DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064

/*
 * Copyright 2011 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */
#include "SkBitmapProcState.h"
#include "SkColorPriv.h"
#include "SkFilterProc.h"
#include "SkPaint.h"
#include "SkShader.h"   // for tilemodes
#include "SkUtilsArm.h"
#include "SkBitmapScaler.h"
#include "SkMipMap.h"
#include "SkPixelRef.h"
#include "SkScaledImageCache.h"
#include "SkImageEncoder.h"

#if !SK_ARM_NEON_IS_NONE
// These are defined in src/opts/SkBitmapProcState_arm_neon.cpp
extern const SkBitmapProcState::SampleProc16 gSkBitmapProcStateSample16_neon[];
extern const SkBitmapProcState::SampleProc32 gSkBitmapProcStateSample32_neon[];
extern void  S16_D16_filter_DX_neon(const SkBitmapProcState&, const uint32_t*, int, uint16_t*);
extern void  Clamp_S16_D16_filter_DX_shaderproc_neon(const SkBitmapProcState&, int, int, uint16_t*, int);
extern void  Repeat_S16_D16_filter_DX_shaderproc_neon(const SkBitmapProcState&, int, int, uint16_t*, int);
extern void  SI8_opaque_D32_filter_DX_neon(const SkBitmapProcState&, const uint32_t*, int, SkPMColor*);
extern void  SI8_opaque_D32_filter_DX_shaderproc_neon(const SkBitmapProcState&, int, int, uint32_t*, int);
extern void  Clamp_SI8_opaque_D32_filter_DX_shaderproc_neon(const SkBitmapProcState&, int, int, uint32_t*, int);
#endif

#define   NAME_WRAP(x)  x
#include "SkBitmapProcState_filter.h"
#include "SkBitmapProcState_procs.h"

///////////////////////////////////////////////////////////////////////////////

// true iff the matrix contains, at most, scale and translate elements
static bool matrix_only_scale_translate(const SkMatrix& m) {
    return m.getType() <= (SkMatrix::kScale_Mask | SkMatrix::kTranslate_Mask);
}

/**
 *  For the purposes of drawing bitmaps, if a matrix is "almost" translate
 *  go ahead and treat it as if it were, so that subsequent code can go fast.
 */
static bool just_trans_clamp(const SkMatrix& matrix, const SkBitmap& bitmap) {
    SkASSERT(matrix_only_scale_translate(matrix));

    if (matrix.getType() & SkMatrix::kScale_Mask) {
        SkRect src, dst;
        bitmap.getBounds(&src);

        // Can't call mapRect(), since that will fix up inverted rectangles,
        // e.g. when scale is negative, and we don't want to return true for
        // those.
        matrix.mapPoints(SkTCast<SkPoint*>(&dst),
                         SkTCast<const SkPoint*>(&src),
                         2);

        // Now round all 4 edges to device space, and then compare the device
        // width/height to the original. Note: we must map all 4 and subtract
        // rather than map the "width" and compare, since we care about the
        // phase (in pixel space) that any translate in the matrix might impart.
        SkIRect idst;
        dst.round(&idst);
        return idst.width() == bitmap.width() && idst.height() == bitmap.height();
    }
    // if we got here, we're either kTranslate_Mask or identity
    return true;
}

static bool just_trans_general(const SkMatrix& matrix) {
    SkASSERT(matrix_only_scale_translate(matrix));

    if (matrix.getType() & SkMatrix::kScale_Mask) {
        const SkScalar tol = SK_Scalar1 / 32768;

        if (!SkScalarNearlyZero(matrix[SkMatrix::kMScaleX] - SK_Scalar1, tol)) {
            return false;
        }
        if (!SkScalarNearlyZero(matrix[SkMatrix::kMScaleY] - SK_Scalar1, tol)) {
            return false;
        }
    }
    // if we got here, treat us as either kTranslate_Mask or identity
    return true;
}

///////////////////////////////////////////////////////////////////////////////

static bool valid_for_filtering(unsigned dimension) {
    // for filtering, width and height must fit in 14bits, since we use steal
    // 2 bits from each to store our 4bit subpixel data
    return (dimension & ~0x3FFF) == 0;
}

static SkScalar effective_matrix_scale_sqrd(const SkMatrix& mat) {
    SkPoint v1, v2;

    v1.fX = mat.getScaleX();
    v1.fY = mat.getSkewY();

    v2.fX = mat.getSkewX();
    v2.fY = mat.getScaleY();

    return SkMaxScalar(v1.lengthSqd(), v2.lengthSqd());
}

class AutoScaledCacheUnlocker {
public:
    AutoScaledCacheUnlocker(SkScaledImageCache::ID** idPtr) : fIDPtr(idPtr) {}
    ~AutoScaledCacheUnlocker() {
        if (fIDPtr && *fIDPtr) {
            SkScaledImageCache::Unlock(*fIDPtr);
            *fIDPtr = NULL;
        }
    }

    // forgets the ID, so it won't call Unlock
    void release() {
        fIDPtr = NULL;
    }

private:
    SkScaledImageCache::ID** fIDPtr;
};
#define AutoScaledCacheUnlocker(...) SK_REQUIRE_LOCAL_VAR(AutoScaledCacheUnlocker)

// Check to see that the size of the bitmap that would be produced by
// scaling by the given inverted matrix is less than the maximum allowed.
static inline bool cache_size_okay(const SkBitmap& bm, const SkMatrix& invMat) {
    size_t maximumAllocation
        = SkScaledImageCache::GetSingleAllocationByteLimit();
    if (0 == maximumAllocation) {
        return true;
    }
    // float matrixScaleFactor = 1.0 / (invMat.scaleX * invMat.scaleY);
    // return ((origBitmapSize * matrixScaleFactor) < maximumAllocationSize);
    // Skip the division step:
    return bm.info().getSafeSize(bm.info().minRowBytes())
        < (maximumAllocation * invMat.getScaleX() * invMat.getScaleY());
}

// TODO -- we may want to pass the clip into this function so we only scale
// the portion of the image that we're going to need.  This will complicate
// the interface to the cache, but might be well worth it.

bool SkBitmapProcState::possiblyScaleImage() {
    AutoScaledCacheUnlocker unlocker(&fScaledCacheID);

    SkASSERT(NULL == fBitmap);
    SkASSERT(NULL == fScaledCacheID);

    if (fFilterLevel <= SkPaint::kLow_FilterLevel) {
        return false;
    }
    // Check to see if the transformation matrix is simple, and if we're
    // doing high quality scaling.  If so, do the bitmap scale here and
    // remove the scaling component from the matrix.

    if (SkPaint::kHigh_FilterLevel == fFilterLevel &&
        fInvMatrix.getType() <= (SkMatrix::kScale_Mask | SkMatrix::kTranslate_Mask) &&
        kN32_SkColorType == fOrigBitmap.colorType() &&
        cache_size_okay(fOrigBitmap, fInvMatrix)) {

        SkScalar invScaleX = fInvMatrix.getScaleX();
        SkScalar invScaleY = fInvMatrix.getScaleY();

        fScaledCacheID = SkScaledImageCache::FindAndLock(fOrigBitmap,
                                                         invScaleX, invScaleY,
                                                         &fScaledBitmap);
        if (fScaledCacheID) {
            fScaledBitmap.lockPixels();
            if (!fScaledBitmap.getPixels()) {
                fScaledBitmap.unlockPixels();
                // found a purged entry (discardablememory?), release it
                SkScaledImageCache::Unlock(fScaledCacheID);
                fScaledCacheID = NULL;
                // fall through to rebuild
            }
        }

        if (NULL == fScaledCacheID) {
            float dest_width  = fOrigBitmap.width() / invScaleX;
            float dest_height = fOrigBitmap.height() / invScaleY;

            // All the criteria are met; let's make a new bitmap.

            if (!SkBitmapScaler::Resize(&fScaledBitmap,
                                        fOrigBitmap,
                                        SkBitmapScaler::RESIZE_BEST,
                                        dest_width,
                                        dest_height,
                                        SkScaledImageCache::GetAllocator())) {
                // we failed to create fScaledBitmap, so just return and let
                // the scanline proc handle it.
                return false;

            }

            SkASSERT(NULL != fScaledBitmap.getPixels());
            fScaledCacheID = SkScaledImageCache::AddAndLock(fOrigBitmap,
                                                            invScaleX,
                                                            invScaleY,
                                                            fScaledBitmap);
            if (!fScaledCacheID) {
                fScaledBitmap.reset();
                return false;
            }
            SkASSERT(NULL != fScaledBitmap.getPixels());
        }

        SkASSERT(NULL != fScaledBitmap.getPixels());
        fBitmap = &fScaledBitmap;

        // set the inv matrix type to translate-only;
        fInvMatrix.setTranslate(fInvMatrix.getTranslateX() / fInvMatrix.getScaleX(),
                                fInvMatrix.getTranslateY() / fInvMatrix.getScaleY());

        // no need for any further filtering; we just did it!
        fFilterLevel = SkPaint::kNone_FilterLevel;
        unlocker.release();
        return true;
    }

    /*
     *  If High, then our special-case for scale-only did not take, and so we
     *  have to make a choice:
     *      1. fall back on mipmaps + bilerp
     *      2. fall back on scanline bicubic filter
     *  For now, we compute the "scale" value from the matrix, and have a
     *  threshold to decide when bicubic is better, and when mips are better.
     *  No doubt a fancier decision tree could be used uere.
     *
     *  If Medium, then we just try to build a mipmap and select a level,
     *  setting the filter-level to kLow to signal that we just need bilerp
     *  to process the selected level.
     */

    SkScalar scaleSqd = effective_matrix_scale_sqrd(fInvMatrix);

    if (SkPaint::kHigh_FilterLevel == fFilterLevel) {
        // Set the limit at 0.25 for the CTM... if the CTM is scaling smaller
        // than this, then the mipmaps quality may be greater (certainly faster)
        // so we only keep High quality if the scale is greater than this.
        //
        // Since we're dealing with the inverse, we compare against its inverse.
        const SkScalar bicubicLimit = 4.0f;
        const SkScalar bicubicLimitSqd = bicubicLimit * bicubicLimit;
        if (scaleSqd < bicubicLimitSqd) {  // use bicubic scanline
            return false;
        }

        // else set the filter-level to Medium, since we're scaling down and
        // want to reqeust mipmaps
        fFilterLevel = SkPaint::kMedium_FilterLevel;
    }

    SkASSERT(SkPaint::kMedium_FilterLevel == fFilterLevel);

    /**
     *  Medium quality means use a mipmap for down-scaling, and just bilper
     *  for upscaling. Since we're examining the inverse matrix, we look for
     *  a scale > 1 to indicate down scaling by the CTM.
     */
    if (scaleSqd > SK_Scalar1) {
        const SkMipMap* mip = NULL;

        SkASSERT(NULL == fScaledCacheID);
        fScaledCacheID = SkScaledImageCache::FindAndLockMip(fOrigBitmap, &mip);
        if (!fScaledCacheID) {
            SkASSERT(NULL == mip);
            mip = SkMipMap::Build(fOrigBitmap);
            if (mip) {
                fScaledCacheID = SkScaledImageCache::AddAndLockMip(fOrigBitmap,
                                                                   mip);
                SkASSERT(mip->getRefCnt() > 1);
                mip->unref();   // the cache took a ref
                SkASSERT(fScaledCacheID);
            }
        } else {
            SkASSERT(mip);
        }

        if (mip) {
            SkScalar levelScale = SkScalarInvert(SkScalarSqrt(scaleSqd));
            SkMipMap::Level level;
            if (mip->extractLevel(levelScale, &level)) {
                SkScalar invScaleFixup = level.fScale;
                fInvMatrix.postScale(invScaleFixup, invScaleFixup);

                SkImageInfo info = fOrigBitmap.info();
                info.fWidth = level.fWidth;
                info.fHeight = level.fHeight;
                fScaledBitmap.installPixels(info, level.fPixels, level.fRowBytes);
                fBitmap = &fScaledBitmap;
                fFilterLevel = SkPaint::kLow_FilterLevel;
                unlocker.release();
                return true;
            }
        }
    }

    return false;
}

static bool get_locked_pixels(const SkBitmap& src, int pow2, SkBitmap* dst) {
    SkPixelRef* pr = src.pixelRef();
    if (pr && pr->decodeInto(pow2, dst)) {
        return true;
    }

    /*
     *  If decodeInto() fails, it is possibe that we have an old subclass that
     *  does not, or cannot, implement that. In that case we fall back to the
     *  older protocol of having the pixelRef handle the caching for us.
     */
    *dst = src;
    dst->lockPixels();
    return SkToBool(dst->getPixels());
}

bool SkBitmapProcState::lockBaseBitmap() {
    AutoScaledCacheUnlocker unlocker(&fScaledCacheID);

    SkPixelRef* pr = fOrigBitmap.pixelRef();

    SkASSERT(NULL == fScaledCacheID);

    if (pr->isLocked() || !pr->implementsDecodeInto()) {
        // fast-case, no need to look in our cache
        fScaledBitmap = fOrigBitmap;
        fScaledBitmap.lockPixels();
        if (NULL == fScaledBitmap.getPixels()) {
            return false;
        }
    } else {
        fScaledCacheID = SkScaledImageCache::FindAndLock(fOrigBitmap,
                                                         SK_Scalar1, SK_Scalar1,
                                                         &fScaledBitmap);
        if (fScaledCacheID) {
            fScaledBitmap.lockPixels();
            if (!fScaledBitmap.getPixels()) {
                fScaledBitmap.unlockPixels();
                // found a purged entry (discardablememory?), release it
                SkScaledImageCache::Unlock(fScaledCacheID);
                fScaledCacheID = NULL;
                // fall through to rebuild
            }
        }

        if (NULL == fScaledCacheID) {
            if (!get_locked_pixels(fOrigBitmap, 0, &fScaledBitmap)) {
                return false;
            }

            // TODO: if fScaled comes back at a different width/height than fOrig,
            // we need to update the matrix we are using to sample from this guy.

            fScaledCacheID = SkScaledImageCache::AddAndLock(fOrigBitmap,
                                                            SK_Scalar1, SK_Scalar1,
                                                            fScaledBitmap);
            if (!fScaledCacheID) {
                fScaledBitmap.reset();
                return false;
            }
        }
    }
    fBitmap = &fScaledBitmap;
    unlocker.release();
    return true;
}

SkBitmapProcState::~SkBitmapProcState() {
    if (fScaledCacheID) {
        SkScaledImageCache::Unlock(fScaledCacheID);
    }
    SkDELETE(fBitmapFilter);
}

bool SkBitmapProcState::chooseProcs(const SkMatrix& inv, const SkPaint& paint) {
    SkASSERT(fOrigBitmap.width() && fOrigBitmap.height());

    fBitmap = NULL;
    fInvMatrix = inv;
    fFilterLevel = paint.getFilterLevel();

    SkASSERT(NULL == fScaledCacheID);

    // possiblyScaleImage will look to see if it can rescale the image as a
    // preprocess; either by scaling up to the target size, or by selecting
    // a nearby mipmap level.  If it does, it will adjust the working
    // matrix as well as the working bitmap.  It may also adjust the filter
    // quality to avoid re-filtering an already perfectly scaled image.
    if (!this->possiblyScaleImage()) {
        if (!this->lockBaseBitmap()) {
            return false;
        }
    }
    // The above logic should have always assigned fBitmap, but in case it
    // didn't, we check for that now...
    // TODO(dominikg): Ask humper@ if we can just use an SkASSERT(fBitmap)?
    if (NULL == fBitmap) {
        return false;
    }

    // If we are "still" kMedium_FilterLevel, then the request was not fulfilled by possiblyScale,
    // so we downgrade to kLow (so the rest of the sniffing code can assume that)
    if (SkPaint::kMedium_FilterLevel == fFilterLevel) {
        fFilterLevel = SkPaint::kLow_FilterLevel;
    }

    bool trivialMatrix = (fInvMatrix.getType() & ~SkMatrix::kTranslate_Mask) == 0;
    bool clampClamp = SkShader::kClamp_TileMode == fTileModeX &&
                      SkShader::kClamp_TileMode == fTileModeY;

    if (!(clampClamp || trivialMatrix)) {
        fInvMatrix.postIDiv(fOrigBitmap.width(), fOrigBitmap.height());
    }

    // Now that all possible changes to the matrix have taken place, check
    // to see if we're really close to a no-scale matrix.  If so, explicitly
    // set it to be so.  Subsequent code may inspect this matrix to choose
    // a faster path in this case.

    // This code will only execute if the matrix has some scale component;
    // if it's already pure translate then we won't do this inversion.

    if (matrix_only_scale_translate(fInvMatrix)) {
        SkMatrix forward;
        if (fInvMatrix.invert(&forward)) {
            if (clampClamp ? just_trans_clamp(forward, *fBitmap)
                            : just_trans_general(forward)) {
                SkScalar tx = -SkScalarRoundToScalar(forward.getTranslateX());
                SkScalar ty = -SkScalarRoundToScalar(forward.getTranslateY());
                fInvMatrix.setTranslate(tx, ty);
            }
        }
    }

    fInvProc        = fInvMatrix.getMapXYProc();
    fInvType        = fInvMatrix.getType();
    fInvSx          = SkScalarToFixed(fInvMatrix.getScaleX());
    fInvSxFractionalInt = SkScalarToFractionalInt(fInvMatrix.getScaleX());
    fInvKy          = SkScalarToFixed(fInvMatrix.getSkewY());
    fInvKyFractionalInt = SkScalarToFractionalInt(fInvMatrix.getSkewY());

    fAlphaScale = SkAlpha255To256(paint.getAlpha());

    fShaderProc32 = NULL;
    fShaderProc16 = NULL;
    fSampleProc32 = NULL;
    fSampleProc16 = NULL;

    // recompute the triviality of the matrix here because we may have
    // changed it!

    trivialMatrix = (fInvMatrix.getType() & ~SkMatrix::kTranslate_Mask) == 0;

    if (SkPaint::kHigh_FilterLevel == fFilterLevel) {
        // If this is still set, that means we wanted HQ sampling
        // but couldn't do it as a preprocess.  Let's try to install
        // the scanline version of the HQ sampler.  If that process fails,
        // downgrade to bilerp.

        // NOTE: Might need to be careful here in the future when we want
        // to have the platform proc have a shot at this; it's possible that
        // the chooseBitmapFilterProc will fail to install a shader but a
        // platform-specific one might succeed, so it might be premature here
        // to fall back to bilerp.  This needs thought.

        if (!this->setBitmapFilterProcs()) {
            fFilterLevel = SkPaint::kLow_FilterLevel;
        }
    }

    if (SkPaint::kLow_FilterLevel == fFilterLevel) {
        // Only try bilerp if the matrix is "interesting" and
        // the image has a suitable size.

        if (fInvType <= SkMatrix::kTranslate_Mask ||
                !valid_for_filtering(fBitmap->width() | fBitmap->height())) {
            fFilterLevel = SkPaint::kNone_FilterLevel;
        }
    }

    // At this point, we know exactly what kind of sampling the per-scanline
    // shader will perform.

    fMatrixProc = this->chooseMatrixProc(trivialMatrix);
    // TODO(dominikg): SkASSERT(fMatrixProc) instead? chooseMatrixProc never returns NULL.
    if (NULL == fMatrixProc) {
        return false;
    }

    ///////////////////////////////////////////////////////////////////////

    const SkAlphaType at = fBitmap->alphaType();

    // No need to do this if we're doing HQ sampling; if filter quality is
    // still set to HQ by the time we get here, then we must have installed
    // the shader procs above and can skip all this.

    if (fFilterLevel < SkPaint::kHigh_FilterLevel) {

        int index = 0;
        if (fAlphaScale < 256) {  // note: this distinction is not used for D16
            index |= 1;
        }
        if (fInvType <= (SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask)) {
            index |= 2;
        }
        if (fFilterLevel > SkPaint::kNone_FilterLevel) {
            index |= 4;
        }
        // bits 3,4,5 encoding the source bitmap format
        switch (fBitmap->colorType()) {
            case kN32_SkColorType:
                if (kPremul_SkAlphaType != at && kOpaque_SkAlphaType != at) {
                    return false;
                }
                index |= 0;
                break;
            case kRGB_565_SkColorType:
                index |= 8;
                break;
            case kIndex_8_SkColorType:
                if (kPremul_SkAlphaType != at && kOpaque_SkAlphaType != at) {
                    return false;
                }
                index |= 16;
                break;
            case kARGB_4444_SkColorType:
                if (kPremul_SkAlphaType != at && kOpaque_SkAlphaType != at) {
                    return false;
                }
                index |= 24;
                break;
            case kAlpha_8_SkColorType:
                index |= 32;
                fPaintPMColor = SkPreMultiplyColor(paint.getColor());
                break;
            default:
                // TODO(dominikg): Should we ever get here? SkASSERT(false) instead?
                return false;
        }

    #if !SK_ARM_NEON_IS_ALWAYS
        static const SampleProc32 gSkBitmapProcStateSample32[] = {
            S32_opaque_D32_nofilter_DXDY,
            S32_alpha_D32_nofilter_DXDY,
            S32_opaque_D32_nofilter_DX,
            S32_alpha_D32_nofilter_DX,
            S32_opaque_D32_filter_DXDY,
            S32_alpha_D32_filter_DXDY,
            S32_opaque_D32_filter_DX,
            S32_alpha_D32_filter_DX,

            S16_opaque_D32_nofilter_DXDY,
            S16_alpha_D32_nofilter_DXDY,
            S16_opaque_D32_nofilter_DX,
            S16_alpha_D32_nofilter_DX,
            S16_opaque_D32_filter_DXDY,
            S16_alpha_D32_filter_DXDY,
            S16_opaque_D32_filter_DX,
            S16_alpha_D32_filter_DX,

            SI8_opaque_D32_nofilter_DXDY,
            SI8_alpha_D32_nofilter_DXDY,
            SI8_opaque_D32_nofilter_DX,
            SI8_alpha_D32_nofilter_DX,
            SI8_opaque_D32_filter_DXDY,
            SI8_alpha_D32_filter_DXDY,
            SI8_opaque_D32_filter_DX,
            SI8_alpha_D32_filter_DX,

            S4444_opaque_D32_nofilter_DXDY,
            S4444_alpha_D32_nofilter_DXDY,
            S4444_opaque_D32_nofilter_DX,
            S4444_alpha_D32_nofilter_DX,
            S4444_opaque_D32_filter_DXDY,
            S4444_alpha_D32_filter_DXDY,
            S4444_opaque_D32_filter_DX,
            S4444_alpha_D32_filter_DX,

            // A8 treats alpha/opaque the same (equally efficient)
            SA8_alpha_D32_nofilter_DXDY,
            SA8_alpha_D32_nofilter_DXDY,
            SA8_alpha_D32_nofilter_DX,
            SA8_alpha_D32_nofilter_DX,
            SA8_alpha_D32_filter_DXDY,
            SA8_alpha_D32_filter_DXDY,
            SA8_alpha_D32_filter_DX,
            SA8_alpha_D32_filter_DX
        };

        static const SampleProc16 gSkBitmapProcStateSample16[] = {
            S32_D16_nofilter_DXDY,
            S32_D16_nofilter_DX,
            S32_D16_filter_DXDY,
            S32_D16_filter_DX,

            S16_D16_nofilter_DXDY,
            S16_D16_nofilter_DX,
            S16_D16_filter_DXDY,
            S16_D16_filter_DX,

            SI8_D16_nofilter_DXDY,
            SI8_D16_nofilter_DX,
            SI8_D16_filter_DXDY,
            SI8_D16_filter_DX,

            // Don't support 4444 -> 565
            NULL, NULL, NULL, NULL,
            // Don't support A8 -> 565
            NULL, NULL, NULL, NULL
        };
    #endif

        fSampleProc32 = SK_ARM_NEON_WRAP(gSkBitmapProcStateSample32)[index];
        index >>= 1;    // shift away any opaque/alpha distinction
        fSampleProc16 = SK_ARM_NEON_WRAP(gSkBitmapProcStateSample16)[index];

        // our special-case shaderprocs
        if (SK_ARM_NEON_WRAP(S16_D16_filter_DX) == fSampleProc16) {
            if (clampClamp) {
                fShaderProc16 = SK_ARM_NEON_WRAP(Clamp_S16_D16_filter_DX_shaderproc);
            } else if (SkShader::kRepeat_TileMode == fTileModeX &&
                       SkShader::kRepeat_TileMode == fTileModeY) {
                fShaderProc16 = SK_ARM_NEON_WRAP(Repeat_S16_D16_filter_DX_shaderproc);
            }
        } else if (SK_ARM_NEON_WRAP(SI8_opaque_D32_filter_DX) == fSampleProc32 && clampClamp) {
            fShaderProc32 = SK_ARM_NEON_WRAP(Clamp_SI8_opaque_D32_filter_DX_shaderproc);
        }

        if (NULL == fShaderProc32) {
            fShaderProc32 = this->chooseShaderProc32();
        }
    }

    // see if our platform has any accelerated overrides
    this->platformProcs();

    return true;
}

static void Clamp_S32_D32_nofilter_trans_shaderproc(const SkBitmapProcState& s,
                                                    int x, int y,
                                                    SkPMColor* SK_RESTRICT colors,
                                                    int count) {
    SkASSERT(((s.fInvType & ~SkMatrix::kTranslate_Mask)) == 0);
    SkASSERT(s.fInvKy == 0);
    SkASSERT(count > 0 && colors != NULL);
    SkASSERT(SkPaint::kNone_FilterLevel == s.fFilterLevel);

    const int maxX = s.fBitmap->width() - 1;
    const int maxY = s.fBitmap->height() - 1;
    int ix = s.fFilterOneX + x;
    int iy = SkClampMax(s.fFilterOneY + y, maxY);
#ifdef SK_DEBUG
    {
        SkPoint pt;
        s.fInvProc(s.fInvMatrix, SkIntToScalar(x) + SK_ScalarHalf,
                   SkIntToScalar(y) + SK_ScalarHalf, &pt);
        int iy2 = SkClampMax(SkScalarFloorToInt(pt.fY), maxY);
        int ix2 = SkScalarFloorToInt(pt.fX);

        SkASSERT(iy == iy2);
        SkASSERT(ix == ix2);
    }
#endif
    const SkPMColor* row = s.fBitmap->getAddr32(0, iy);

    // clamp to the left
    if (ix < 0) {
        int n = SkMin32(-ix, count);
        sk_memset32(colors, row[0], n);
        count -= n;
        if (0 == count) {
            return;
        }
        colors += n;
        SkASSERT(-ix == n);
        ix = 0;
    }
    // copy the middle
    if (ix <= maxX) {
        int n = SkMin32(maxX - ix + 1, count);
        memcpy(colors, row + ix, n * sizeof(SkPMColor));
        count -= n;
        if (0 == count) {
            return;
        }
        colors += n;
    }
    SkASSERT(count > 0);
    // clamp to the right
    sk_memset32(colors, row[maxX], count);
}

static inline int sk_int_mod(int x, int n) {
    SkASSERT(n > 0);
    if ((unsigned)x >= (unsigned)n) {
        if (x < 0) {
            x = n + ~(~x % n);
        } else {
            x = x % n;
        }
    }
    return x;
}

static inline int sk_int_mirror(int x, int n) {
    x = sk_int_mod(x, 2 * n);
    if (x >= n) {
        x = n + ~(x - n);
    }
    return x;
}

static void Repeat_S32_D32_nofilter_trans_shaderproc(const SkBitmapProcState& s,
                                                     int x, int y,
                                                     SkPMColor* SK_RESTRICT colors,
                                                     int count) {
    SkASSERT(((s.fInvType & ~SkMatrix::kTranslate_Mask)) == 0);
    SkASSERT(s.fInvKy == 0);
    SkASSERT(count > 0 && colors != NULL);
    SkASSERT(SkPaint::kNone_FilterLevel == s.fFilterLevel);

    const int stopX = s.fBitmap->width();
    const int stopY = s.fBitmap->height();
    int ix = s.fFilterOneX + x;
    int iy = sk_int_mod(s.fFilterOneY + y, stopY);
#ifdef SK_DEBUG
    {
        SkPoint pt;
        s.fInvProc(s.fInvMatrix, SkIntToScalar(x) + SK_ScalarHalf,
                   SkIntToScalar(y) + SK_ScalarHalf, &pt);
        int iy2 = sk_int_mod(SkScalarFloorToInt(pt.fY), stopY);
        int ix2 = SkScalarFloorToInt(pt.fX);

        SkASSERT(iy == iy2);
        SkASSERT(ix == ix2);
    }
#endif
    const SkPMColor* row = s.fBitmap->getAddr32(0, iy);

    ix = sk_int_mod(ix, stopX);
    for (;;) {
        int n = SkMin32(stopX - ix, count);
        memcpy(colors, row + ix, n * sizeof(SkPMColor));
        count -= n;
        if (0 == count) {
            return;
        }
        colors += n;
        ix = 0;
    }
}

static void S32_D32_constX_shaderproc(const SkBitmapProcState& s,
                                      int x, int y,
                                      SkPMColor* SK_RESTRICT colors,
                                      int count) {
    SkASSERT((s.fInvType & ~(SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask)) == 0);
    SkASSERT(s.fInvKy == 0);
    SkASSERT(count > 0 && colors != NULL);
    SkASSERT(1 == s.fBitmap->width());

    int iY0;
    int iY1   SK_INIT_TO_AVOID_WARNING;
    int iSubY SK_INIT_TO_AVOID_WARNING;

    if (SkPaint::kNone_FilterLevel != s.fFilterLevel) {
        SkBitmapProcState::MatrixProc mproc = s.getMatrixProc();
        uint32_t xy[2];

        mproc(s, xy, 1, x, y);

        iY0 = xy[0] >> 18;
        iY1 = xy[0] & 0x3FFF;
        iSubY = (xy[0] >> 14) & 0xF;
    } else {
        int yTemp;

        if (s.fInvType > SkMatrix::kTranslate_Mask) {
            SkPoint pt;
            s.fInvProc(s.fInvMatrix,
                       SkIntToScalar(x) + SK_ScalarHalf,
                       SkIntToScalar(y) + SK_ScalarHalf,
                       &pt);
            // When the matrix has a scale component the setup code in
            // chooseProcs multiples the inverse matrix by the inverse of the
            // bitmap's width and height. Since this method is going to do
            // its own tiling and sampling we need to undo that here.
            if (SkShader::kClamp_TileMode != s.fTileModeX ||
                SkShader::kClamp_TileMode != s.fTileModeY) {
                yTemp = SkScalarFloorToInt(pt.fY * s.fBitmap->height());
            } else {
                yTemp = SkScalarFloorToInt(pt.fY);
            }
        } else {
            yTemp = s.fFilterOneY + y;
        }

        const int stopY = s.fBitmap->height();
        switch (s.fTileModeY) {
            case SkShader::kClamp_TileMode:
                iY0 = SkClampMax(yTemp, stopY-1);
                break;
            case SkShader::kRepeat_TileMode:
                iY0 = sk_int_mod(yTemp, stopY);
                break;
            case SkShader::kMirror_TileMode:
            default:
                iY0 = sk_int_mirror(yTemp, stopY);
                break;
        }

#ifdef SK_DEBUG
        {
            SkPoint pt;
            s.fInvProc(s.fInvMatrix,
                       SkIntToScalar(x) + SK_ScalarHalf,
                       SkIntToScalar(y) + SK_ScalarHalf,
                       &pt);
            if (s.fInvType > SkMatrix::kTranslate_Mask &&
                (SkShader::kClamp_TileMode != s.fTileModeX ||
                 SkShader::kClamp_TileMode != s.fTileModeY)) {
                pt.fY *= s.fBitmap->height();
            }
            int iY2;

            switch (s.fTileModeY) {
            case SkShader::kClamp_TileMode:
                iY2 = SkClampMax(SkScalarFloorToInt(pt.fY), stopY-1);
                break;
            case SkShader::kRepeat_TileMode:
                iY2 = sk_int_mod(SkScalarFloorToInt(pt.fY), stopY);
                break;
            case SkShader::kMirror_TileMode:
            default:
                iY2 = sk_int_mirror(SkScalarFloorToInt(pt.fY), stopY);
                break;
            }

            SkASSERT(iY0 == iY2);
        }
#endif
    }

    const SkPMColor* row0 = s.fBitmap->getAddr32(0, iY0);
    SkPMColor color;

    if (SkPaint::kNone_FilterLevel != s.fFilterLevel) {
        const SkPMColor* row1 = s.fBitmap->getAddr32(0, iY1);

        if (s.fAlphaScale < 256) {
            Filter_32_alpha(iSubY, *row0, *row1, &color, s.fAlphaScale);
        } else {
            Filter_32_opaque(iSubY, *row0, *row1, &color);
        }
    } else {
        if (s.fAlphaScale < 256) {
            color = SkAlphaMulQ(*row0, s.fAlphaScale);
        } else {
            color = *row0;
        }
    }

    sk_memset32(colors, color, count);
}

static void DoNothing_shaderproc(const SkBitmapProcState&, int x, int y,
                                 SkPMColor* SK_RESTRICT colors, int count) {
    // if we get called, the matrix is too tricky, so we just draw nothing
    sk_memset32(colors, 0, count);
}

bool SkBitmapProcState::setupForTranslate() {
    SkPoint pt;
    fInvProc(fInvMatrix, SK_ScalarHalf, SK_ScalarHalf, &pt);

    /*
     *  if the translate is larger than our ints, we can get random results, or
     *  worse, we might get 0x80000000, which wreaks havoc on us, since we can't
     *  negate it.
     */
    const SkScalar too_big = SkIntToScalar(1 << 30);
    if (SkScalarAbs(pt.fX) > too_big || SkScalarAbs(pt.fY) > too_big) {
        return false;
    }

    // Since we know we're not filtered, we re-purpose these fields allow
    // us to go from device -> src coordinates w/ just an integer add,
    // rather than running through the inverse-matrix
    fFilterOneX = SkScalarFloorToInt(pt.fX);
    fFilterOneY = SkScalarFloorToInt(pt.fY);
    return true;
}

SkBitmapProcState::ShaderProc32 SkBitmapProcState::chooseShaderProc32() {

    if (kN32_SkColorType != fBitmap->colorType()) {
        return NULL;
    }

    static const unsigned kMask = SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask;

    if (1 == fBitmap->width() && 0 == (fInvType & ~kMask)) {
        if (SkPaint::kNone_FilterLevel == fFilterLevel &&
            fInvType <= SkMatrix::kTranslate_Mask &&
            !this->setupForTranslate()) {
            return DoNothing_shaderproc;
        }
        return S32_D32_constX_shaderproc;
    }

    if (fAlphaScale < 256) {
        return NULL;
    }
    if (fInvType > SkMatrix::kTranslate_Mask) {
        return NULL;
    }
    if (SkPaint::kNone_FilterLevel != fFilterLevel) {
        return NULL;
    }

    SkShader::TileMode tx = (SkShader::TileMode)fTileModeX;
    SkShader::TileMode ty = (SkShader::TileMode)fTileModeY;

    if (SkShader::kClamp_TileMode == tx && SkShader::kClamp_TileMode == ty) {
        if (this->setupForTranslate()) {
            return Clamp_S32_D32_nofilter_trans_shaderproc;
        }
        return DoNothing_shaderproc;
    }
    if (SkShader::kRepeat_TileMode == tx && SkShader::kRepeat_TileMode == ty) {
        if (this->setupForTranslate()) {
            return Repeat_S32_D32_nofilter_trans_shaderproc;
        }
        return DoNothing_shaderproc;
    }
    return NULL;
}

///////////////////////////////////////////////////////////////////////////////

#ifdef SK_DEBUG

static void check_scale_nofilter(uint32_t bitmapXY[], int count,
                                 unsigned mx, unsigned my) {
    unsigned y = *bitmapXY++;
    SkASSERT(y < my);

    const uint16_t* xptr = reinterpret_cast<const uint16_t*>(bitmapXY);
    for (int i = 0; i < count; ++i) {
        SkASSERT(xptr[i] < mx);
    }
}

static void check_scale_filter(uint32_t bitmapXY[], int count,
                                 unsigned mx, unsigned my) {
    uint32_t YY = *bitmapXY++;
    unsigned y0 = YY >> 18;
    unsigned y1 = YY & 0x3FFF;
    SkASSERT(y0 < my);
    SkASSERT(y1 < my);

    for (int i = 0; i < count; ++i) {
        uint32_t XX = bitmapXY[i];
        unsigned x0 = XX >> 18;
        unsigned x1 = XX & 0x3FFF;
        SkASSERT(x0 < mx);
        SkASSERT(x1 < mx);
    }
}

static void check_affine_nofilter(uint32_t bitmapXY[], int count,
                                 unsigned mx, unsigned my) {
    for (int i = 0; i < count; ++i) {
        uint32_t XY = bitmapXY[i];
        unsigned x = XY & 0xFFFF;
        unsigned y = XY >> 16;
        SkASSERT(x < mx);
        SkASSERT(y < my);
    }
}

static void check_affine_filter(uint32_t bitmapXY[], int count,
                                 unsigned mx, unsigned my) {
    for (int i = 0; i < count; ++i) {
        uint32_t YY = *bitmapXY++;
        unsigned y0 = YY >> 18;
        unsigned y1 = YY & 0x3FFF;
        SkASSERT(y0 < my);
        SkASSERT(y1 < my);

        uint32_t XX = *bitmapXY++;
        unsigned x0 = XX >> 18;
        unsigned x1 = XX & 0x3FFF;
        SkASSERT(x0 < mx);
        SkASSERT(x1 < mx);
    }
}

void SkBitmapProcState::DebugMatrixProc(const SkBitmapProcState& state,
                                        uint32_t bitmapXY[], int count,
                                        int x, int y) {
    SkASSERT(bitmapXY);
    SkASSERT(count > 0);

    state.fMatrixProc(state, bitmapXY, count, x, y);

    void (*proc)(uint32_t bitmapXY[], int count, unsigned mx, unsigned my);

    // There are four formats possible:
    //  scale -vs- affine
    //  filter -vs- nofilter
    if (state.fInvType <= (SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask)) {
        proc = state.fFilterLevel != SkPaint::kNone_FilterLevel ? check_scale_filter : check_scale_nofilter;
    } else {
        proc = state.fFilterLevel != SkPaint::kNone_FilterLevel ? check_affine_filter : check_affine_nofilter;
    }
    proc(bitmapXY, count, state.fBitmap->width(), state.fBitmap->height());
}

SkBitmapProcState::MatrixProc SkBitmapProcState::getMatrixProc() const {
    return DebugMatrixProc;
}

#endif

///////////////////////////////////////////////////////////////////////////////
/*
    The storage requirements for the different matrix procs are as follows,
    where each X or Y is 2 bytes, and N is the number of pixels/elements:

    scale/translate     nofilter      Y(4bytes) + N * X
    affine/perspective  nofilter      N * (X Y)
    scale/translate     filter        Y Y + N * (X X)
    affine/perspective  filter        N * (Y Y X X)
 */
int SkBitmapProcState::maxCountForBufferSize(size_t bufferSize) const {
    int32_t size = static_cast<int32_t>(bufferSize);

    size &= ~3; // only care about 4-byte aligned chunks
    if (fInvType <= (SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask)) {
        size -= 4;   // the shared Y (or YY) coordinate
        if (size < 0) {
            size = 0;
        }
        size >>= 1;
    } else {
        size >>= 2;
    }

    if (fFilterLevel != SkPaint::kNone_FilterLevel) {
        size >>= 1;
    }

    return size;
}