DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (d8847129d134)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480

/*
 * Copyright 2011 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */
#include "SkColorPriv.h"
#include "SkReadBuffer.h"
#include "SkWriteBuffer.h"
#include "SkPixelRef.h"
#include "SkErrorInternals.h"
#include "SkBitmapProcShader.h"

#if SK_SUPPORT_GPU
#include "effects/GrSimpleTextureEffect.h"
#include "effects/GrBicubicEffect.h"
#endif

bool SkBitmapProcShader::CanDo(const SkBitmap& bm, TileMode tx, TileMode ty) {
    switch (bm.colorType()) {
        case kAlpha_8_SkColorType:
        case kRGB_565_SkColorType:
        case kIndex_8_SkColorType:
        case kN32_SkColorType:
    //        if (tx == ty && (kClamp_TileMode == tx || kRepeat_TileMode == tx))
                return true;
        default:
            break;
    }
    return false;
}

SkBitmapProcShader::SkBitmapProcShader(const SkBitmap& src, TileMode tmx, TileMode tmy,
                                       const SkMatrix* localMatrix)
        : INHERITED(localMatrix) {
    fRawBitmap = src;
    fTileModeX = (uint8_t)tmx;
    fTileModeY = (uint8_t)tmy;
}

SkBitmapProcShader::SkBitmapProcShader(SkReadBuffer& buffer)
        : INHERITED(buffer) {
    buffer.readBitmap(&fRawBitmap);
    fRawBitmap.setImmutable();
    fTileModeX = buffer.readUInt();
    fTileModeY = buffer.readUInt();
}

SkShader::BitmapType SkBitmapProcShader::asABitmap(SkBitmap* texture,
                                                   SkMatrix* texM,
                                                   TileMode xy[]) const {
    if (texture) {
        *texture = fRawBitmap;
    }
    if (texM) {
        texM->reset();
    }
    if (xy) {
        xy[0] = (TileMode)fTileModeX;
        xy[1] = (TileMode)fTileModeY;
    }
    return kDefault_BitmapType;
}

void SkBitmapProcShader::flatten(SkWriteBuffer& buffer) const {
    this->INHERITED::flatten(buffer);

    buffer.writeBitmap(fRawBitmap);
    buffer.writeUInt(fTileModeX);
    buffer.writeUInt(fTileModeY);
}

static bool only_scale_and_translate(const SkMatrix& matrix) {
    unsigned mask = SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask;
    return (matrix.getType() & ~mask) == 0;
}

bool SkBitmapProcShader::isOpaque() const {
    return fRawBitmap.isOpaque();
}

static bool valid_for_drawing(const SkBitmap& bm) {
    if (0 == bm.width() || 0 == bm.height()) {
        return false;   // nothing to draw
    }
    if (NULL == bm.pixelRef()) {
        return false;   // no pixels to read
    }
    if (kIndex_8_SkColorType == bm.colorType()) {
        // ugh, I have to lock-pixels to inspect the colortable
        SkAutoLockPixels alp(bm);
        if (!bm.getColorTable()) {
            return false;
        }
    }
    return true;
}

SkShader::Context* SkBitmapProcShader::onCreateContext(const ContextRec& rec, void* storage) const {
    if (!fRawBitmap.getTexture() && !valid_for_drawing(fRawBitmap)) {
        return NULL;
    }

    SkMatrix totalInverse;
    // Do this first, so we know the matrix can be inverted.
    if (!this->computeTotalInverse(rec, &totalInverse)) {
        return NULL;
    }

    void* stateStorage = (char*)storage + sizeof(BitmapProcShaderContext);
    SkBitmapProcState* state = SkNEW_PLACEMENT(stateStorage, SkBitmapProcState);

    SkASSERT(state);
    state->fTileModeX = fTileModeX;
    state->fTileModeY = fTileModeY;
    state->fOrigBitmap = fRawBitmap;
    if (!state->chooseProcs(totalInverse, *rec.fPaint)) {
        state->~SkBitmapProcState();
        return NULL;
    }

    return SkNEW_PLACEMENT_ARGS(storage, BitmapProcShaderContext, (*this, rec, state));
}

size_t SkBitmapProcShader::contextSize() const {
    // The SkBitmapProcState is stored outside of the context object, with the context holding
    // a pointer to it.
    return sizeof(BitmapProcShaderContext) + sizeof(SkBitmapProcState);
}

SkBitmapProcShader::BitmapProcShaderContext::BitmapProcShaderContext(
        const SkBitmapProcShader& shader, const ContextRec& rec, SkBitmapProcState* state)
    : INHERITED(shader, rec)
    , fState(state)
{
    const SkBitmap& bitmap = *fState->fBitmap;
    bool bitmapIsOpaque = bitmap.isOpaque();

    // update fFlags
    uint32_t flags = 0;
    if (bitmapIsOpaque && (255 == this->getPaintAlpha())) {
        flags |= kOpaqueAlpha_Flag;
    }

    switch (bitmap.colorType()) {
        case kRGB_565_SkColorType:
            flags |= (kHasSpan16_Flag | kIntrinsicly16_Flag);
            break;
        case kIndex_8_SkColorType:
        case kN32_SkColorType:
            if (bitmapIsOpaque) {
                flags |= kHasSpan16_Flag;
            }
            break;
        case kAlpha_8_SkColorType:
            break;  // never set kHasSpan16_Flag
        default:
            break;
    }

    if (rec.fPaint->isDither() && bitmap.colorType() != kRGB_565_SkColorType) {
        // gradients can auto-dither in their 16bit sampler, but we don't so
        // we clear the flag here.
        flags &= ~kHasSpan16_Flag;
    }

    // if we're only 1-pixel high, and we don't rotate, then we can claim this
    if (1 == bitmap.height() &&
            only_scale_and_translate(this->getTotalInverse())) {
        flags |= kConstInY32_Flag;
        if (flags & kHasSpan16_Flag) {
            flags |= kConstInY16_Flag;
        }
    }

    fFlags = flags;
}

SkBitmapProcShader::BitmapProcShaderContext::~BitmapProcShaderContext() {
    // The bitmap proc state has been created outside of the context on memory that will be freed
    // elsewhere. Only call the destructor but leave the freeing of the memory to the caller.
    fState->~SkBitmapProcState();
}

#define BUF_MAX     128

#define TEST_BUFFER_OVERRITEx

#ifdef TEST_BUFFER_OVERRITE
    #define TEST_BUFFER_EXTRA   32
    #define TEST_PATTERN    0x88888888
#else
    #define TEST_BUFFER_EXTRA   0
#endif

void SkBitmapProcShader::BitmapProcShaderContext::shadeSpan(int x, int y, SkPMColor dstC[],
                                                            int count) {
    const SkBitmapProcState& state = *fState;
    if (state.getShaderProc32()) {
        state.getShaderProc32()(state, x, y, dstC, count);
        return;
    }

    uint32_t buffer[BUF_MAX + TEST_BUFFER_EXTRA];
    SkBitmapProcState::MatrixProc   mproc = state.getMatrixProc();
    SkBitmapProcState::SampleProc32 sproc = state.getSampleProc32();
    int max = state.maxCountForBufferSize(sizeof(buffer[0]) * BUF_MAX);

    SkASSERT(state.fBitmap->getPixels());
    SkASSERT(state.fBitmap->pixelRef() == NULL ||
             state.fBitmap->pixelRef()->isLocked());

    for (;;) {
        int n = count;
        if (n > max) {
            n = max;
        }
        SkASSERT(n > 0 && n < BUF_MAX*2);
#ifdef TEST_BUFFER_OVERRITE
        for (int i = 0; i < TEST_BUFFER_EXTRA; i++) {
            buffer[BUF_MAX + i] = TEST_PATTERN;
        }
#endif
        mproc(state, buffer, n, x, y);
#ifdef TEST_BUFFER_OVERRITE
        for (int j = 0; j < TEST_BUFFER_EXTRA; j++) {
            SkASSERT(buffer[BUF_MAX + j] == TEST_PATTERN);
        }
#endif
        sproc(state, buffer, n, dstC);

        if ((count -= n) == 0) {
            break;
        }
        SkASSERT(count > 0);
        x += n;
        dstC += n;
    }
}

SkShader::Context::ShadeProc SkBitmapProcShader::BitmapProcShaderContext::asAShadeProc(void** ctx) {
    if (fState->getShaderProc32()) {
        *ctx = fState;
        return (ShadeProc)fState->getShaderProc32();
    }
    return NULL;
}

void SkBitmapProcShader::BitmapProcShaderContext::shadeSpan16(int x, int y, uint16_t dstC[],
                                                              int count) {
    const SkBitmapProcState& state = *fState;
    if (state.getShaderProc16()) {
        state.getShaderProc16()(state, x, y, dstC, count);
        return;
    }

    uint32_t buffer[BUF_MAX];
    SkBitmapProcState::MatrixProc   mproc = state.getMatrixProc();
    SkBitmapProcState::SampleProc16 sproc = state.getSampleProc16();
    int max = state.maxCountForBufferSize(sizeof(buffer));

    SkASSERT(state.fBitmap->getPixels());
    SkASSERT(state.fBitmap->pixelRef() == NULL ||
             state.fBitmap->pixelRef()->isLocked());

    for (;;) {
        int n = count;
        if (n > max) {
            n = max;
        }
        mproc(state, buffer, n, x, y);
        sproc(state, buffer, n, dstC);

        if ((count -= n) == 0) {
            break;
        }
        x += n;
        dstC += n;
    }
}

///////////////////////////////////////////////////////////////////////////////

#include "SkUnPreMultiply.h"
#include "SkColorShader.h"
#include "SkEmptyShader.h"

// returns true and set color if the bitmap can be drawn as a single color
// (for efficiency)
static bool canUseColorShader(const SkBitmap& bm, SkColor* color) {
    if (1 != bm.width() || 1 != bm.height()) {
        return false;
    }

    SkAutoLockPixels alp(bm);
    if (!bm.readyToDraw()) {
        return false;
    }

    switch (bm.colorType()) {
        case kN32_SkColorType:
            *color = SkUnPreMultiply::PMColorToColor(*bm.getAddr32(0, 0));
            return true;
        case kRGB_565_SkColorType:
            *color = SkPixel16ToColor(*bm.getAddr16(0, 0));
            return true;
        case kIndex_8_SkColorType:
            *color = SkUnPreMultiply::PMColorToColor(bm.getIndex8Color(0, 0));
            return true;
        default: // just skip the other configs for now
            break;
    }
    return false;
}

static bool bitmapIsTooBig(const SkBitmap& bm) {
    // SkBitmapProcShader stores bitmap coordinates in a 16bit buffer, as it
    // communicates between its matrix-proc and its sampler-proc. Until we can
    // widen that, we have to reject bitmaps that are larger.
    //
    const int maxSize = 65535;

    return bm.width() > maxSize || bm.height() > maxSize;
}

SkShader* CreateBitmapShader(const SkBitmap& src, SkShader::TileMode tmx,
        SkShader::TileMode tmy, const SkMatrix* localMatrix, SkTBlitterAllocator* allocator) {
    SkShader* shader;
    SkColor color;
    if (src.isNull() || bitmapIsTooBig(src)) {
        if (NULL == allocator) {
            shader = SkNEW(SkEmptyShader);
        } else {
            shader = allocator->createT<SkEmptyShader>();
        }
    }
    else if (canUseColorShader(src, &color)) {
        if (NULL == allocator) {
            shader = SkNEW_ARGS(SkColorShader, (color));
        } else {
            shader = allocator->createT<SkColorShader>(color);
        }
    } else {
        if (NULL == allocator) {
            shader = SkNEW_ARGS(SkBitmapProcShader, (src, tmx, tmy, localMatrix));
        } else {
            shader = allocator->createT<SkBitmapProcShader>(src, tmx, tmy, localMatrix);
        }
    }
    return shader;
}

///////////////////////////////////////////////////////////////////////////////

#ifndef SK_IGNORE_TO_STRING
void SkBitmapProcShader::toString(SkString* str) const {
    static const char* gTileModeName[SkShader::kTileModeCount] = {
        "clamp", "repeat", "mirror"
    };

    str->append("BitmapShader: (");

    str->appendf("(%s, %s)",
                 gTileModeName[fTileModeX],
                 gTileModeName[fTileModeY]);

    str->append(" ");
    fRawBitmap.toString(str);

    this->INHERITED::toString(str);

    str->append(")");
}
#endif

///////////////////////////////////////////////////////////////////////////////

#if SK_SUPPORT_GPU

#include "GrTextureAccess.h"
#include "effects/GrSimpleTextureEffect.h"
#include "SkGr.h"

bool SkBitmapProcShader::asNewEffect(GrContext* context, const SkPaint& paint,
                                     const SkMatrix* localMatrix, GrColor* paintColor,
                                     GrEffect** effect) const {
    SkMatrix matrix;
    matrix.setIDiv(fRawBitmap.width(), fRawBitmap.height());

    SkMatrix lmInverse;
    if (!this->getLocalMatrix().invert(&lmInverse)) {
        return false;
    }
    if (localMatrix) {
        SkMatrix inv;
        if (!localMatrix->invert(&inv)) {
            return false;
        }
        lmInverse.postConcat(inv);
    }
    matrix.preConcat(lmInverse);

    SkShader::TileMode tm[] = {
        (TileMode)fTileModeX,
        (TileMode)fTileModeY,
    };

    // Must set wrap and filter on the sampler before requesting a texture. In two places below
    // we check the matrix scale factors to determine how to interpret the filter quality setting.
    // This completely ignores the complexity of the drawVertices case where explicit local coords
    // are provided by the caller.
    bool useBicubic = false;
    GrTextureParams::FilterMode textureFilterMode;
    switch(paint.getFilterLevel()) {
        case SkPaint::kNone_FilterLevel:
            textureFilterMode = GrTextureParams::kNone_FilterMode;
            break;
        case SkPaint::kLow_FilterLevel:
            textureFilterMode = GrTextureParams::kBilerp_FilterMode;
            break;
        case SkPaint::kMedium_FilterLevel: {
            SkMatrix matrix;
            matrix.setConcat(context->getMatrix(), this->getLocalMatrix());
            if (matrix.getMinScale() < SK_Scalar1) {
                textureFilterMode = GrTextureParams::kMipMap_FilterMode;
            } else {
                // Don't trigger MIP level generation unnecessarily.
                textureFilterMode = GrTextureParams::kBilerp_FilterMode;
            }
            break;
        }
        case SkPaint::kHigh_FilterLevel: {
            SkMatrix matrix;
            matrix.setConcat(context->getMatrix(), this->getLocalMatrix());
            useBicubic = GrBicubicEffect::ShouldUseBicubic(matrix, &textureFilterMode);
            break;
        }
        default:
            SkErrorInternals::SetError( kInvalidPaint_SkError,
                                        "Sorry, I don't understand the filtering "
                                        "mode you asked for.  Falling back to "
                                        "MIPMaps.");
            textureFilterMode = GrTextureParams::kMipMap_FilterMode;
            break;

    }
    GrTextureParams params(tm, textureFilterMode);
    GrTexture* texture = GrLockAndRefCachedBitmapTexture(context, fRawBitmap, &params);

    if (NULL == texture) {
        SkErrorInternals::SetError( kInternalError_SkError,
                                    "Couldn't convert bitmap to texture.");
        return false;
    }
    
    *paintColor = (kAlpha_8_SkColorType == fRawBitmap.colorType()) ?
                                                SkColor2GrColor(paint.getColor()) :
                                                SkColor2GrColorJustAlpha(paint.getColor());

    if (useBicubic) {
        *effect = GrBicubicEffect::Create(texture, matrix, tm);
    } else {
        *effect = GrSimpleTextureEffect::Create(texture, matrix, params);
    }
    GrUnlockAndUnrefCachedBitmapTexture(texture);

    return true;
}

#else 

bool SkBitmapProcShader::asNewEffect(GrContext* context, const SkPaint& paint,
                                     const SkMatrix* localMatrix, GrColor* paintColor,
                                     GrEffect** effect) const {
    SkDEBUGFAIL("Should not call in GPU-less build");
    return false;
}

#endif