DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (d1ed7de67f5a)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

/*
 * Encryption/decryption routines for CMS implementation, none of which are exported.
 */

#include "cmslocal.h"

#include "secoid.h"
#include "secitem.h"
#include "pk11func.h"
#include "secerr.h"
#include "secpkcs5.h"

/*
 * -------------------------------------------------------------------
 * Cipher stuff.
 */

typedef SECStatus (*nss_cms_cipher_function) (void *, unsigned char *, unsigned int *,
					unsigned int, const unsigned char *, unsigned int);
typedef SECStatus (*nss_cms_cipher_destroy) (void *, PRBool);

#define BLOCK_SIZE 4096

struct NSSCMSCipherContextStr {
    void *		cx;			/* PK11 cipher context */
    nss_cms_cipher_function doit;
    nss_cms_cipher_destroy destroy;
    PRBool		encrypt;		/* encrypt / decrypt switch */
    int			block_size;		/* block & pad sizes for cipher */
    int			pad_size;
    int			pending_count;		/* pending data (not yet en/decrypted */
    unsigned char	pending_buf[BLOCK_SIZE];/* because of blocking */
};

/*
 * NSS_CMSCipherContext_StartDecrypt - create a cipher context to do decryption
 * based on the given bulk encryption key and algorithm identifier (which 
 * may include an iv).
 *
 * XXX Once both are working, it might be nice to combine this and the
 * function below (for starting up encryption) into one routine, and just
 * have two simple cover functions which call it. 
 */
NSSCMSCipherContext *
NSS_CMSCipherContext_StartDecrypt(PK11SymKey *key, SECAlgorithmID *algid)
{
    NSSCMSCipherContext *cc;
    void *ciphercx;
    CK_MECHANISM_TYPE cryptoMechType;
    PK11SlotInfo *slot;
    SECOidTag algtag;
    SECItem *param = NULL;

    algtag = SECOID_GetAlgorithmTag(algid);

    /* set param and mechanism */
    if (SEC_PKCS5IsAlgorithmPBEAlg(algid)) {
	SECItem *pwitem;

	pwitem = PK11_GetSymKeyUserData(key);
	if (!pwitem) 
	    return NULL;

	cryptoMechType = PK11_GetPBECryptoMechanism(algid, &param, pwitem);
	if (cryptoMechType == CKM_INVALID_MECHANISM) {
	    SECITEM_FreeItem(param,PR_TRUE);
	    return NULL;
	}

    } else {
	cryptoMechType = PK11_AlgtagToMechanism(algtag);
	if ((param = PK11_ParamFromAlgid(algid)) == NULL)
	    return NULL;
    }

    cc = (NSSCMSCipherContext *)PORT_ZAlloc(sizeof(NSSCMSCipherContext));
    if (cc == NULL) {
	SECITEM_FreeItem(param,PR_TRUE);
	return NULL;
    }

    /* figure out pad and block sizes */
    cc->pad_size = PK11_GetBlockSize(cryptoMechType, param);
    slot = PK11_GetSlotFromKey(key);
    cc->block_size = PK11_IsHW(slot) ? BLOCK_SIZE : cc->pad_size;
    PK11_FreeSlot(slot);

    /* create PK11 cipher context */
    ciphercx = PK11_CreateContextBySymKey(cryptoMechType, CKA_DECRYPT, 
					  key, param);
    SECITEM_FreeItem(param, PR_TRUE);
    if (ciphercx == NULL) {
	PORT_Free (cc);
	return NULL;
    }

    cc->cx = ciphercx;
    cc->doit =  (nss_cms_cipher_function) PK11_CipherOp;
    cc->destroy = (nss_cms_cipher_destroy) PK11_DestroyContext;
    cc->encrypt = PR_FALSE;
    cc->pending_count = 0;

    return cc;
}

/*
 * NSS_CMSCipherContext_StartEncrypt - create a cipher object to do encryption,
 * based on the given bulk encryption key and algorithm tag.  Fill in the 
 * algorithm identifier (which may include an iv) appropriately.
 *
 * XXX Once both are working, it might be nice to combine this and the
 * function above (for starting up decryption) into one routine, and just
 * have two simple cover functions which call it. 
 */
NSSCMSCipherContext *
NSS_CMSCipherContext_StartEncrypt(PLArenaPool *poolp, PK11SymKey *key, SECAlgorithmID *algid)
{
    NSSCMSCipherContext *cc;
    void *ciphercx;
    SECStatus rv;
    CK_MECHANISM_TYPE cryptoMechType;
    PK11SlotInfo *slot;
    SECItem *param = NULL;
    PRBool needToEncodeAlgid = PR_FALSE;
    SECOidTag algtag = SECOID_GetAlgorithmTag(algid);

    /* set param and mechanism */
    if (SEC_PKCS5IsAlgorithmPBEAlg(algid)) {
	SECItem *pwitem;

	pwitem = PK11_GetSymKeyUserData(key);
	if (!pwitem) 
	    return NULL;

	cryptoMechType = PK11_GetPBECryptoMechanism(algid, &param, pwitem);
	if (cryptoMechType == CKM_INVALID_MECHANISM) {
	    SECITEM_FreeItem(param,PR_TRUE);
	    return NULL;
	}
    } else {
	cryptoMechType = PK11_AlgtagToMechanism(algtag);
	if ((param = PK11_GenerateNewParam(cryptoMechType, key)) == NULL)
	    return NULL;
	needToEncodeAlgid = PR_TRUE;
    }

    cc = (NSSCMSCipherContext *)PORT_ZAlloc(sizeof(NSSCMSCipherContext));
    if (cc == NULL) {
	goto loser;
    }

    /* now find pad and block sizes for our mechanism */
    cc->pad_size = PK11_GetBlockSize(cryptoMechType, param);
    slot = PK11_GetSlotFromKey(key);
    cc->block_size = PK11_IsHW(slot) ? BLOCK_SIZE : cc->pad_size;
    PK11_FreeSlot(slot);

    /* and here we go, creating a PK11 cipher context */
    ciphercx = PK11_CreateContextBySymKey(cryptoMechType, CKA_ENCRYPT, 
					  key, param);
    if (ciphercx == NULL) {
	PORT_Free(cc);
	cc = NULL;
	goto loser;
    }

    /*
     * These are placed after the CreateContextBySymKey() because some
     * mechanisms have to generate their IVs from their card (i.e. FORTEZZA).
     * Don't move it from here.
     * XXX is that right? the purpose of this is to get the correct algid
     *     containing the IVs etc. for encoding. this means we need to set this up
     *     BEFORE encoding the algid in the contentInfo, right?
     */
    if (needToEncodeAlgid) {
	rv = PK11_ParamToAlgid(algtag, param, poolp, algid);
	if(rv != SECSuccess) {
	    PORT_Free(cc);
	    cc = NULL;
	    goto loser;
	}
    }

    cc->cx = ciphercx;
    cc->doit = (nss_cms_cipher_function)PK11_CipherOp;
    cc->destroy = (nss_cms_cipher_destroy)PK11_DestroyContext;
    cc->encrypt = PR_TRUE;
    cc->pending_count = 0;

loser:
    SECITEM_FreeItem(param, PR_TRUE);

    return cc;
}

void
NSS_CMSCipherContext_Destroy(NSSCMSCipherContext *cc)
{
    PORT_Assert(cc != NULL);
    if (cc == NULL)
	return;
    (*cc->destroy)(cc->cx, PR_TRUE);
    PORT_Free(cc);
}

/*
 * NSS_CMSCipherContext_DecryptLength - find the output length of the next call to decrypt.
 *
 * cc - the cipher context
 * input_len - number of bytes used as input
 * final - true if this is the final chunk of data
 *
 * Result can be used to perform memory allocations.  Note that the amount
 * is exactly accurate only when not doing a block cipher or when final
 * is false, otherwise it is an upper bound on the amount because until
 * we see the data we do not know how many padding bytes there are
 * (always between 1 and bsize).
 *
 * Note that this can return zero, which does not mean that the decrypt
 * operation can be skipped!  (It simply means that there are not enough
 * bytes to make up an entire block; the bytes will be reserved until
 * there are enough to encrypt/decrypt at least one block.)  However,
 * if zero is returned it *does* mean that no output buffer need be
 * passed in to the subsequent decrypt operation, as no output bytes
 * will be stored.
 */
unsigned int
NSS_CMSCipherContext_DecryptLength(NSSCMSCipherContext *cc, unsigned int input_len, PRBool final)
{
    int blocks, block_size;

    PORT_Assert (! cc->encrypt);

    block_size = cc->block_size;

    /*
     * If this is not a block cipher, then we always have the same
     * number of output bytes as we had input bytes.
     */
    if (block_size == 0)
	return input_len;

    /*
     * On the final call, we will always use up all of the pending
     * bytes plus all of the input bytes, *but*, there will be padding
     * at the end and we cannot predict how many bytes of padding we
     * will end up removing.  The amount given here is actually known
     * to be at least 1 byte too long (because we know we will have
     * at least 1 byte of padding), but seemed clearer/better to me.
     */
    if (final)
	return cc->pending_count + input_len;

    /*
     * Okay, this amount is exactly what we will output on the
     * next cipher operation.  We will always hang onto the last
     * 1 - block_size bytes for non-final operations.  That is,
     * we will do as many complete blocks as we can *except* the
     * last block (complete or partial).  (This is because until
     * we know we are at the end, we cannot know when to interpret
     * and removing the padding byte(s), which are guaranteed to
     * be there.)
     */
    blocks = (cc->pending_count + input_len - 1) / block_size;
    return blocks * block_size;
}

/*
 * NSS_CMSCipherContext_EncryptLength - find the output length of the next call to encrypt.
 *
 * cc - the cipher context
 * input_len - number of bytes used as input
 * final - true if this is the final chunk of data
 *
 * Result can be used to perform memory allocations.
 *
 * Note that this can return zero, which does not mean that the encrypt
 * operation can be skipped!  (It simply means that there are not enough
 * bytes to make up an entire block; the bytes will be reserved until
 * there are enough to encrypt/decrypt at least one block.)  However,
 * if zero is returned it *does* mean that no output buffer need be
 * passed in to the subsequent encrypt operation, as no output bytes
 * will be stored.
 */
unsigned int
NSS_CMSCipherContext_EncryptLength(NSSCMSCipherContext *cc, unsigned int input_len, PRBool final)
{
    int blocks, block_size;
    int pad_size;

    PORT_Assert (cc->encrypt);

    block_size = cc->block_size;
    pad_size = cc->pad_size;

    /*
     * If this is not a block cipher, then we always have the same
     * number of output bytes as we had input bytes.
     */
    if (block_size == 0)
	return input_len;

    /*
     * On the final call, we only send out what we need for
     * remaining bytes plus the padding.  (There is always padding,
     * so even if we have an exact number of blocks as input, we
     * will add another full block that is just padding.)
     */
    if (final) {
	if (pad_size == 0) {
    	    return cc->pending_count + input_len;
	} else {
    	    blocks = (cc->pending_count + input_len) / pad_size;
	    blocks++;
	    return blocks*pad_size;
	}
    }

    /*
     * Now, count the number of complete blocks of data we have.
     */
    blocks = (cc->pending_count + input_len) / block_size;


    return blocks * block_size;
}


/*
 * NSS_CMSCipherContext_Decrypt - do the decryption
 *
 * cc - the cipher context
 * output - buffer for decrypted result bytes
 * output_len_p - number of bytes in output
 * max_output_len - upper bound on bytes to put into output
 * input - pointer to input bytes
 * input_len - number of input bytes
 * final - true if this is the final chunk of data
 *
 * Decrypts a given length of input buffer (starting at "input" and
 * containing "input_len" bytes), placing the decrypted bytes in
 * "output" and storing the output length in "*output_len_p".
 * "cc" is the return value from NSS_CMSCipher_StartDecrypt.
 * When "final" is true, this is the last of the data to be decrypted.
 *
 * This is much more complicated than it sounds when the cipher is
 * a block-type, meaning that the decryption function will only
 * operate on whole blocks.  But our caller is operating stream-wise,
 * and can pass in any number of bytes.  So we need to keep track
 * of block boundaries.  We save excess bytes between calls in "cc".
 * We also need to determine which bytes are padding, and remove
 * them from the output.  We can only do this step when we know we
 * have the final block of data.  PKCS #7 specifies that the padding
 * used for a block cipher is a string of bytes, each of whose value is
 * the same as the length of the padding, and that all data is padded.
 * (Even data that starts out with an exact multiple of blocks gets
 * added to it another block, all of which is padding.)
 */ 
SECStatus
NSS_CMSCipherContext_Decrypt(NSSCMSCipherContext *cc, unsigned char *output,
		  unsigned int *output_len_p, unsigned int max_output_len,
		  const unsigned char *input, unsigned int input_len,
		  PRBool final)
{
    int blocks, bsize, pcount, padsize;
    unsigned int max_needed, ifraglen, ofraglen, output_len;
    unsigned char *pbuf;
    SECStatus rv;

    PORT_Assert (! cc->encrypt);

    /*
     * Check that we have enough room for the output.  Our caller should
     * already handle this; failure is really an internal error (i.e. bug).
     */
    max_needed = NSS_CMSCipherContext_DecryptLength(cc, input_len, final);
    PORT_Assert (max_output_len >= max_needed);
    if (max_output_len < max_needed) {
	/* PORT_SetError (XXX); */
	return SECFailure;
    }

    /*
     * hardware encryption does not like small decryption sizes here, so we
     * allow both blocking and padding.
     */
    bsize = cc->block_size;
    padsize = cc->pad_size;

    /*
     * When no blocking or padding work to do, we can simply call the
     * cipher function and we are done.
     */
    if (bsize == 0) {
	return (* cc->doit) (cc->cx, output, output_len_p, max_output_len,
			      input, input_len);
    }

    pcount = cc->pending_count;
    pbuf = cc->pending_buf;

    output_len = 0;

    if (pcount) {
	/*
	 * Try to fill in an entire block, starting with the bytes
	 * we already have saved away.
	 */
	while (input_len && pcount < bsize) {
	    pbuf[pcount++] = *input++;
	    input_len--;
	}
	/*
	 * If we have at most a whole block and this is not our last call,
	 * then we are done for now.  (We do not try to decrypt a lone
	 * single block because we cannot interpret the padding bytes
	 * until we know we are handling the very last block of all input.)
	 */
	if (input_len == 0 && !final) {
	    cc->pending_count = pcount;
	    if (output_len_p)
		*output_len_p = 0;
	    return SECSuccess;
	}
	/*
	 * Given the logic above, we expect to have a full block by now.
	 * If we do not, there is something wrong, either with our own
	 * logic or with (length of) the data given to us.
	 */
	if ((padsize != 0) && (pcount % padsize) != 0) {
	    PORT_Assert (final);	
	    PORT_SetError (SEC_ERROR_BAD_DATA);
	    return SECFailure;
	}
	/*
	 * Decrypt the block.
	 */
	rv = (*cc->doit)(cc->cx, output, &ofraglen, max_output_len,
			    pbuf, pcount);
	if (rv != SECSuccess)
	    return rv;

	/*
	 * For now anyway, all of our ciphers have the same number of
	 * bytes of output as they do input.  If this ever becomes untrue,
	 * then NSS_CMSCipherContext_DecryptLength needs to be made smarter!
	 */
	PORT_Assert(ofraglen == pcount);

	/*
	 * Account for the bytes now in output.
	 */
	max_output_len -= ofraglen;
	output_len += ofraglen;
	output += ofraglen;
    }

    /*
     * If this is our last call, we expect to have an exact number of
     * blocks left to be decrypted; we will decrypt them all.
     * 
     * If not our last call, we always save between 1 and bsize bytes
     * until next time.  (We must do this because we cannot be sure
     * that none of the decrypted bytes are padding bytes until we
     * have at least another whole block of data.  You cannot tell by
     * looking -- the data could be anything -- you can only tell by
     * context, knowing you are looking at the last block.)  We could
     * decrypt a whole block now but it is easier if we just treat it
     * the same way we treat partial block bytes.
     */
    if (final) {
	if (padsize) {
	    blocks = input_len / padsize;
	    ifraglen = blocks * padsize;
	} else ifraglen = input_len;
	PORT_Assert (ifraglen == input_len);

	if (ifraglen != input_len) {
	    PORT_SetError(SEC_ERROR_BAD_DATA);
	    return SECFailure;
	}
    } else {
	blocks = (input_len - 1) / bsize;
	ifraglen = blocks * bsize;
	PORT_Assert (ifraglen < input_len);

	pcount = input_len - ifraglen;
	PORT_Memcpy (pbuf, input + ifraglen, pcount);
	cc->pending_count = pcount;
    }

    if (ifraglen) {
	rv = (* cc->doit)(cc->cx, output, &ofraglen, max_output_len,
			    input, ifraglen);
	if (rv != SECSuccess)
	    return rv;

	/*
	 * For now anyway, all of our ciphers have the same number of
	 * bytes of output as they do input.  If this ever becomes untrue,
	 * then sec_PKCS7DecryptLength needs to be made smarter!
	 */
	PORT_Assert (ifraglen == ofraglen);
	if (ifraglen != ofraglen) {
	    PORT_SetError(SEC_ERROR_BAD_DATA);
	    return SECFailure;
	}

	output_len += ofraglen;
    } else {
	ofraglen = 0;
    }

    /*
     * If we just did our very last block, "remove" the padding by
     * adjusting the output length.
     */
    if (final && (padsize != 0)) {
	unsigned int padlen = *(output + ofraglen - 1);

	if (padlen == 0 || padlen > padsize) {
	    PORT_SetError(SEC_ERROR_BAD_DATA);
	    return SECFailure;
	}
	output_len -= padlen;
    }

    PORT_Assert (output_len_p != NULL || output_len == 0);
    if (output_len_p != NULL)
	*output_len_p = output_len;

    return SECSuccess;
}

/*
 * NSS_CMSCipherContext_Encrypt - do the encryption
 *
 * cc - the cipher context
 * output - buffer for decrypted result bytes
 * output_len_p - number of bytes in output
 * max_output_len - upper bound on bytes to put into output
 * input - pointer to input bytes
 * input_len - number of input bytes
 * final - true if this is the final chunk of data
 *
 * Encrypts a given length of input buffer (starting at "input" and
 * containing "input_len" bytes), placing the encrypted bytes in
 * "output" and storing the output length in "*output_len_p".
 * "cc" is the return value from NSS_CMSCipher_StartEncrypt.
 * When "final" is true, this is the last of the data to be encrypted.
 *
 * This is much more complicated than it sounds when the cipher is
 * a block-type, meaning that the encryption function will only
 * operate on whole blocks.  But our caller is operating stream-wise,
 * and can pass in any number of bytes.  So we need to keep track
 * of block boundaries.  We save excess bytes between calls in "cc".
 * We also need to add padding bytes at the end.  PKCS #7 specifies
 * that the padding used for a block cipher is a string of bytes,
 * each of whose value is the same as the length of the padding,
 * and that all data is padded.  (Even data that starts out with
 * an exact multiple of blocks gets added to it another block,
 * all of which is padding.)
 *
 * XXX I would kind of like to combine this with the function above
 * which does decryption, since they have a lot in common.  But the
 * tricky parts about padding and filling blocks would be much
 * harder to read that way, so I left them separate.  At least for
 * now until it is clear that they are right.
 */ 
SECStatus
NSS_CMSCipherContext_Encrypt(NSSCMSCipherContext *cc, unsigned char *output,
		  unsigned int *output_len_p, unsigned int max_output_len,
		  const unsigned char *input, unsigned int input_len,
		  PRBool final)
{
    int blocks, bsize, padlen, pcount, padsize;
    unsigned int max_needed, ifraglen, ofraglen, output_len;
    unsigned char *pbuf;
    SECStatus rv;

    PORT_Assert (cc->encrypt);

    /*
     * Check that we have enough room for the output.  Our caller should
     * already handle this; failure is really an internal error (i.e. bug).
     */
    max_needed = NSS_CMSCipherContext_EncryptLength (cc, input_len, final);
    PORT_Assert (max_output_len >= max_needed);
    if (max_output_len < max_needed) {
	/* PORT_SetError (XXX); */
	return SECFailure;
    }

    bsize = cc->block_size;
    padsize = cc->pad_size;

    /*
     * When no blocking and padding work to do, we can simply call the
     * cipher function and we are done.
     */
    if (bsize == 0) {
	return (*cc->doit)(cc->cx, output, output_len_p, max_output_len,
			      input, input_len);
    }

    pcount = cc->pending_count;
    pbuf = cc->pending_buf;

    output_len = 0;

    if (pcount) {
	/*
	 * Try to fill in an entire block, starting with the bytes
	 * we already have saved away.
	 */
	while (input_len && pcount < bsize) {
	    pbuf[pcount++] = *input++;
	    input_len--;
	}
	/*
	 * If we do not have a full block and we know we will be
	 * called again, then we are done for now.
	 */
	if (pcount < bsize && !final) {
	    cc->pending_count = pcount;
	    if (output_len_p != NULL)
		*output_len_p = 0;
	    return SECSuccess;
	}
	/*
	 * If we have a whole block available, encrypt it.
	 */
	if ((padsize == 0) || (pcount % padsize) == 0) {
	    rv = (* cc->doit) (cc->cx, output, &ofraglen, max_output_len,
				pbuf, pcount);
	    if (rv != SECSuccess)
		return rv;

	    /*
	     * For now anyway, all of our ciphers have the same number of
	     * bytes of output as they do input.  If this ever becomes untrue,
	     * then sec_PKCS7EncryptLength needs to be made smarter!
	     */
	    PORT_Assert (ofraglen == pcount);

	    /*
	     * Account for the bytes now in output.
	     */
	    max_output_len -= ofraglen;
	    output_len += ofraglen;
	    output += ofraglen;

	    pcount = 0;
	}
    }

    if (input_len) {
	PORT_Assert (pcount == 0);

	blocks = input_len / bsize;
	ifraglen = blocks * bsize;

	if (ifraglen) {
	    rv = (* cc->doit) (cc->cx, output, &ofraglen, max_output_len,
				input, ifraglen);
	    if (rv != SECSuccess)
		return rv;

	    /*
	     * For now anyway, all of our ciphers have the same number of
	     * bytes of output as they do input.  If this ever becomes untrue,
	     * then sec_PKCS7EncryptLength needs to be made smarter!
	     */
	    PORT_Assert (ifraglen == ofraglen);

	    max_output_len -= ofraglen;
	    output_len += ofraglen;
	    output += ofraglen;
	}

	pcount = input_len - ifraglen;
	PORT_Assert (pcount < bsize);
	if (pcount)
	    PORT_Memcpy (pbuf, input + ifraglen, pcount);
    }

    if (final) {
	padlen = padsize - (pcount % padsize);
	PORT_Memset (pbuf + pcount, padlen, padlen);
	rv = (* cc->doit) (cc->cx, output, &ofraglen, max_output_len,
			    pbuf, pcount+padlen);
	if (rv != SECSuccess)
	    return rv;

	/*
	 * For now anyway, all of our ciphers have the same number of
	 * bytes of output as they do input.  If this ever becomes untrue,
	 * then sec_PKCS7EncryptLength needs to be made smarter!
	 */
	PORT_Assert (ofraglen == (pcount+padlen));
	output_len += ofraglen;
    } else {
	cc->pending_count = pcount;
    }

    PORT_Assert (output_len_p != NULL || output_len == 0);
    if (output_len_p != NULL)
	*output_len_p = output_len;

    return SECSuccess;
}