DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (d8847129d134)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this file,
 * You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "AudioSegment.h"

#include "AudioStream.h"
#include "AudioMixer.h"
#include "AudioChannelFormat.h"
#include "Latency.h"
#include <speex/speex_resampler.h>

namespace mozilla {

template <class SrcT, class DestT>
static void
InterleaveAndConvertBuffer(const SrcT** aSourceChannels,
                           int32_t aLength, float aVolume,
                           int32_t aChannels,
                           DestT* aOutput)
{
  DestT* output = aOutput;
  for (int32_t i = 0; i < aLength; ++i) {
    for (int32_t channel = 0; channel < aChannels; ++channel) {
      float v = AudioSampleToFloat(aSourceChannels[channel][i])*aVolume;
      *output = FloatToAudioSample<DestT>(v);
      ++output;
    }
  }
}

void
InterleaveAndConvertBuffer(const void** aSourceChannels,
                           AudioSampleFormat aSourceFormat,
                           int32_t aLength, float aVolume,
                           int32_t aChannels,
                           AudioDataValue* aOutput)
{
  switch (aSourceFormat) {
  case AUDIO_FORMAT_FLOAT32:
    InterleaveAndConvertBuffer(reinterpret_cast<const float**>(aSourceChannels),
                               aLength,
                               aVolume,
                               aChannels,
                               aOutput);
    break;
  case AUDIO_FORMAT_S16:
    InterleaveAndConvertBuffer(reinterpret_cast<const int16_t**>(aSourceChannels),
                               aLength,
                               aVolume,
                               aChannels,
                               aOutput);
    break;
   case AUDIO_FORMAT_SILENCE:
    // nothing to do here.
    break;
  }
}

void
AudioSegment::ApplyVolume(float aVolume)
{
  for (ChunkIterator ci(*this); !ci.IsEnded(); ci.Next()) {
    ci->mVolume *= aVolume;
  }
}

static const int AUDIO_PROCESSING_FRAMES = 640; /* > 10ms of 48KHz audio */
static const uint8_t gZeroChannel[MAX_AUDIO_SAMPLE_SIZE*AUDIO_PROCESSING_FRAMES] = {0};

void
DownmixAndInterleave(const nsTArray<const void*>& aChannelData,
                     AudioSampleFormat aSourceFormat, int32_t aDuration,
                     float aVolume, uint32_t aOutputChannels,
                     AudioDataValue* aOutput)
{
  nsAutoTArray<const void*,GUESS_AUDIO_CHANNELS> channelData;
  nsAutoTArray<float,AUDIO_PROCESSING_FRAMES*GUESS_AUDIO_CHANNELS> downmixConversionBuffer;
  nsAutoTArray<float,AUDIO_PROCESSING_FRAMES*GUESS_AUDIO_CHANNELS> downmixOutputBuffer;

  channelData.SetLength(aChannelData.Length());
  if (aSourceFormat != AUDIO_FORMAT_FLOAT32) {
    NS_ASSERTION(aSourceFormat == AUDIO_FORMAT_S16, "unknown format");
    downmixConversionBuffer.SetLength(aDuration*aChannelData.Length());
    for (uint32_t i = 0; i < aChannelData.Length(); ++i) {
      float* conversionBuf = downmixConversionBuffer.Elements() + (i*aDuration);
      const int16_t* sourceBuf = static_cast<const int16_t*>(aChannelData[i]);
      for (uint32_t j = 0; j < (uint32_t)aDuration; ++j) {
        conversionBuf[j] = AudioSampleToFloat(sourceBuf[j]);
      }
      channelData[i] = conversionBuf;
    }
  } else {
    for (uint32_t i = 0; i < aChannelData.Length(); ++i) {
      channelData[i] = aChannelData[i];
    }
  }

  downmixOutputBuffer.SetLength(aDuration*aOutputChannels);
  nsAutoTArray<float*,GUESS_AUDIO_CHANNELS> outputChannelBuffers;
  nsAutoTArray<const void*,GUESS_AUDIO_CHANNELS> outputChannelData;
  outputChannelBuffers.SetLength(aOutputChannels);
  outputChannelData.SetLength(aOutputChannels);
  for (uint32_t i = 0; i < (uint32_t)aOutputChannels; ++i) {
    outputChannelData[i] = outputChannelBuffers[i] =
        downmixOutputBuffer.Elements() + aDuration*i;
  }
  if (channelData.Length() > aOutputChannels) {
    AudioChannelsDownMix(channelData, outputChannelBuffers.Elements(),
                         aOutputChannels, aDuration);
  }
  InterleaveAndConvertBuffer(outputChannelData.Elements(), AUDIO_FORMAT_FLOAT32,
                             aDuration, aVolume, aOutputChannels, aOutput);
}

void AudioSegment::ResampleChunks(SpeexResamplerState* aResampler, uint32_t aInRate, uint32_t aOutRate)
{
  if (mChunks.IsEmpty()) {
    return;
  }

  MOZ_ASSERT(aResampler || IsNull(), "We can only be here without a resampler if this segment is null.");

  AudioSampleFormat format = AUDIO_FORMAT_SILENCE;
  for (ChunkIterator ci(*this); !ci.IsEnded(); ci.Next()) {
    if (ci->mBufferFormat != AUDIO_FORMAT_SILENCE) {
      format = ci->mBufferFormat;
    }
  }

  switch (format) {
    // If the format is silence at this point, all the chunks are silent. The
    // actual function we use does not matter, it's just a matter of changing
    // the chunks duration.
    case AUDIO_FORMAT_SILENCE:
    case AUDIO_FORMAT_FLOAT32:
      Resample<float>(aResampler, aInRate, aOutRate);
    break;
    case AUDIO_FORMAT_S16:
      Resample<int16_t>(aResampler, aInRate, aOutRate);
    break;
    default:
      MOZ_ASSERT(false);
    break;
  }
}

void
AudioSegment::WriteTo(uint64_t aID, AudioMixer& aMixer, uint32_t aOutputChannels, uint32_t aSampleRate)
{
  nsAutoTArray<AudioDataValue,AUDIO_PROCESSING_FRAMES*GUESS_AUDIO_CHANNELS> buf;
  nsAutoTArray<const void*,GUESS_AUDIO_CHANNELS> channelData;
  // Offset in the buffer that will end up sent to the AudioStream, in samples.
  uint32_t offset = 0;

  if (GetDuration() <= 0) {
    MOZ_ASSERT(GetDuration() == 0);
    return;
  }

  uint32_t outBufferLength = GetDuration() * aOutputChannels;
  buf.SetLength(outBufferLength);


  for (ChunkIterator ci(*this); !ci.IsEnded(); ci.Next()) {
    AudioChunk& c = *ci;
    uint32_t frames = c.mDuration;

    // If we have written data in the past, or we have real (non-silent) data
    // to write, we can proceed. Otherwise, it means we just started the
    // AudioStream, and we don't have real data to write to it (just silence).
    // To avoid overbuffering in the AudioStream, we simply drop the silence,
    // here. The stream will underrun and output silence anyways.
    if (c.mBuffer && c.mBufferFormat != AUDIO_FORMAT_SILENCE) {
      channelData.SetLength(c.mChannelData.Length());
      for (uint32_t i = 0; i < channelData.Length(); ++i) {
        channelData[i] = c.mChannelData[i];
      }
      if (channelData.Length() < aOutputChannels) {
        // Up-mix. Note that this might actually make channelData have more
        // than aOutputChannels temporarily.
        AudioChannelsUpMix(&channelData, aOutputChannels, gZeroChannel);
      }
      if (channelData.Length() > aOutputChannels) {
        // Down-mix.
        DownmixAndInterleave(channelData, c.mBufferFormat, frames,
                             c.mVolume, aOutputChannels, buf.Elements() + offset);
      } else {
        InterleaveAndConvertBuffer(channelData.Elements(), c.mBufferFormat,
                                   frames, c.mVolume,
                                   aOutputChannels,
                                   buf.Elements() + offset);
      }
    } else {
      // Assumes that a bit pattern of zeroes == 0.0f
      memset(buf.Elements() + offset, 0, aOutputChannels * frames * sizeof(AudioDataValue));
    }

    offset += frames * aOutputChannels;

    if (!c.mTimeStamp.IsNull()) {
      TimeStamp now = TimeStamp::Now();
      // would be more efficient to c.mTimeStamp to ms on create time then pass here
      LogTime(AsyncLatencyLogger::AudioMediaStreamTrack, aID,
              (now - c.mTimeStamp).ToMilliseconds(), c.mTimeStamp);
    }
  }

  if (offset) {
    aMixer.Mix(buf.Elements(), aOutputChannels, offset / aOutputChannels, aSampleRate);
  }
}

}