* tangent) const {
    SkASSERT(t >= 0 && t <= SK_Scalar1);

    if (pt) {
        pt->set(conic_eval_pos(&fPts[0].fX, fW, t),
                conic_eval_pos(&fPts[0].fY, fW, t));
    }
    if (tangent) {
        tangent->set(conic_eval_tan(&fPts[0].fX, fW, t),
                     conic_eval_tan(&fPts[0].fY, fW, t));
    }
}

void SkConic::chopAt(SkScalar t, SkConic dst[2]) const {
    SkP3D tmp[3], tmp2[3];

    ratquad_mapTo3D(fPts, fW, tmp);

    p3d_interp(&tmp[0].fX, &tmp2[0].fX, t);
    p3d_interp(&tmp[0].fY, &tmp2[0].fY, t);
    p3d_interp(&tmp[0].fZ, &tmp2[0].fZ, t);

    dst[0].fPts[0] = fPts[0];
    tmp2[0].projectDown(&dst[0].fPts[1]);
    tmp2[1].projectDown(&dst[0].fPts[2]); dst[1].fPts[0] = dst[0].fPts[2];
    tmp2[2].projectDown(&dst[1].fPts[1]);
    dst[1].fPts[2] = fPts[2];

    // to put in "standard form", where w0 and w2 are both 1, we compute the
    // new w1 as sqrt(w1*w1/w0*w2)
    // or
    // w1 /= sqrt(w0*w2)
    //
    // However, in our case, we know that for dst[0]:
    //     w0 == 1, and for dst[1], w2 == 1
    //
    SkScalar root = SkScalarSqrt(tmp2[1].fZ);
    dst[0].fW = tmp2[0].fZ / root;
    dst[1].fW = tmp2[2].fZ / root;
}

static SkScalar subdivide_w_value(SkScalar w) {
    return SkScalarSqrt(SK_ScalarHalf + w * SK_ScalarHalf);
}

void SkConic::chop(SkConic dst[2]) const {
    SkScalar scale = SkScalarInvert(SK_Scalar1 + fW);
    SkScalar p1x = fW * fPts[1].fX;
    SkScalar p1y = fW * fPts[1].fY;
    SkScalar mx = (fPts[0].fX + 2 * p1x + fPts[2].fX) * scale * SK_ScalarHalf;
    SkScalar my = (fPts[0].fY + 2 * p1y + fPts[2].fY) * scale * SK_ScalarHalf;

    dst[0].fPts[0] = fPts[0];
    dst[0].fPts[1].set((fPts[0].fX + p1x) * scale,
                       (fPts[0].fY + p1y) * scale);
    dst[0].fPts[2].set(mx, my);

    dst[1].fPts[0].set(mx, my);
    dst[1].fPts[1].set((p1x + fPts[2].fX) * scale,
                       (p1y + fPts[2].fY) * scale);
    dst[1].fPts[2] = fPts[2];

    dst[0].fW = dst[1].fW = subdivide_w_value(fW);
}

/*
 *  "High order approximation of conic sections by quadratic splines"
 *      by Michael Floater, 1993
 */
#define AS_QUAD_ERROR_SETUP                                         \
    SkScalar a = fW - 1;                                            \
    SkScalar k = a / (4 * (2 + a));                                 \
    SkScalar x = k * (fPts[0].fX - 2 * fPts[1].fX + fPts[2].fX);    \
    SkScalar y = k * (fPts[0].fY - 2 * fPts[1].fY + fPts[2].fY);

void SkConic::computeAsQuadError(SkVector* err) const {
    AS_QUAD_ERROR_SETUP
    err->set(x, y);
}

bool SkConic::asQuadTol(SkScalar tol) const {
    AS_QUAD_ERROR_SETUP
    return (x * x + y * y) <= tol * tol;
}

int SkConic::computeQuadPOW2(SkScalar tol) const {
    AS_QUAD_ERROR_SETUP
    SkScalar error = SkScalarSqrt(x * x + y * y) - tol;

    if (error <= 0) {
        return 0;
    }
    uint32_t ierr = (uint32_t)error;
    return (34 - SkCLZ(ierr)) >> 1;
}

static SkPoint* subdivide(const SkConic& src, SkPoint pts[], int level) {
    SkASSERT(level >= 0);

    if (0 == level) {
        memcpy(pts, &src.fPts[1], 2 * sizeof(SkPoint));
        return pts + 2;
    } else {
        SkConic dst[2];
        src.chop(dst);
        --level;
        pts = subdivide(dst[0], pts, level);
        return subdivide(dst[1], pts, level);
    }
}

int SkConic::chopIntoQuadsPOW2(SkPoint pts[], int pow2) const {
    SkASSERT(pow2 >= 0);
    *pts = fPts[0];
    SkDEBUGCODE(SkPoint* endPts =) subdivide(*this, pts + 1, pow2);
    SkASSERT(endPts - pts == (2 * (1 << pow2) + 1));
    return 1 << pow2;
}

bool SkConic::findXExtrema(SkScalar* t) const {
    return conic_find_extrema(&fPts[0].fX, fW, t);
}

bool SkConic::findYExtrema(SkScalar* t) const {
    return conic_find_extrema(&fPts[0].fY, fW, t);
}

bool SkConic::chopAtXExtrema(SkConic dst[2]) const {
    SkScalar t;
    if (this->findXExtrema(&t)) {
        this->chopAt(t, dst);
        // now clean-up the middle, since we know t was meant to be at
        // an X-extrema
        SkScalar value = dst[0].fPts[2].fX;
        dst[0].fPts[1].fX = value;
        dst[1].fPts[0].fX = value;
        dst[1].fPts[1].fX = value;
        return true;
    }
    return false;
}

bool SkConic::chopAtYExtrema(SkConic dst[2]) const {
    SkScalar t;
    if (this->findYExtrema(&t)) {
        this->chopAt(t, dst);
        // now clean-up the middle, since we know t was meant to be at
        // an Y-extrema
        SkScalar value = dst[0].fPts[2].fY;
        dst[0].fPts[1].fY = value;
        dst[1].fPts[0].fY = value;
        dst[1].fPts[1].fY = value;
        return true;
    }
    return false;
}

void SkConic::computeTightBounds(SkRect* bounds) const {
    SkPoint pts[4];
    pts[0] = fPts[0];
    pts[1] = fPts[2];
    int count = 2;

    SkScalar t;
    if (this->findXExtrema(&t)) {
        this->evalAt(t, &pts[count++]);
    }
    if (this->findYExtrema(&t)) {
        this->evalAt(t, &pts[count++]);
    }
    bounds->set(pts, count);
}

void SkConic::computeFastBounds(SkRect* bounds) const {
    bounds->set(fPts, 3);
}

bool SkConic::findMaxCurvature(SkScalar* t) const {
    // TODO: Implement me
    return false;
}