DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (d8847129d134)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494

/*
 * Copyright 2006 The Android Open Source Project
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */


#include "SkEdge.h"
#include "SkFDot6.h"
#include "SkMath.h"

/*
    In setLine, setQuadratic, setCubic, the first thing we do is to convert
    the points into FDot6. This is modulated by the shift parameter, which
    will either be 0, or something like 2 for antialiasing.

    In the float case, we want to turn the float into .6 by saying pt * 64,
    or pt * 256 for antialiasing. This is implemented as 1 << (shift + 6).

    In the fixed case, we want to turn the fixed into .6 by saying pt >> 10,
    or pt >> 8 for antialiasing. This is implemented as pt >> (10 - shift).
*/

static inline SkFixed SkFDot6ToFixedDiv2(SkFDot6 value) {
    // we want to return SkFDot6ToFixed(value >> 1), but we don't want to throw
    // away data in value, so just perform a modify up-shift
    return value << (16 - 6 - 1);
}

/////////////////////////////////////////////////////////////////////////

int SkEdge::setLine(const SkPoint& p0, const SkPoint& p1, const SkIRect* clip,
                    int shift) {
    SkFDot6 x0, y0, x1, y1;

    {
#ifdef SK_RASTERIZE_EVEN_ROUNDING
        x0 = SkScalarRoundToFDot6(p0.fX, shift);
        y0 = SkScalarRoundToFDot6(p0.fY, shift);
        x1 = SkScalarRoundToFDot6(p1.fX, shift);
        y1 = SkScalarRoundToFDot6(p1.fY, shift);
#else
        float scale = float(1 << (shift + 6));
        x0 = int(p0.fX * scale);
        y0 = int(p0.fY * scale);
        x1 = int(p1.fX * scale);
        y1 = int(p1.fY * scale);
#endif
    }

    int winding = 1;

    if (y0 > y1) {
        SkTSwap(x0, x1);
        SkTSwap(y0, y1);
        winding = -1;
    }

    int top = SkFDot6Round(y0);
    int bot = SkFDot6Round(y1);

    // are we a zero-height line?
    if (top == bot) {
        return 0;
    }
    // are we completely above or below the clip?
    if (NULL != clip && (top >= clip->fBottom || bot <= clip->fTop)) {
        return 0;
    }

    SkFixed slope = SkFDot6Div(x1 - x0, y1 - y0);
    const int dy  = SkEdge_Compute_DY(top, y0);

    fX          = SkFDot6ToFixed(x0 + SkFixedMul(slope, dy));   // + SK_Fixed1/2
    fDX         = slope;
    fFirstY     = top;
    fLastY      = bot - 1;
    fCurveCount = 0;
    fWinding    = SkToS8(winding);
    fCurveShift = 0;

    if (clip) {
        this->chopLineWithClip(*clip);
    }
    return 1;
}

// called from a curve subclass
int SkEdge::updateLine(SkFixed x0, SkFixed y0, SkFixed x1, SkFixed y1)
{
    SkASSERT(fWinding == 1 || fWinding == -1);
    SkASSERT(fCurveCount != 0);
//    SkASSERT(fCurveShift != 0);

    y0 >>= 10;
    y1 >>= 10;

    SkASSERT(y0 <= y1);

    int top = SkFDot6Round(y0);
    int bot = SkFDot6Round(y1);

//  SkASSERT(top >= fFirstY);

    // are we a zero-height line?
    if (top == bot)
        return 0;

    x0 >>= 10;
    x1 >>= 10;

    SkFixed slope = SkFDot6Div(x1 - x0, y1 - y0);
    const int dy  = SkEdge_Compute_DY(top, y0);

    fX          = SkFDot6ToFixed(x0 + SkFixedMul(slope, dy));   // + SK_Fixed1/2
    fDX         = slope;
    fFirstY     = top;
    fLastY      = bot - 1;

    return 1;
}

void SkEdge::chopLineWithClip(const SkIRect& clip)
{
    int top = fFirstY;

    SkASSERT(top < clip.fBottom);

    // clip the line to the top
    if (top < clip.fTop)
    {
        SkASSERT(fLastY >= clip.fTop);
        fX += fDX * (clip.fTop - top);
        fFirstY = clip.fTop;
    }
}

///////////////////////////////////////////////////////////////////////////////

/*  We store 1<<shift in a (signed) byte, so its maximum value is 1<<6 == 64.
    Note that this limits the number of lines we use to approximate a curve.
    If we need to increase this, we need to store fCurveCount in something
    larger than int8_t.
*/
#define MAX_COEFF_SHIFT     6

static inline SkFDot6 cheap_distance(SkFDot6 dx, SkFDot6 dy)
{
    dx = SkAbs32(dx);
    dy = SkAbs32(dy);
    // return max + min/2
    if (dx > dy)
        dx += dy >> 1;
    else
        dx = dy + (dx >> 1);
    return dx;
}

static inline int diff_to_shift(SkFDot6 dx, SkFDot6 dy)
{
    // cheap calc of distance from center of p0-p2 to the center of the curve
    SkFDot6 dist = cheap_distance(dx, dy);

    // shift down dist (it is currently in dot6)
    // down by 5 should give us 1/2 pixel accuracy (assuming our dist is accurate...)
    // this is chosen by heuristic: make it as big as possible (to minimize segments)
    // ... but small enough so that our curves still look smooth
    dist = (dist + (1 << 4)) >> 5;

    // each subdivision (shift value) cuts this dist (error) by 1/4
    return (32 - SkCLZ(dist)) >> 1;
}

int SkQuadraticEdge::setQuadratic(const SkPoint pts[3], int shift)
{
    SkFDot6 x0, y0, x1, y1, x2, y2;

    {
#ifdef SK_RASTERIZE_EVEN_ROUNDING
        x0 = SkScalarRoundToFDot6(pts[0].fX, shift);
        y0 = SkScalarRoundToFDot6(pts[0].fY, shift);
        x1 = SkScalarRoundToFDot6(pts[1].fX, shift);
        y1 = SkScalarRoundToFDot6(pts[1].fY, shift);
        x2 = SkScalarRoundToFDot6(pts[2].fX, shift);
        y2 = SkScalarRoundToFDot6(pts[2].fY, shift);
#else
        float scale = float(1 << (shift + 6));
        x0 = int(pts[0].fX * scale);
        y0 = int(pts[0].fY * scale);
        x1 = int(pts[1].fX * scale);
        y1 = int(pts[1].fY * scale);
        x2 = int(pts[2].fX * scale);
        y2 = int(pts[2].fY * scale);
#endif
    }

    int winding = 1;
    if (y0 > y2)
    {
        SkTSwap(x0, x2);
        SkTSwap(y0, y2);
        winding = -1;
    }
    SkASSERT(y0 <= y1 && y1 <= y2);

    int top = SkFDot6Round(y0);
    int bot = SkFDot6Round(y2);

    // are we a zero-height quad (line)?
    if (top == bot)
        return 0;

    // compute number of steps needed (1 << shift)
    {
        SkFDot6 dx = ((x1 << 1) - x0 - x2) >> 2;
        SkFDot6 dy = ((y1 << 1) - y0 - y2) >> 2;
        shift = diff_to_shift(dx, dy);
        SkASSERT(shift >= 0);
    }
    // need at least 1 subdivision for our bias trick
    if (shift == 0) {
        shift = 1;
    } else if (shift > MAX_COEFF_SHIFT) {
        shift = MAX_COEFF_SHIFT;
    }

    fWinding    = SkToS8(winding);
    //fCubicDShift only set for cubics
    fCurveCount = SkToS8(1 << shift);

    /*
     *  We want to reformulate into polynomial form, to make it clear how we
     *  should forward-difference.
     *
     *  p0 (1 - t)^2 + p1 t(1 - t) + p2 t^2 ==> At^2 + Bt + C
     *
     *  A = p0 - 2p1 + p2
     *  B = 2(p1 - p0)
     *  C = p0
     *
     *  Our caller must have constrained our inputs (p0..p2) to all fit into
     *  16.16. However, as seen above, we sometimes compute values that can be
     *  larger (e.g. B = 2*(p1 - p0)). To guard against overflow, we will store
     *  A and B at 1/2 of their actual value, and just apply a 2x scale during
     *  application in updateQuadratic(). Hence we store (shift - 1) in
     *  fCurveShift.
     */

    fCurveShift = SkToU8(shift - 1);

    SkFixed A = SkFDot6ToFixedDiv2(x0 - x1 - x1 + x2);  // 1/2 the real value
    SkFixed B = SkFDot6ToFixed(x1 - x0);                // 1/2 the real value

    fQx     = SkFDot6ToFixed(x0);
    fQDx    = B + (A >> shift);     // biased by shift
    fQDDx   = A >> (shift - 1);     // biased by shift

    A = SkFDot6ToFixedDiv2(y0 - y1 - y1 + y2);  // 1/2 the real value
    B = SkFDot6ToFixed(y1 - y0);                // 1/2 the real value

    fQy     = SkFDot6ToFixed(y0);
    fQDy    = B + (A >> shift);     // biased by shift
    fQDDy   = A >> (shift - 1);     // biased by shift

    fQLastX = SkFDot6ToFixed(x2);
    fQLastY = SkFDot6ToFixed(y2);

    return this->updateQuadratic();
}

int SkQuadraticEdge::updateQuadratic()
{
    int     success;
    int     count = fCurveCount;
    SkFixed oldx = fQx;
    SkFixed oldy = fQy;
    SkFixed dx = fQDx;
    SkFixed dy = fQDy;
    SkFixed newx, newy;
    int     shift = fCurveShift;

    SkASSERT(count > 0);

    do {
        if (--count > 0)
        {
            newx    = oldx + (dx >> shift);
            dx    += fQDDx;
            newy    = oldy + (dy >> shift);
            dy    += fQDDy;
        }
        else    // last segment
        {
            newx    = fQLastX;
            newy    = fQLastY;
        }
        success = this->updateLine(oldx, oldy, newx, newy);
        oldx = newx;
        oldy = newy;
    } while (count > 0 && !success);

    fQx         = newx;
    fQy         = newy;
    fQDx        = dx;
    fQDy        = dy;
    fCurveCount = SkToS8(count);
    return success;
}

/////////////////////////////////////////////////////////////////////////

static inline int SkFDot6UpShift(SkFDot6 x, int upShift) {
    SkASSERT((x << upShift >> upShift) == x);
    return x << upShift;
}

/*  f(1/3) = (8a + 12b + 6c + d) / 27
    f(2/3) = (a + 6b + 12c + 8d) / 27

    f(1/3)-b = (8a - 15b + 6c + d) / 27
    f(2/3)-c = (a + 6b - 15c + 8d) / 27

    use 16/512 to approximate 1/27
*/
static SkFDot6 cubic_delta_from_line(SkFDot6 a, SkFDot6 b, SkFDot6 c, SkFDot6 d)
{
    SkFDot6 oneThird = ((a << 3) - ((b << 4) - b) + 6*c + d) * 19 >> 9;
    SkFDot6 twoThird = (a + 6*b - ((c << 4) - c) + (d << 3)) * 19 >> 9;

    return SkMax32(SkAbs32(oneThird), SkAbs32(twoThird));
}

int SkCubicEdge::setCubic(const SkPoint pts[4], const SkIRect* clip, int shift)
{
    SkFDot6 x0, y0, x1, y1, x2, y2, x3, y3;

    {
#ifdef SK_RASTERIZE_EVEN_ROUNDING
        x0 = SkScalarRoundToFDot6(pts[0].fX, shift);
        y0 = SkScalarRoundToFDot6(pts[0].fY, shift);
        x1 = SkScalarRoundToFDot6(pts[1].fX, shift);
        y1 = SkScalarRoundToFDot6(pts[1].fY, shift);
        x2 = SkScalarRoundToFDot6(pts[2].fX, shift);
        y2 = SkScalarRoundToFDot6(pts[2].fY, shift);
        x3 = SkScalarRoundToFDot6(pts[3].fX, shift);
        y3 = SkScalarRoundToFDot6(pts[3].fY, shift);
#else
        float scale = float(1 << (shift + 6));
        x0 = int(pts[0].fX * scale);
        y0 = int(pts[0].fY * scale);
        x1 = int(pts[1].fX * scale);
        y1 = int(pts[1].fY * scale);
        x2 = int(pts[2].fX * scale);
        y2 = int(pts[2].fY * scale);
        x3 = int(pts[3].fX * scale);
        y3 = int(pts[3].fY * scale);
#endif
    }

    int winding = 1;
    if (y0 > y3)
    {
        SkTSwap(x0, x3);
        SkTSwap(x1, x2);
        SkTSwap(y0, y3);
        SkTSwap(y1, y2);
        winding = -1;
    }

    int top = SkFDot6Round(y0);
    int bot = SkFDot6Round(y3);

    // are we a zero-height cubic (line)?
    if (top == bot)
        return 0;

    // are we completely above or below the clip?
    if (clip && (top >= clip->fBottom || bot <= clip->fTop))
        return 0;

    // compute number of steps needed (1 << shift)
    {
        // Can't use (center of curve - center of baseline), since center-of-curve
        // need not be the max delta from the baseline (it could even be coincident)
        // so we try just looking at the two off-curve points
        SkFDot6 dx = cubic_delta_from_line(x0, x1, x2, x3);
        SkFDot6 dy = cubic_delta_from_line(y0, y1, y2, y3);
        // add 1 (by observation)
        shift = diff_to_shift(dx, dy) + 1;
    }
    // need at least 1 subdivision for our bias trick
    SkASSERT(shift > 0);
    if (shift > MAX_COEFF_SHIFT) {
        shift = MAX_COEFF_SHIFT;
    }

    /*  Since our in coming data is initially shifted down by 10 (or 8 in
        antialias). That means the most we can shift up is 8. However, we
        compute coefficients with a 3*, so the safest upshift is really 6
    */
    int upShift = 6;    // largest safe value
    int downShift = shift + upShift - 10;
    if (downShift < 0) {
        downShift = 0;
        upShift = 10 - shift;
    }

    fWinding    = SkToS8(winding);
    fCurveCount = SkToS8(-1 << shift);
    fCurveShift = SkToU8(shift);
    fCubicDShift = SkToU8(downShift);

    SkFixed B = SkFDot6UpShift(3 * (x1 - x0), upShift);
    SkFixed C = SkFDot6UpShift(3 * (x0 - x1 - x1 + x2), upShift);
    SkFixed D = SkFDot6UpShift(x3 + 3 * (x1 - x2) - x0, upShift);

    fCx     = SkFDot6ToFixed(x0);
    fCDx    = B + (C >> shift) + (D >> 2*shift);    // biased by shift
    fCDDx   = 2*C + (3*D >> (shift - 1));           // biased by 2*shift
    fCDDDx  = 3*D >> (shift - 1);                   // biased by 2*shift

    B = SkFDot6UpShift(3 * (y1 - y0), upShift);
    C = SkFDot6UpShift(3 * (y0 - y1 - y1 + y2), upShift);
    D = SkFDot6UpShift(y3 + 3 * (y1 - y2) - y0, upShift);

    fCy     = SkFDot6ToFixed(y0);
    fCDy    = B + (C >> shift) + (D >> 2*shift);    // biased by shift
    fCDDy   = 2*C + (3*D >> (shift - 1));           // biased by 2*shift
    fCDDDy  = 3*D >> (shift - 1);                   // biased by 2*shift

    fCLastX = SkFDot6ToFixed(x3);
    fCLastY = SkFDot6ToFixed(y3);

    if (clip)
    {
        do {
            if (!this->updateCubic()) {
                return 0;
            }
        } while (!this->intersectsClip(*clip));
        this->chopLineWithClip(*clip);
        return 1;
    }
    return this->updateCubic();
}

int SkCubicEdge::updateCubic()
{
    int     success;
    int     count = fCurveCount;
    SkFixed oldx = fCx;
    SkFixed oldy = fCy;
    SkFixed newx, newy;
    const int ddshift = fCurveShift;
    const int dshift = fCubicDShift;

    SkASSERT(count < 0);

    do {
        if (++count < 0)
        {
            newx    = oldx + (fCDx >> dshift);
            fCDx    += fCDDx >> ddshift;
            fCDDx   += fCDDDx;

            newy    = oldy + (fCDy >> dshift);
            fCDy    += fCDDy >> ddshift;
            fCDDy   += fCDDDy;
        }
        else    // last segment
        {
        //  SkDebugf("LastX err=%d, LastY err=%d\n", (oldx + (fCDx >> shift) - fLastX), (oldy + (fCDy >> shift) - fLastY));
            newx    = fCLastX;
            newy    = fCLastY;
        }

        // we want to say SkASSERT(oldy <= newy), but our finite fixedpoint
        // doesn't always achieve that, so we have to explicitly pin it here.
        if (newy < oldy) {
            newy = oldy;
        }

        success = this->updateLine(oldx, oldy, newx, newy);
        oldx = newx;
        oldy = newy;
    } while (count < 0 && !success);

    fCx         = newx;
    fCy         = newy;
    fCurveCount = SkToS8(count);
    return success;
}