DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (d8847129d134)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
/*
 * Copyright 2006 The Android Open Source Project
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "SkCoreBlitters.h"
#include "SkColorPriv.h"
#include "SkShader.h"
#include "SkUtils.h"
#include "SkXfermode.h"
#include "SkBlitMask.h"

///////////////////////////////////////////////////////////////////////////////

static void SkARGB32_Blit32(const SkBitmap& device, const SkMask& mask,
                            const SkIRect& clip, SkPMColor srcColor) {
    U8CPU alpha = SkGetPackedA32(srcColor);
    unsigned flags = SkBlitRow::kSrcPixelAlpha_Flag32;
    if (alpha != 255) {
        flags |= SkBlitRow::kGlobalAlpha_Flag32;
    }
    SkBlitRow::Proc32 proc = SkBlitRow::Factory32(flags);

    int x = clip.fLeft;
    int y = clip.fTop;
    int width = clip.width();
    int height = clip.height();

    SkPMColor*         dstRow = device.getAddr32(x, y);
    const SkPMColor* srcRow = reinterpret_cast<const SkPMColor*>(mask.getAddr8(x, y));

    do {
        proc(dstRow, srcRow, width, alpha);
        dstRow = (SkPMColor*)((char*)dstRow + device.rowBytes());
        srcRow = (const SkPMColor*)((const char*)srcRow + mask.fRowBytes);
    } while (--height != 0);
}

//////////////////////////////////////////////////////////////////////////////////////

SkARGB32_Blitter::SkARGB32_Blitter(const SkBitmap& device, const SkPaint& paint)
        : INHERITED(device) {
    SkColor color = paint.getColor();
    fColor = color;

    fSrcA = SkColorGetA(color);
    unsigned scale = SkAlpha255To256(fSrcA);
    fSrcR = SkAlphaMul(SkColorGetR(color), scale);
    fSrcG = SkAlphaMul(SkColorGetG(color), scale);
    fSrcB = SkAlphaMul(SkColorGetB(color), scale);

    fPMColor = SkPackARGB32(fSrcA, fSrcR, fSrcG, fSrcB);
    fColor32Proc = SkBlitRow::ColorProcFactory();
    fColorRect32Proc = SkBlitRow::ColorRectProcFactory();
}

const SkBitmap* SkARGB32_Blitter::justAnOpaqueColor(uint32_t* value) {
    if (255 == fSrcA) {
        *value = fPMColor;
        return &fDevice;
    }
    return NULL;
}

#if defined _WIN32 && _MSC_VER >= 1300  // disable warning : local variable used without having been initialized
#pragma warning ( push )
#pragma warning ( disable : 4701 )
#endif

void SkARGB32_Blitter::blitH(int x, int y, int width) {
    SkASSERT(x >= 0 && y >= 0 && x + width <= fDevice.width());

    uint32_t*   device = fDevice.getAddr32(x, y);
    fColor32Proc(device, device, width, fPMColor);
}

void SkARGB32_Blitter::blitAntiH(int x, int y, const SkAlpha antialias[],
                                 const int16_t runs[]) {
    if (fSrcA == 0) {
        return;
    }

    uint32_t    color = fPMColor;
    uint32_t*   device = fDevice.getAddr32(x, y);
    unsigned    opaqueMask = fSrcA; // if fSrcA is 0xFF, then we will catch the fast opaque case

    for (;;) {
        int count = runs[0];
        SkASSERT(count >= 0);
        if (count <= 0) {
            return;
        }
        unsigned aa = antialias[0];
        if (aa) {
            if ((opaqueMask & aa) == 255) {
                sk_memset32(device, color, count);
            } else {
                uint32_t sc = SkAlphaMulQ(color, SkAlpha255To256(aa));
                fColor32Proc(device, device, count, sc);
            }
        }
        runs += count;
        antialias += count;
        device += count;
    }
}

//////////////////////////////////////////////////////////////////////////////////////

#define solid_8_pixels(mask, dst, color)    \
    do {                                    \
        if (mask & 0x80) dst[0] = color;    \
        if (mask & 0x40) dst[1] = color;    \
        if (mask & 0x20) dst[2] = color;    \
        if (mask & 0x10) dst[3] = color;    \
        if (mask & 0x08) dst[4] = color;    \
        if (mask & 0x04) dst[5] = color;    \
        if (mask & 0x02) dst[6] = color;    \
        if (mask & 0x01) dst[7] = color;    \
    } while (0)

#define SK_BLITBWMASK_NAME                  SkARGB32_BlitBW
#define SK_BLITBWMASK_ARGS                  , SkPMColor color
#define SK_BLITBWMASK_BLIT8(mask, dst)      solid_8_pixels(mask, dst, color)
#define SK_BLITBWMASK_GETADDR               getAddr32
#define SK_BLITBWMASK_DEVTYPE               uint32_t
#include "SkBlitBWMaskTemplate.h"

#define blend_8_pixels(mask, dst, sc, dst_scale)                            \
    do {                                                                    \
        if (mask & 0x80) { dst[0] = sc + SkAlphaMulQ(dst[0], dst_scale); }  \
        if (mask & 0x40) { dst[1] = sc + SkAlphaMulQ(dst[1], dst_scale); }  \
        if (mask & 0x20) { dst[2] = sc + SkAlphaMulQ(dst[2], dst_scale); }  \
        if (mask & 0x10) { dst[3] = sc + SkAlphaMulQ(dst[3], dst_scale); }  \
        if (mask & 0x08) { dst[4] = sc + SkAlphaMulQ(dst[4], dst_scale); }  \
        if (mask & 0x04) { dst[5] = sc + SkAlphaMulQ(dst[5], dst_scale); }  \
        if (mask & 0x02) { dst[6] = sc + SkAlphaMulQ(dst[6], dst_scale); }  \
        if (mask & 0x01) { dst[7] = sc + SkAlphaMulQ(dst[7], dst_scale); }  \
    } while (0)

#define SK_BLITBWMASK_NAME                  SkARGB32_BlendBW
#define SK_BLITBWMASK_ARGS                  , uint32_t sc, unsigned dst_scale
#define SK_BLITBWMASK_BLIT8(mask, dst)      blend_8_pixels(mask, dst, sc, dst_scale)
#define SK_BLITBWMASK_GETADDR               getAddr32
#define SK_BLITBWMASK_DEVTYPE               uint32_t
#include "SkBlitBWMaskTemplate.h"

void SkARGB32_Blitter::blitMask(const SkMask& mask, const SkIRect& clip) {
    SkASSERT(mask.fBounds.contains(clip));
    SkASSERT(fSrcA != 0xFF);

    if (fSrcA == 0) {
        return;
    }

    if (SkBlitMask::BlitColor(fDevice, mask, clip, fColor)) {
        return;
    }

    if (mask.fFormat == SkMask::kBW_Format) {
        SkARGB32_BlendBW(fDevice, mask, clip, fPMColor, SkAlpha255To256(255 - fSrcA));
    } else if (SkMask::kARGB32_Format == mask.fFormat) {
        SkARGB32_Blit32(fDevice, mask, clip, fPMColor);
    }
}

void SkARGB32_Opaque_Blitter::blitMask(const SkMask& mask,
                                       const SkIRect& clip) {
    SkASSERT(mask.fBounds.contains(clip));

    if (SkBlitMask::BlitColor(fDevice, mask, clip, fColor)) {
        return;
    }

    if (mask.fFormat == SkMask::kBW_Format) {
        SkARGB32_BlitBW(fDevice, mask, clip, fPMColor);
    } else if (SkMask::kARGB32_Format == mask.fFormat) {
        SkARGB32_Blit32(fDevice, mask, clip, fPMColor);
    }
}

///////////////////////////////////////////////////////////////////////////////

void SkARGB32_Blitter::blitV(int x, int y, int height, SkAlpha alpha) {
    if (alpha == 0 || fSrcA == 0) {
        return;
    }

    uint32_t* device = fDevice.getAddr32(x, y);
    uint32_t  color = fPMColor;

    if (alpha != 255) {
        color = SkAlphaMulQ(color, SkAlpha255To256(alpha));
    }

    unsigned dst_scale = 255 - SkGetPackedA32(color);
    size_t rowBytes = fDevice.rowBytes();
    while (--height >= 0) {
        device[0] = color + SkAlphaMulQ(device[0], dst_scale);
        device = (uint32_t*)((char*)device + rowBytes);
    }
}

void SkARGB32_Blitter::blitRect(int x, int y, int width, int height) {
    SkASSERT(x >= 0 && y >= 0 && x + width <= fDevice.width() && y + height <= fDevice.height());

    if (fSrcA == 0) {
        return;
    }

    uint32_t*   device = fDevice.getAddr32(x, y);
    uint32_t    color = fPMColor;
    size_t      rowBytes = fDevice.rowBytes();

    if (255 == SkGetPackedA32(color)) {
        fColorRect32Proc(device, width, height, rowBytes, color);
    } else {
        while (--height >= 0) {
            fColor32Proc(device, device, width, color);
            device = (uint32_t*)((char*)device + rowBytes);
        }
    }
}

#if defined _WIN32 && _MSC_VER >= 1300
#pragma warning ( pop )
#endif

///////////////////////////////////////////////////////////////////////

void SkARGB32_Black_Blitter::blitAntiH(int x, int y, const SkAlpha antialias[],
                                       const int16_t runs[]) {
    uint32_t*   device = fDevice.getAddr32(x, y);
    SkPMColor   black = (SkPMColor)(SK_A32_MASK << SK_A32_SHIFT);

    for (;;) {
        int count = runs[0];
        SkASSERT(count >= 0);
        if (count <= 0) {
            return;
        }
        unsigned aa = antialias[0];
        if (aa) {
            if (aa == 255) {
                sk_memset32(device, black, count);
            } else {
                SkPMColor src = aa << SK_A32_SHIFT;
                unsigned dst_scale = 256 - aa;
                int n = count;
                do {
                    --n;
                    device[n] = src + SkAlphaMulQ(device[n], dst_scale);
                } while (n > 0);
            }
        }
        runs += count;
        antialias += count;
        device += count;
    }
}

///////////////////////////////////////////////////////////////////////////////

// Special version of SkBlitRow::Factory32 that knows we're in kSrc_Mode,
// instead of kSrcOver_Mode
static void blend_srcmode(SkPMColor* SK_RESTRICT device,
                          const SkPMColor* SK_RESTRICT span,
                          int count, U8CPU aa) {
    int aa256 = SkAlpha255To256(aa);
    for (int i = 0; i < count; ++i) {
        device[i] = SkFourByteInterp256(span[i], device[i], aa256);
    }
}

SkARGB32_Shader_Blitter::SkARGB32_Shader_Blitter(const SkBitmap& device,
        const SkPaint& paint, SkShader::Context* shaderContext)
    : INHERITED(device, paint, shaderContext)
{
    fBuffer = (SkPMColor*)sk_malloc_throw(device.width() * (sizeof(SkPMColor)));

    fXfermode = paint.getXfermode();
    SkSafeRef(fXfermode);

    int flags = 0;
    if (!(shaderContext->getFlags() & SkShader::kOpaqueAlpha_Flag)) {
        flags |= SkBlitRow::kSrcPixelAlpha_Flag32;
    }
    // we call this on the output from the shader
    fProc32 = SkBlitRow::Factory32(flags);
    // we call this on the output from the shader + alpha from the aa buffer
    fProc32Blend = SkBlitRow::Factory32(flags | SkBlitRow::kGlobalAlpha_Flag32);

    fShadeDirectlyIntoDevice = false;
    if (fXfermode == NULL) {
        if (shaderContext->getFlags() & SkShader::kOpaqueAlpha_Flag) {
            fShadeDirectlyIntoDevice = true;
        }
    } else {
        SkXfermode::Mode mode;
        if (fXfermode->asMode(&mode)) {
            if (SkXfermode::kSrc_Mode == mode) {
                fShadeDirectlyIntoDevice = true;
                fProc32Blend = blend_srcmode;
            }
        }
    }

    fConstInY = SkToBool(shaderContext->getFlags() & SkShader::kConstInY32_Flag);
}

SkARGB32_Shader_Blitter::~SkARGB32_Shader_Blitter() {
    SkSafeUnref(fXfermode);
    sk_free(fBuffer);
}

void SkARGB32_Shader_Blitter::blitH(int x, int y, int width) {
    SkASSERT(x >= 0 && y >= 0 && x + width <= fDevice.width());

    uint32_t*   device = fDevice.getAddr32(x, y);

    if (fShadeDirectlyIntoDevice) {
        fShaderContext->shadeSpan(x, y, device, width);
    } else {
        SkPMColor*  span = fBuffer;
        fShaderContext->shadeSpan(x, y, span, width);
        if (fXfermode) {
            fXfermode->xfer32(device, span, width, NULL);
        } else {
            fProc32(device, span, width, 255);
        }
    }
}

void SkARGB32_Shader_Blitter::blitRect(int x, int y, int width, int height) {
    SkASSERT(x >= 0 && y >= 0 &&
             x + width <= fDevice.width() && y + height <= fDevice.height());

    uint32_t*          device = fDevice.getAddr32(x, y);
    size_t             deviceRB = fDevice.rowBytes();
    SkShader::Context* shaderContext = fShaderContext;
    SkPMColor*         span = fBuffer;

    if (fConstInY) {
        if (fShadeDirectlyIntoDevice) {
            // shade the first row directly into the device
            shaderContext->shadeSpan(x, y, device, width);
            span = device;
            while (--height > 0) {
                device = (uint32_t*)((char*)device + deviceRB);
                memcpy(device, span, width << 2);
            }
        } else {
            shaderContext->shadeSpan(x, y, span, width);
            SkXfermode* xfer = fXfermode;
            if (xfer) {
                do {
                    xfer->xfer32(device, span, width, NULL);
                    y += 1;
                    device = (uint32_t*)((char*)device + deviceRB);
                } while (--height > 0);
            } else {
                SkBlitRow::Proc32 proc = fProc32;
                do {
                    proc(device, span, width, 255);
                    y += 1;
                    device = (uint32_t*)((char*)device + deviceRB);
                } while (--height > 0);
            }
        }
        return;
    }

    if (fShadeDirectlyIntoDevice) {
        void* ctx;
        SkShader::Context::ShadeProc shadeProc = shaderContext->asAShadeProc(&ctx);
        if (shadeProc) {
            do {
                shadeProc(ctx, x, y, device, width);
                y += 1;
                device = (uint32_t*)((char*)device + deviceRB);
            } while (--height > 0);
        } else {
            do {
                shaderContext->shadeSpan(x, y, device, width);
                y += 1;
                device = (uint32_t*)((char*)device + deviceRB);
            } while (--height > 0);
        }
    } else {
        SkXfermode* xfer = fXfermode;
        if (xfer) {
            do {
                shaderContext->shadeSpan(x, y, span, width);
                xfer->xfer32(device, span, width, NULL);
                y += 1;
                device = (uint32_t*)((char*)device + deviceRB);
            } while (--height > 0);
        } else {
            SkBlitRow::Proc32 proc = fProc32;
            do {
                shaderContext->shadeSpan(x, y, span, width);
                proc(device, span, width, 255);
                y += 1;
                device = (uint32_t*)((char*)device + deviceRB);
            } while (--height > 0);
        }
    }
}

void SkARGB32_Shader_Blitter::blitAntiH(int x, int y, const SkAlpha antialias[],
                                        const int16_t runs[]) {
    SkPMColor*         span = fBuffer;
    uint32_t*          device = fDevice.getAddr32(x, y);
    SkShader::Context* shaderContext = fShaderContext;

    if (fXfermode && !fShadeDirectlyIntoDevice) {
        for (;;) {
            SkXfermode* xfer = fXfermode;

            int count = *runs;
            if (count <= 0)
                break;
            int aa = *antialias;
            if (aa) {
                shaderContext->shadeSpan(x, y, span, count);
                if (aa == 255) {
                    xfer->xfer32(device, span, count, NULL);
                } else {
                    // count is almost always 1
                    for (int i = count - 1; i >= 0; --i) {
                        xfer->xfer32(&device[i], &span[i], 1, antialias);
                    }
                }
            }
            device += count;
            runs += count;
            antialias += count;
            x += count;
        }
    } else if (fShadeDirectlyIntoDevice ||
               (shaderContext->getFlags() & SkShader::kOpaqueAlpha_Flag)) {
        for (;;) {
            int count = *runs;
            if (count <= 0) {
                break;
            }
            int aa = *antialias;
            if (aa) {
                if (aa == 255) {
                    // cool, have the shader draw right into the device
                    shaderContext->shadeSpan(x, y, device, count);
                } else {
                    shaderContext->shadeSpan(x, y, span, count);
                    fProc32Blend(device, span, count, aa);
                }
            }
            device += count;
            runs += count;
            antialias += count;
            x += count;
        }
    } else {
        for (;;) {
            int count = *runs;
            if (count <= 0) {
                break;
            }
            int aa = *antialias;
            if (aa) {
                shaderContext->shadeSpan(x, y, span, count);
                if (aa == 255) {
                    fProc32(device, span, count, 255);
                } else {
                    fProc32Blend(device, span, count, aa);
                }
            }
            device += count;
            runs += count;
            antialias += count;
            x += count;
        }
    }
}

void SkARGB32_Shader_Blitter::blitMask(const SkMask& mask, const SkIRect& clip) {
    // we only handle kA8 with an xfermode
    if (fXfermode && (SkMask::kA8_Format != mask.fFormat)) {
        this->INHERITED::blitMask(mask, clip);
        return;
    }

    SkASSERT(mask.fBounds.contains(clip));

    SkShader::Context*  shaderContext = fShaderContext;
    SkBlitMask::RowProc proc = NULL;
    if (!fXfermode) {
        unsigned flags = 0;
        if (shaderContext->getFlags() & SkShader::kOpaqueAlpha_Flag) {
            flags |= SkBlitMask::kSrcIsOpaque_RowFlag;
        }
        proc = SkBlitMask::RowFactory(kN32_SkColorType, mask.fFormat,
                                      (SkBlitMask::RowFlags)flags);
        if (NULL == proc) {
            this->INHERITED::blitMask(mask, clip);
            return;
        }
    }

    const int x = clip.fLeft;
    const int width = clip.width();
    int y = clip.fTop;
    int height = clip.height();

    char* dstRow = (char*)fDevice.getAddr32(x, y);
    const size_t dstRB = fDevice.rowBytes();
    const uint8_t* maskRow = (const uint8_t*)mask.getAddr(x, y);
    const size_t maskRB = mask.fRowBytes;

    SkPMColor* span = fBuffer;

    if (fXfermode) {
        SkASSERT(SkMask::kA8_Format == mask.fFormat);
        SkXfermode* xfer = fXfermode;
        do {
            shaderContext->shadeSpan(x, y, span, width);
            xfer->xfer32((SkPMColor*)dstRow, span, width, maskRow);
            dstRow += dstRB;
            maskRow += maskRB;
            y += 1;
        } while (--height > 0);
    } else {
        do {
            shaderContext->shadeSpan(x, y, span, width);
            proc(dstRow, maskRow, span, width);
            dstRow += dstRB;
            maskRow += maskRB;
            y += 1;
        } while (--height > 0);
    }
}

void SkARGB32_Shader_Blitter::blitV(int x, int y, int height, SkAlpha alpha) {
    SkASSERT(x >= 0 && y >= 0 && y + height <= fDevice.height());

    uint32_t*          device = fDevice.getAddr32(x, y);
    size_t             deviceRB = fDevice.rowBytes();
    SkShader::Context* shaderContext = fShaderContext;

    if (fConstInY) {
        SkPMColor c;
        shaderContext->shadeSpan(x, y, &c, 1);

        if (fShadeDirectlyIntoDevice) {
            if (255 == alpha) {
                do {
                    *device = c;
                    device = (uint32_t*)((char*)device + deviceRB);
                } while (--height > 0);
            } else {
                do {
                    *device = SkFourByteInterp(c, *device, alpha);
                    device = (uint32_t*)((char*)device + deviceRB);
                } while (--height > 0);
            }
        } else {
            SkXfermode* xfer = fXfermode;
            if (xfer) {
                do {
                    xfer->xfer32(device, &c, 1, &alpha);
                    device = (uint32_t*)((char*)device + deviceRB);
                } while (--height > 0);
            } else {
                SkBlitRow::Proc32 proc = (255 == alpha) ? fProc32 : fProc32Blend;
                do {
                    proc(device, &c, 1, alpha);
                    device = (uint32_t*)((char*)device + deviceRB);
                } while (--height > 0);
            }
        }
        return;
    }

    if (fShadeDirectlyIntoDevice) {
        void* ctx;
        SkShader::Context::ShadeProc shadeProc = shaderContext->asAShadeProc(&ctx);
        if (255 == alpha) {
            if (shadeProc) {
                do {
                    shadeProc(ctx, x, y, device, 1);
                    y += 1;
                    device = (uint32_t*)((char*)device + deviceRB);
                } while (--height > 0);
            } else {
                do {
                    shaderContext->shadeSpan(x, y, device, 1);
                    y += 1;
                    device = (uint32_t*)((char*)device + deviceRB);
                } while (--height > 0);
            }
        } else {    // alpha < 255
            SkPMColor c;
            if (shadeProc) {
                do {
                    shadeProc(ctx, x, y, &c, 1);
                    *device = SkFourByteInterp(c, *device, alpha);
                    y += 1;
                    device = (uint32_t*)((char*)device + deviceRB);
                } while (--height > 0);
            } else {
                do {
                    shaderContext->shadeSpan(x, y, &c, 1);
                    *device = SkFourByteInterp(c, *device, alpha);
                    y += 1;
                    device = (uint32_t*)((char*)device + deviceRB);
                } while (--height > 0);
            }
        }
    } else {
        SkPMColor* span = fBuffer;
        SkXfermode* xfer = fXfermode;
        if (xfer) {
            do {
                shaderContext->shadeSpan(x, y, span, 1);
                xfer->xfer32(device, span, 1, &alpha);
                y += 1;
                device = (uint32_t*)((char*)device + deviceRB);
            } while (--height > 0);
        } else {
            SkBlitRow::Proc32 proc = (255 == alpha) ? fProc32 : fProc32Blend;
            do {
                shaderContext->shadeSpan(x, y, span, 1);
                proc(device, span, 1, alpha);
                y += 1;
                device = (uint32_t*)((char*)device + deviceRB);
            } while (--height > 0);
        }
    }
}