DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
/*
 * Copyright 2012 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "SkIntersections.h"
#include "SkPathOpsCubic.h"
#include "SkPathOpsLine.h"
#include "SkPathOpsPoint.h"
#include "SkPathOpsQuad.h"
#include "SkPathOpsRect.h"
#include "SkReduceOrder.h"
#include "SkTSort.h"

#if ONE_OFF_DEBUG
static const double tLimits1[2][2] = {{0.3, 0.4}, {0.8, 0.9}};
static const double tLimits2[2][2] = {{-0.8, -0.9}, {-0.8, -0.9}};
#endif

#define DEBUG_QUAD_PART ONE_OFF_DEBUG && 1
#define DEBUG_QUAD_PART_SHOW_SIMPLE DEBUG_QUAD_PART && 0
#define SWAP_TOP_DEBUG 0

static const int kCubicToQuadSubdivisionDepth = 8; // slots reserved for cubic to quads subdivision

static int quadPart(const SkDCubic& cubic, double tStart, double tEnd, SkReduceOrder* reducer) {
    SkDCubic part = cubic.subDivide(tStart, tEnd);
    SkDQuad quad = part.toQuad();
    // FIXME: should reduceOrder be looser in this use case if quartic is going to blow up on an
    // extremely shallow quadratic?
    int order = reducer->reduce(quad);
#if DEBUG_QUAD_PART
    SkDebugf("%s cubic=(%1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g)"
            " t=(%1.9g,%1.9g)\n", __FUNCTION__, cubic[0].fX, cubic[0].fY,
            cubic[1].fX, cubic[1].fY, cubic[2].fX, cubic[2].fY,
            cubic[3].fX, cubic[3].fY, tStart, tEnd);
    SkDebugf("  {{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n"
             "  {{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n",
            part[0].fX, part[0].fY, part[1].fX, part[1].fY, part[2].fX, part[2].fY,
            part[3].fX, part[3].fY, quad[0].fX, quad[0].fY,
            quad[1].fX, quad[1].fY, quad[2].fX, quad[2].fY);
#if DEBUG_QUAD_PART_SHOW_SIMPLE
    SkDebugf("%s simple=(%1.9g,%1.9g", __FUNCTION__, reducer->fQuad[0].fX, reducer->fQuad[0].fY);
    if (order > 1) {
        SkDebugf(" %1.9g,%1.9g", reducer->fQuad[1].fX, reducer->fQuad[1].fY);
    }
    if (order > 2) {
        SkDebugf(" %1.9g,%1.9g", reducer->fQuad[2].fX, reducer->fQuad[2].fY);
    }
    SkDebugf(")\n");
    SkASSERT(order < 4 && order > 0);
#endif
#endif
    return order;
}

static void intersectWithOrder(const SkDQuad& simple1, int order1, const SkDQuad& simple2,
        int order2, SkIntersections& i) {
    if (order1 == 3 && order2 == 3) {
        i.intersect(simple1, simple2);
    } else if (order1 <= 2 && order2 <= 2) {
        i.intersect((const SkDLine&) simple1, (const SkDLine&) simple2);
    } else if (order1 == 3 && order2 <= 2) {
        i.intersect(simple1, (const SkDLine&) simple2);
    } else {
        SkASSERT(order1 <= 2 && order2 == 3);
        i.intersect(simple2, (const SkDLine&) simple1);
        i.swapPts();
    }
}

// this flavor centers potential intersections recursively. In contrast, '2' may inadvertently
// chase intersections near quadratic ends, requiring odd hacks to find them.
static void intersect(const SkDCubic& cubic1, double t1s, double t1e, const SkDCubic& cubic2,
        double t2s, double t2e, double precisionScale, SkIntersections& i) {
    i.upDepth();
    SkDCubic c1 = cubic1.subDivide(t1s, t1e);
    SkDCubic c2 = cubic2.subDivide(t2s, t2e);
    SkSTArray<kCubicToQuadSubdivisionDepth, double, true> ts1;
    // OPTIMIZE: if c1 == c2, call once (happens when detecting self-intersection)
    c1.toQuadraticTs(c1.calcPrecision() * precisionScale, &ts1);
    SkSTArray<kCubicToQuadSubdivisionDepth, double, true> ts2;
    c2.toQuadraticTs(c2.calcPrecision() * precisionScale, &ts2);
    double t1Start = t1s;
    int ts1Count = ts1.count();
    for (int i1 = 0; i1 <= ts1Count; ++i1) {
        const double tEnd1 = i1 < ts1Count ? ts1[i1] : 1;
        const double t1 = t1s + (t1e - t1s) * tEnd1;
        SkReduceOrder s1;
        int o1 = quadPart(cubic1, t1Start, t1, &s1);
        double t2Start = t2s;
        int ts2Count = ts2.count();
        for (int i2 = 0; i2 <= ts2Count; ++i2) {
            const double tEnd2 = i2 < ts2Count ? ts2[i2] : 1;
            const double t2 = t2s + (t2e - t2s) * tEnd2;
            if (&cubic1 == &cubic2 && t1Start >= t2Start) {
                t2Start = t2;
                continue;
            }
            SkReduceOrder s2;
            int o2 = quadPart(cubic2, t2Start, t2, &s2);
        #if ONE_OFF_DEBUG
            char tab[] = "                  ";
            if (tLimits1[0][0] >= t1Start && tLimits1[0][1] <= t1
                    && tLimits1[1][0] >= t2Start && tLimits1[1][1] <= t2) {
                SkDebugf("%.*s %s t1=(%1.9g,%1.9g) t2=(%1.9g,%1.9g)", i.depth()*2, tab,
                        __FUNCTION__, t1Start, t1, t2Start, t2);
                SkIntersections xlocals;
                xlocals.allowNear(false);
                intersectWithOrder(s1.fQuad, o1, s2.fQuad, o2, xlocals);
                SkDebugf(" xlocals.fUsed=%d\n", xlocals.used());
            }
        #endif
            SkIntersections locals;
            locals.allowNear(false);
            intersectWithOrder(s1.fQuad, o1, s2.fQuad, o2, locals);
            int tCount = locals.used();
            for (int tIdx = 0; tIdx < tCount; ++tIdx) {
                double to1 = t1Start + (t1 - t1Start) * locals[0][tIdx];
                double to2 = t2Start + (t2 - t2Start) * locals[1][tIdx];
    // if the computed t is not sufficiently precise, iterate
                SkDPoint p1 = cubic1.ptAtT(to1);
                SkDPoint p2 = cubic2.ptAtT(to2);
                if (p1.approximatelyEqual(p2)) {
    // FIXME: local edge may be coincident -- experiment with not propagating coincidence to caller
//                    SkASSERT(!locals.isCoincident(tIdx));
                    if (&cubic1 != &cubic2 || !approximately_equal(to1, to2)) {
                        if (i.swapped()) {  //  FIXME: insert should respect swap
                            i.insert(to2, to1, p1);
                        } else {
                            i.insert(to1, to2, p1);
                        }
                    }
                } else {
/*for random cubics, 16 below catches 99.997% of the intersections. To test for the remaining 0.003%
  look for nearly coincident curves. and check each 1/16th section.
*/
                    double offset = precisionScale / 16;  // FIXME: const is arbitrary: test, refine
                    double c1Bottom = tIdx == 0 ? 0 :
                            (t1Start + (t1 - t1Start) * locals[0][tIdx - 1] + to1) / 2;
                    double c1Min = SkTMax(c1Bottom, to1 - offset);
                    double c1Top = tIdx == tCount - 1 ? 1 :
                            (t1Start + (t1 - t1Start) * locals[0][tIdx + 1] + to1) / 2;
                    double c1Max = SkTMin(c1Top, to1 + offset);
                    double c2Min = SkTMax(0., to2 - offset);
                    double c2Max = SkTMin(1., to2 + offset);
                #if ONE_OFF_DEBUG
                    SkDebugf("%.*s %s 1 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab,
                            __FUNCTION__,
                            c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max
                         && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max,
                            to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset
                         && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset,
                            c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max
                         && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max,
                            to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset
                         && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset);
                    SkDebugf("%.*s %s 1 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g"
                            " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n",
                            i.depth()*2, tab, __FUNCTION__, c1Bottom, c1Top, 0., 1.,
                            to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset);
                    SkDebugf("%.*s %s 1 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g"
                            " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min,
                            c1Max, c2Min, c2Max);
                #endif
                    intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
                #if ONE_OFF_DEBUG
                    SkDebugf("%.*s %s 1 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__,
                            i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1);
                #endif
                    if (tCount > 1) {
                        c1Min = SkTMax(0., to1 - offset);
                        c1Max = SkTMin(1., to1 + offset);
                        double c2Bottom = tIdx == 0 ? to2 :
                                (t2Start + (t2 - t2Start) * locals[1][tIdx - 1] + to2) / 2;
                        double c2Top = tIdx == tCount - 1 ? to2 :
                                (t2Start + (t2 - t2Start) * locals[1][tIdx + 1] + to2) / 2;
                        if (c2Bottom > c2Top) {
                            SkTSwap(c2Bottom, c2Top);
                        }
                        if (c2Bottom == to2) {
                            c2Bottom = 0;
                        }
                        if (c2Top == to2) {
                            c2Top = 1;
                        }
                        c2Min = SkTMax(c2Bottom, to2 - offset);
                        c2Max = SkTMin(c2Top, to2 + offset);
                    #if ONE_OFF_DEBUG
                        SkDebugf("%.*s %s 2 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab,
                            __FUNCTION__,
                            c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max
                         && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max,
                            to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset
                         && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset,
                            c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max
                         && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max,
                            to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset
                         && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset);
                        SkDebugf("%.*s %s 2 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g"
                                " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n",
                                i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom, c2Top,
                                to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset);
                        SkDebugf("%.*s %s 2 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g"
                                " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min,
                                c1Max, c2Min, c2Max);
                    #endif
                        intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
                #if ONE_OFF_DEBUG
                    SkDebugf("%.*s %s 2 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__,
                            i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1);
                #endif
                        c1Min = SkTMax(c1Bottom, to1 - offset);
                        c1Max = SkTMin(c1Top, to1 + offset);
                    #if ONE_OFF_DEBUG
                        SkDebugf("%.*s %s 3 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab,
                        __FUNCTION__,
                            c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max
                         && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max,
                            to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset
                         && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset,
                            c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max
                         && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max,
                            to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset
                         && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset);
                        SkDebugf("%.*s %s 3 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g"
                                " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n",
                                i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom, c2Top,
                                to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset);
                        SkDebugf("%.*s %s 3 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g"
                                " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min,
                                c1Max, c2Min, c2Max);
                    #endif
                        intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
                #if ONE_OFF_DEBUG
                    SkDebugf("%.*s %s 3 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__,
                            i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1);
                #endif
                    }
          //          intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
                    // FIXME: if no intersection is found, either quadratics intersected where
                    // cubics did not, or the intersection was missed. In the former case, expect
                    // the quadratics to be nearly parallel at the point of intersection, and check
                    // for that.
                }
            }
            t2Start = t2;
        }
        t1Start = t1;
    }
    i.downDepth();
}

    // if two ends intersect, check middle for coincidence
bool SkIntersections::cubicCheckCoincidence(const SkDCubic& c1, const SkDCubic& c2) {
    if (fUsed < 2) {
        return false;
    }
    int last = fUsed - 1;
    double tRange1 = fT[0][last] - fT[0][0];
    double tRange2 = fT[1][last] - fT[1][0];
    for (int index = 1; index < 5; ++index) {
        double testT1 = fT[0][0] + tRange1 * index / 5;
        double testT2 = fT[1][0] + tRange2 * index / 5;
        SkDPoint testPt1 = c1.ptAtT(testT1);
        SkDPoint testPt2 = c2.ptAtT(testT2);
        if (!testPt1.approximatelyEqual(testPt2)) {
            return false;
        }
    }
    if (fUsed > 2) {
        fPt[1] = fPt[last];
        fT[0][1] = fT[0][last];
        fT[1][1] = fT[1][last];
        fUsed = 2;
    }
    fIsCoincident[0] = fIsCoincident[1] = 0x03;
    return true;
}

#define LINE_FRACTION 0.1

// intersect the end of the cubic with the other. Try lines from the end to control and opposite
// end to determine range of t on opposite cubic.
bool SkIntersections::cubicExactEnd(const SkDCubic& cubic1, bool start, const SkDCubic& cubic2) {
    int t1Index = start ? 0 : 3;
    double testT = (double) !start;
    bool swap = swapped();
    // quad/quad at this point checks to see if exact matches have already been found
    // cubic/cubic can't reject so easily since cubics can intersect same point more than once
    SkDLine tmpLine;
    tmpLine[0] = tmpLine[1] = cubic2[t1Index];
    tmpLine[1].fX += cubic2[2 - start].fY - cubic2[t1Index].fY;
    tmpLine[1].fY -= cubic2[2 - start].fX - cubic2[t1Index].fX;
    SkIntersections impTs;
    impTs.allowNear(false);
    impTs.intersectRay(cubic1, tmpLine);
    for (int index = 0; index < impTs.used(); ++index) {
        SkDPoint realPt = impTs.pt(index);
        if (!tmpLine[0].approximatelyEqual(realPt)) {
            continue;
        }
        if (swap) {
            cubicInsert(testT, impTs[0][index], tmpLine[0], cubic2, cubic1);
        } else {
            cubicInsert(impTs[0][index], testT, tmpLine[0], cubic1, cubic2);
        }
        return true;
    }
    return false;
}


void SkIntersections::cubicInsert(double one, double two, const SkDPoint& pt,
        const SkDCubic& cubic1, const SkDCubic& cubic2) {
    for (int index = 0; index < fUsed; ++index) {
        if (fT[0][index] == one) {
            double oldTwo = fT[1][index];
            if (oldTwo == two) {
                return;
            }
            SkDPoint mid = cubic2.ptAtT((oldTwo + two) / 2);
            if (mid.approximatelyEqual(fPt[index])) {
                return;
            }
        }
        if (fT[1][index] == two) {
            SkDPoint mid = cubic1.ptAtT((fT[0][index] + two) / 2);
            if (mid.approximatelyEqual(fPt[index])) {
                return;
            }
        }
    }
    insert(one, two, pt);
}

void SkIntersections::cubicNearEnd(const SkDCubic& cubic1, bool start, const SkDCubic& cubic2,
                         const SkDRect& bounds2) {
    SkDLine line;
    int t1Index = start ? 0 : 3;
    double testT = (double) !start;
   // don't bother if the two cubics are connnected
    static const int kPointsInCubic = 4; // FIXME: move to DCubic, replace '4' with this
    static const int kMaxLineCubicIntersections = 3;
    SkSTArray<(kMaxLineCubicIntersections - 1) * kMaxLineCubicIntersections, double, true> tVals;
    line[0] = cubic1[t1Index];
    // this variant looks for intersections with the end point and lines parallel to other points
    for (int index = 0; index < kPointsInCubic; ++index) {
        if (index == t1Index) {
            continue;
        }
        SkDVector dxy1 = cubic1[index] - line[0];
        dxy1 /= SkDCubic::gPrecisionUnit;
        line[1] = line[0] + dxy1;
        SkDRect lineBounds;
        lineBounds.setBounds(line);
        if (!bounds2.intersects(&lineBounds)) {
            continue;
        }
        SkIntersections local;
        if (!local.intersect(cubic2, line)) {
            continue;
        }
        for (int idx2 = 0; idx2 < local.used(); ++idx2) {
            double foundT = local[0][idx2];
            if (approximately_less_than_zero(foundT)
                    || approximately_greater_than_one(foundT)) {
                continue;
            }
            if (local.pt(idx2).approximatelyEqual(line[0])) {
                if (swapped()) {  // FIXME: insert should respect swap
                    insert(foundT, testT, line[0]);
                } else {
                    insert(testT, foundT, line[0]);
                }
            } else {
                tVals.push_back(foundT);
            }
        }
    }
    if (tVals.count() == 0) {
        return;
    }
    SkTQSort<double>(tVals.begin(), tVals.end() - 1);
    double tMin1 = start ? 0 : 1 - LINE_FRACTION;
    double tMax1 = start ? LINE_FRACTION : 1;
    int tIdx = 0;
    do {
        int tLast = tIdx;
        while (tLast + 1 < tVals.count() && roughly_equal(tVals[tLast + 1], tVals[tIdx])) {
            ++tLast;
        }
        double tMin2 = SkTMax(tVals[tIdx] - LINE_FRACTION, 0.0);
        double tMax2 = SkTMin(tVals[tLast] + LINE_FRACTION, 1.0);
        int lastUsed = used();
        if (start ? tMax1 < tMin2 : tMax2 < tMin1) {
            ::intersect(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, *this);
        }
        if (lastUsed == used()) {
            tMin2 = SkTMax(tVals[tIdx] - (1.0 / SkDCubic::gPrecisionUnit), 0.0);
            tMax2 = SkTMin(tVals[tLast] + (1.0 / SkDCubic::gPrecisionUnit), 1.0);
            if (start ? tMax1 < tMin2 : tMax2 < tMin1) {
                ::intersect(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, *this);
            }
        }
        tIdx = tLast + 1;
    } while (tIdx < tVals.count());
    return;
}

const double CLOSE_ENOUGH = 0.001;

static bool closeStart(const SkDCubic& cubic, int cubicIndex, SkIntersections& i, SkDPoint& pt) {
    if (i[cubicIndex][0] != 0 || i[cubicIndex][1] > CLOSE_ENOUGH) {
        return false;
    }
    pt = cubic.ptAtT((i[cubicIndex][0] + i[cubicIndex][1]) / 2);
    return true;
}

static bool closeEnd(const SkDCubic& cubic, int cubicIndex, SkIntersections& i, SkDPoint& pt) {
    int last = i.used() - 1;
    if (i[cubicIndex][last] != 1 || i[cubicIndex][last - 1] < 1 - CLOSE_ENOUGH) {
        return false;
    }
    pt = cubic.ptAtT((i[cubicIndex][last] + i[cubicIndex][last - 1]) / 2);
    return true;
}

static bool only_end_pts_in_common(const SkDCubic& c1, const SkDCubic& c2) {
// the idea here is to see at minimum do a quick reject by rotating all points
// to either side of the line formed by connecting the endpoints
// if the opposite curves points are on the line or on the other side, the
// curves at most intersect at the endpoints
    for (int oddMan = 0; oddMan < 4; ++oddMan) {
        const SkDPoint* endPt[3];
        for (int opp = 1; opp < 4; ++opp) {
            int end = oddMan ^ opp;  // choose a value not equal to oddMan
            endPt[opp - 1] = &c1[end];
        }
        for (int triTest = 0; triTest < 3; ++triTest) {
            double origX = endPt[triTest]->fX;
            double origY = endPt[triTest]->fY;
            int oppTest = triTest + 1;
            if (3 == oppTest) {
                oppTest = 0;
            }
            double adj = endPt[oppTest]->fX - origX;
            double opp = endPt[oppTest]->fY - origY;
            if (adj == 0 && opp == 0) {  // if the other point equals the test point, ignore it
                continue;
            }
            double sign = (c1[oddMan].fY - origY) * adj - (c1[oddMan].fX - origX) * opp;
            if (approximately_zero(sign)) {
                goto tryNextHalfPlane;
            }
            for (int n = 0; n < 4; ++n) {
                double test = (c2[n].fY - origY) * adj - (c2[n].fX - origX) * opp;
                if (test * sign > 0 && !precisely_zero(test)) {
                    goto tryNextHalfPlane;
                }
            }
        }
        return true;
tryNextHalfPlane:
        ;
    }
    return false;
}

int SkIntersections::intersect(const SkDCubic& c1, const SkDCubic& c2) {
    if (fMax == 0) {
        fMax = 9;
    }
    bool selfIntersect = &c1 == &c2;
    if (selfIntersect) {
        if (c1[0].approximatelyEqual(c1[3])) {
            insert(0, 1, c1[0]);
            return fUsed;
        }
    } else {
        // OPTIMIZATION: set exact end bits here to avoid cubic exact end later
        for (int i1 = 0; i1 < 4; i1 += 3) {
            for (int i2 = 0; i2 < 4; i2 += 3) {
                if (c1[i1].approximatelyEqual(c2[i2])) {
                    insert(i1 >> 1, i2 >> 1, c1[i1]);
                }
            }
        }
    }
    SkASSERT(fUsed < 4);
    if (!selfIntersect) {
        if (only_end_pts_in_common(c1, c2)) {
            return fUsed;
        }
        if (only_end_pts_in_common(c2, c1)) {
            return fUsed;
        }
    }
    // quad/quad does linear test here -- cubic does not
    // cubics which are really lines should have been detected in reduce step earlier
    int exactEndBits = 0;
    if (selfIntersect) {
        if (fUsed) {
            return fUsed;
        }
    } else {
        exactEndBits |= cubicExactEnd(c1, false, c2) << 0;
        exactEndBits |= cubicExactEnd(c1, true, c2) << 1;
        swap();
        exactEndBits |= cubicExactEnd(c2, false, c1) << 2;
        exactEndBits |= cubicExactEnd(c2, true, c1) << 3;
        swap();
    }
    if (cubicCheckCoincidence(c1, c2)) {
        SkASSERT(!selfIntersect);
        return fUsed;
    }
    // FIXME: pass in cached bounds from caller
    SkDRect c2Bounds;
    c2Bounds.setBounds(c2);
    if (!(exactEndBits & 4)) {
        cubicNearEnd(c1, false, c2, c2Bounds);
    }
    if (!(exactEndBits & 8)) {
        if (selfIntersect && fUsed) {
            return fUsed;
        }
        cubicNearEnd(c1, true, c2, c2Bounds);
        if (selfIntersect && fUsed && ((approximately_less_than_zero(fT[0][0])
                    && approximately_less_than_zero(fT[1][0]))
                    || (approximately_greater_than_one(fT[0][0])
                    && approximately_greater_than_one(fT[1][0])))) {
            SkASSERT(fUsed == 1);
            fUsed = 0;
            return fUsed;
        }
    }
    if (!selfIntersect) {
        SkDRect c1Bounds;
        c1Bounds.setBounds(c1);  // OPTIMIZE use setRawBounds ?
        swap();
        if (!(exactEndBits & 1)) {
            cubicNearEnd(c2, false, c1, c1Bounds);
        }
        if (!(exactEndBits & 2)) {
            cubicNearEnd(c2, true, c1, c1Bounds);
        }
        swap();
    }
    if (cubicCheckCoincidence(c1, c2)) {
        SkASSERT(!selfIntersect);
        return fUsed;
    }
    SkIntersections i;
    i.fAllowNear = false;
    i.fMax = 9;
    ::intersect(c1, 0, 1, c2, 0, 1, 1, i);
    int compCount = i.used();
    if (compCount) {
        int exactCount = used();
        if (exactCount == 0) {
            *this = i;
        } else {
            // at least one is exact or near, and at least one was computed. Eliminate duplicates
            for (int exIdx = 0; exIdx < exactCount; ++exIdx) {
                for (int cpIdx = 0; cpIdx < compCount; ) {
                    if (fT[0][0] == i[0][0] && fT[1][0] == i[1][0]) {
                        i.removeOne(cpIdx);
                        --compCount;
                        continue;
                    }
                    double tAvg = (fT[0][exIdx] + i[0][cpIdx]) / 2;
                    SkDPoint pt = c1.ptAtT(tAvg);
                    if (!pt.approximatelyEqual(fPt[exIdx])) {
                        ++cpIdx;
                        continue;
                    }
                    tAvg = (fT[1][exIdx] + i[1][cpIdx]) / 2;
                    pt = c2.ptAtT(tAvg);
                    if (!pt.approximatelyEqual(fPt[exIdx])) {
                        ++cpIdx;
                        continue;
                    }
                    i.removeOne(cpIdx);
                    --compCount;
                }
            }
            // if mid t evaluates to nearly the same point, skip the t
            for (int cpIdx = 0; cpIdx < compCount - 1; ) {
                double tAvg = (fT[0][cpIdx] + i[0][cpIdx + 1]) / 2;
                SkDPoint pt = c1.ptAtT(tAvg);
                if (!pt.approximatelyEqual(fPt[cpIdx])) {
                    ++cpIdx;
                    continue;
                }
                tAvg = (fT[1][cpIdx] + i[1][cpIdx + 1]) / 2;
                pt = c2.ptAtT(tAvg);
                if (!pt.approximatelyEqual(fPt[cpIdx])) {
                    ++cpIdx;
                    continue;
                }
                i.removeOne(cpIdx);
                --compCount;
            }
            // in addition to adding below missing function, think about how to say
            append(i);
        }
    }
    // If an end point and a second point very close to the end is returned, the second
    // point may have been detected because the approximate quads
    // intersected at the end and close to it. Verify that the second point is valid.
    if (fUsed <= 1) {
        return fUsed;
    }
    SkDPoint pt[2];
    if (closeStart(c1, 0, *this, pt[0]) && closeStart(c2, 1, *this, pt[1])
            && pt[0].approximatelyEqual(pt[1])) {
        removeOne(1);
    }
    if (closeEnd(c1, 0, *this, pt[0]) && closeEnd(c2, 1, *this, pt[1])
            && pt[0].approximatelyEqual(pt[1])) {
        removeOne(used() - 2);
    }
    // vet the pairs of t values to see if the mid value is also on the curve. If so, mark
    // the span as coincident
    if (fUsed >= 2 && !coincidentUsed()) {
        int last = fUsed - 1;
        int match = 0;
        for (int index = 0; index < last; ++index) {
            double mid1 = (fT[0][index] + fT[0][index + 1]) / 2;
            double mid2 = (fT[1][index] + fT[1][index + 1]) / 2;
            pt[0] = c1.ptAtT(mid1);
            pt[1] = c2.ptAtT(mid2);
            if (pt[0].approximatelyEqual(pt[1])) {
                match |= 1 << index;
            }
        }
        if (match) {
#if DEBUG_CONCIDENT
            if (((match + 1) & match) != 0) {
                SkDebugf("%s coincident hole\n", __FUNCTION__);
            }
#endif
            // for now, assume that everything from start to finish is coincident
            if (fUsed > 2) {
                  fPt[1] = fPt[last];
                  fT[0][1] = fT[0][last];
                  fT[1][1] = fT[1][last];
                  fIsCoincident[0] = 0x03;
                  fIsCoincident[1] = 0x03;
                  fUsed = 2;
            }
        }
    }
    return fUsed;
}

// Up promote the quad to a cubic.
// OPTIMIZATION If this is a common use case, optimize by duplicating
// the intersect 3 loop to avoid the promotion  / demotion code
int SkIntersections::intersect(const SkDCubic& cubic, const SkDQuad& quad) {
    fMax = 6;
    SkDCubic up = quad.toCubic();
    (void) intersect(cubic, up);
    return used();
}

/* http://www.ag.jku.at/compass/compasssample.pdf
( Self-Intersection Problems and Approximate Implicitization by Jan B. Thomassen
Centre of Mathematics for Applications, University of Oslo http://www.cma.uio.no janbth@math.uio.no
SINTEF Applied Mathematics http://www.sintef.no )
describes a method to find the self intersection of a cubic by taking the gradient of the implicit
form dotted with the normal, and solving for the roots. My math foo is too poor to implement this.*/

int SkIntersections::intersect(const SkDCubic& c) {
    fMax = 1;
    // check to see if x or y end points are the extrema. Are other quick rejects possible?
    if (c.endsAreExtremaInXOrY()) {
        return false;
    }
    // OPTIMIZATION: could quick reject if neither end point tangent ray intersected the line
    // segment formed by the opposite end point to the control point
    (void) intersect(c, c);
    if (used() > 0) {
        if (approximately_equal_double(fT[0][0], fT[1][0])) {
            fUsed = 0;
        } else {
            SkASSERT(used() == 1);
            if (fT[0][0] > fT[1][0]) {
                swapPts();
            }
        }
    }
    return used();
}