DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (d1ed7de67f5a)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
////////////////////////////////////////////////////////////////////////////////
///
/// MMX optimized routines. All MMX optimized functions have been gathered into 
/// this single source code file, regardless to their class or original source 
/// code file, in order to ease porting the library to other compiler and 
/// processor platforms.
///
/// The MMX-optimizations are programmed using MMX compiler intrinsics that
/// are supported both by Microsoft Visual C++ and GCC compilers, so this file
/// should compile with both toolsets.
///
/// NOTICE: If using Visual Studio 6.0, you'll need to install the "Visual C++ 
/// 6.0 processor pack" update to support compiler intrinsic syntax. The update
/// is available for download at Microsoft Developers Network, see here:
/// http://msdn.microsoft.com/en-us/vstudio/aa718349.aspx
///
/// Author        : Copyright (c) Olli Parviainen
/// Author e-mail : oparviai 'at' iki.fi
/// SoundTouch WWW: http://www.surina.net/soundtouch
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed  : $Date: 2014-01-07 12:25:40 -0600 (Tue, 07 Jan 2014) $
// File revision : $Revision: 4 $
//
// $Id: mmx_optimized.cpp 184 2014-01-07 18:25:40Z oparviai $
//
////////////////////////////////////////////////////////////////////////////////
//
// License :
//
//  SoundTouch audio processing library
//  Copyright (c) Olli Parviainen
//
//  This library is free software; you can redistribute it and/or
//  modify it under the terms of the GNU Lesser General Public
//  License as published by the Free Software Foundation; either
//  version 2.1 of the License, or (at your option) any later version.
//
//  This library is distributed in the hope that it will be useful,
//  but WITHOUT ANY WARRANTY; without even the implied warranty of
//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
//  Lesser General Public License for more details.
//
//  You should have received a copy of the GNU Lesser General Public
//  License along with this library; if not, write to the Free Software
//  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
//
////////////////////////////////////////////////////////////////////////////////

#include "STTypes.h"

#ifdef SOUNDTOUCH_ALLOW_MMX
// MMX routines available only with integer sample type

using namespace soundtouch;

//////////////////////////////////////////////////////////////////////////////
//
// implementation of MMX optimized functions of class 'TDStretchMMX'
//
//////////////////////////////////////////////////////////////////////////////

#include "TDStretch.h"
#include <mmintrin.h>
#include <limits.h>
#include <math.h>


// Calculates cross correlation of two buffers
double TDStretchMMX::calcCrossCorr(const short *pV1, const short *pV2, double &dnorm) const
{
    const __m64 *pVec1, *pVec2;
    __m64 shifter;
    __m64 accu, normaccu;
    long corr, norm;
    int i;
   
    pVec1 = (__m64*)pV1;
    pVec2 = (__m64*)pV2;

    shifter = _m_from_int(overlapDividerBits);
    normaccu = accu = _mm_setzero_si64();

    // Process 4 parallel sets of 2 * stereo samples or 4 * mono samples 
    // during each round for improved CPU-level parallellization.
    for (i = 0; i < channels * overlapLength / 16; i ++)
    {
        __m64 temp, temp2;

        // dictionary of instructions:
        // _m_pmaddwd   : 4*16bit multiply-add, resulting two 32bits = [a0*b0+a1*b1 ; a2*b2+a3*b3]
        // _mm_add_pi32 : 2*32bit add
        // _m_psrad     : 32bit right-shift

        temp = _mm_add_pi32(_mm_sra_pi32(_mm_madd_pi16(pVec1[0], pVec2[0]), shifter),
                            _mm_sra_pi32(_mm_madd_pi16(pVec1[1], pVec2[1]), shifter));
        temp2 = _mm_add_pi32(_mm_sra_pi32(_mm_madd_pi16(pVec1[0], pVec1[0]), shifter),
                            _mm_sra_pi32(_mm_madd_pi16(pVec1[1], pVec1[1]), shifter));
        accu = _mm_add_pi32(accu, temp);
        normaccu = _mm_add_pi32(normaccu, temp2);

        temp = _mm_add_pi32(_mm_sra_pi32(_mm_madd_pi16(pVec1[2], pVec2[2]), shifter),
                            _mm_sra_pi32(_mm_madd_pi16(pVec1[3], pVec2[3]), shifter));
        temp2 = _mm_add_pi32(_mm_sra_pi32(_mm_madd_pi16(pVec1[2], pVec1[2]), shifter),
                            _mm_sra_pi32(_mm_madd_pi16(pVec1[3], pVec1[3]), shifter));
        accu = _mm_add_pi32(accu, temp);
        normaccu = _mm_add_pi32(normaccu, temp2);

        pVec1 += 4;
        pVec2 += 4;
    }

    // copy hi-dword of mm0 to lo-dword of mm1, then sum mmo+mm1
    // and finally store the result into the variable "corr"

    accu = _mm_add_pi32(accu, _mm_srli_si64(accu, 32));
    corr = _m_to_int(accu);

    normaccu = _mm_add_pi32(normaccu, _mm_srli_si64(normaccu, 32));
    norm = _m_to_int(normaccu);

    // Clear MMS state
    _m_empty();

    // Normalize result by dividing by sqrt(norm) - this step is easiest 
    // done using floating point operation
    dnorm = (double)norm;

    return (double)corr / sqrt(dnorm < 1e-9 ? 1.0 : dnorm);
    // Note: Warning about the missing EMMS instruction is harmless
    // as it'll be called elsewhere.
}


/// Update cross-correlation by accumulating "norm" coefficient by previously calculated value
double TDStretchMMX::calcCrossCorrAccumulate(const short *pV1, const short *pV2, double &dnorm) const
{
    const __m64 *pVec1, *pVec2;
    __m64 shifter;
    __m64 accu;
    long corr, lnorm;
    int i;
   
    // cancel first normalizer tap from previous round
    lnorm = 0;
    for (i = 1; i <= channels; i ++)
    {
        lnorm -= (pV1[-i] * pV1[-i]) >> overlapDividerBits;
    }

    pVec1 = (__m64*)pV1;
    pVec2 = (__m64*)pV2;

    shifter = _m_from_int(overlapDividerBits);
    accu = _mm_setzero_si64();

    // Process 4 parallel sets of 2 * stereo samples or 4 * mono samples 
    // during each round for improved CPU-level parallellization.
    for (i = 0; i < channels * overlapLength / 16; i ++)
    {
        __m64 temp;

        // dictionary of instructions:
        // _m_pmaddwd   : 4*16bit multiply-add, resulting two 32bits = [a0*b0+a1*b1 ; a2*b2+a3*b3]
        // _mm_add_pi32 : 2*32bit add
        // _m_psrad     : 32bit right-shift

        temp = _mm_add_pi32(_mm_sra_pi32(_mm_madd_pi16(pVec1[0], pVec2[0]), shifter),
                            _mm_sra_pi32(_mm_madd_pi16(pVec1[1], pVec2[1]), shifter));
        accu = _mm_add_pi32(accu, temp);

        temp = _mm_add_pi32(_mm_sra_pi32(_mm_madd_pi16(pVec1[2], pVec2[2]), shifter),
                            _mm_sra_pi32(_mm_madd_pi16(pVec1[3], pVec2[3]), shifter));
        accu = _mm_add_pi32(accu, temp);

        pVec1 += 4;
        pVec2 += 4;
    }

    // copy hi-dword of mm0 to lo-dword of mm1, then sum mmo+mm1
    // and finally store the result into the variable "corr"

    accu = _mm_add_pi32(accu, _mm_srli_si64(accu, 32));
    corr = _m_to_int(accu);

    // Clear MMS state
    _m_empty();

    // update normalizer with last samples of this round
    pV1 = (short *)pVec1;
    for (int j = 1; j <= channels; j ++)
    {
        lnorm += (pV1[-j] * pV1[-j]) >> overlapDividerBits;
    }
    dnorm += (double)lnorm;

    // Normalize result by dividing by sqrt(norm) - this step is easiest 
    // done using floating point operation
    return (double)corr / sqrt((dnorm < 1e-9) ? 1.0 : dnorm);
}


void TDStretchMMX::clearCrossCorrState()
{
    // Clear MMS state
    _m_empty();
    //_asm EMMS;
}



// MMX-optimized version of the function overlapStereo
void TDStretchMMX::overlapStereo(short *output, const short *input) const
{
    const __m64 *pVinput, *pVMidBuf;
    __m64 *pVdest;
    __m64 mix1, mix2, adder, shifter;
    int i;

    pVinput  = (const __m64*)input;
    pVMidBuf = (const __m64*)pMidBuffer;
    pVdest   = (__m64*)output;

    // mix1  = mixer values for 1st stereo sample
    // mix1  = mixer values for 2nd stereo sample
    // adder = adder for updating mixer values after each round
    
    mix1  = _mm_set_pi16(0, overlapLength,   0, overlapLength);
    adder = _mm_set_pi16(1, -1, 1, -1);
    mix2  = _mm_add_pi16(mix1, adder);
    adder = _mm_add_pi16(adder, adder);

    // Overlaplength-division by shifter. "+1" is to account for "-1" deduced in
    // overlapDividerBits calculation earlier.
    shifter = _m_from_int(overlapDividerBits + 1);

    for (i = 0; i < overlapLength / 4; i ++)
    {
        __m64 temp1, temp2;
                
        // load & shuffle data so that input & mixbuffer data samples are paired
        temp1 = _mm_unpacklo_pi16(pVMidBuf[0], pVinput[0]);     // = i0l m0l i0r m0r
        temp2 = _mm_unpackhi_pi16(pVMidBuf[0], pVinput[0]);     // = i1l m1l i1r m1r

        // temp = (temp .* mix) >> shifter
        temp1 = _mm_sra_pi32(_mm_madd_pi16(temp1, mix1), shifter);
        temp2 = _mm_sra_pi32(_mm_madd_pi16(temp2, mix2), shifter);
        pVdest[0] = _mm_packs_pi32(temp1, temp2); // pack 2*2*32bit => 4*16bit

        // update mix += adder
        mix1 = _mm_add_pi16(mix1, adder);
        mix2 = _mm_add_pi16(mix2, adder);

        // --- second round begins here ---

        // load & shuffle data so that input & mixbuffer data samples are paired
        temp1 = _mm_unpacklo_pi16(pVMidBuf[1], pVinput[1]);       // = i2l m2l i2r m2r
        temp2 = _mm_unpackhi_pi16(pVMidBuf[1], pVinput[1]);       // = i3l m3l i3r m3r

        // temp = (temp .* mix) >> shifter
        temp1 = _mm_sra_pi32(_mm_madd_pi16(temp1, mix1), shifter);
        temp2 = _mm_sra_pi32(_mm_madd_pi16(temp2, mix2), shifter);
        pVdest[1] = _mm_packs_pi32(temp1, temp2); // pack 2*2*32bit => 4*16bit

        // update mix += adder
        mix1 = _mm_add_pi16(mix1, adder);
        mix2 = _mm_add_pi16(mix2, adder);

        pVinput  += 2;
        pVMidBuf += 2;
        pVdest   += 2;
    }

    _m_empty(); // clear MMS state
}


//////////////////////////////////////////////////////////////////////////////
//
// implementation of MMX optimized functions of class 'FIRFilter'
//
//////////////////////////////////////////////////////////////////////////////

#include "FIRFilter.h"


FIRFilterMMX::FIRFilterMMX() : FIRFilter()
{
    filterCoeffsUnalign = NULL;
}


FIRFilterMMX::~FIRFilterMMX()
{
    delete[] filterCoeffsUnalign;
}


// (overloaded) Calculates filter coefficients for MMX routine
void FIRFilterMMX::setCoefficients(const short *coeffs, uint newLength, uint uResultDivFactor)
{
    uint i;
    FIRFilter::setCoefficients(coeffs, newLength, uResultDivFactor);

    // Ensure that filter coeffs array is aligned to 16-byte boundary
    delete[] filterCoeffsUnalign;
    filterCoeffsUnalign = new short[2 * newLength + 8];
    filterCoeffsAlign = (short *)SOUNDTOUCH_ALIGN_POINTER_16(filterCoeffsUnalign);

    // rearrange the filter coefficients for mmx routines 
    for (i = 0;i < length; i += 4) 
    {
        filterCoeffsAlign[2 * i + 0] = coeffs[i + 0];
        filterCoeffsAlign[2 * i + 1] = coeffs[i + 2];
        filterCoeffsAlign[2 * i + 2] = coeffs[i + 0];
        filterCoeffsAlign[2 * i + 3] = coeffs[i + 2];

        filterCoeffsAlign[2 * i + 4] = coeffs[i + 1];
        filterCoeffsAlign[2 * i + 5] = coeffs[i + 3];
        filterCoeffsAlign[2 * i + 6] = coeffs[i + 1];
        filterCoeffsAlign[2 * i + 7] = coeffs[i + 3];
    }
}



// mmx-optimized version of the filter routine for stereo sound
uint FIRFilterMMX::evaluateFilterStereo(short *dest, const short *src, uint numSamples) const
{
    // Create stack copies of the needed member variables for asm routines :
    uint i, j;
    __m64 *pVdest = (__m64*)dest;

    if (length < 2) return 0;

    for (i = 0; i < (numSamples - length) / 2; i ++)
    {
        __m64 accu1;
        __m64 accu2;
        const __m64 *pVsrc = (const __m64*)src;
        const __m64 *pVfilter = (const __m64*)filterCoeffsAlign;

        accu1 = accu2 = _mm_setzero_si64();
        for (j = 0; j < lengthDiv8 * 2; j ++)
        {
            __m64 temp1, temp2;

            temp1 = _mm_unpacklo_pi16(pVsrc[0], pVsrc[1]);  // = l2 l0 r2 r0
            temp2 = _mm_unpackhi_pi16(pVsrc[0], pVsrc[1]);  // = l3 l1 r3 r1

            accu1 = _mm_add_pi32(accu1, _mm_madd_pi16(temp1, pVfilter[0]));  // += l2*f2+l0*f0 r2*f2+r0*f0
            accu1 = _mm_add_pi32(accu1, _mm_madd_pi16(temp2, pVfilter[1]));  // += l3*f3+l1*f1 r3*f3+r1*f1

            temp1 = _mm_unpacklo_pi16(pVsrc[1], pVsrc[2]);  // = l4 l2 r4 r2

            accu2 = _mm_add_pi32(accu2, _mm_madd_pi16(temp2, pVfilter[0]));  // += l3*f2+l1*f0 r3*f2+r1*f0
            accu2 = _mm_add_pi32(accu2, _mm_madd_pi16(temp1, pVfilter[1]));  // += l4*f3+l2*f1 r4*f3+r2*f1

            // accu1 += l2*f2+l0*f0 r2*f2+r0*f0
            //       += l3*f3+l1*f1 r3*f3+r1*f1

            // accu2 += l3*f2+l1*f0 r3*f2+r1*f0
            //          l4*f3+l2*f1 r4*f3+r2*f1

            pVfilter += 2;
            pVsrc += 2;
        }
        // accu >>= resultDivFactor
        accu1 = _mm_srai_pi32(accu1, resultDivFactor);
        accu2 = _mm_srai_pi32(accu2, resultDivFactor);

        // pack 2*2*32bits => 4*16 bits
        pVdest[0] = _mm_packs_pi32(accu1, accu2);
        src += 4;
        pVdest ++;
    }

   _m_empty();  // clear emms state

    return (numSamples & 0xfffffffe) - length;
}

#endif  // SOUNDTOUCH_ALLOW_MMX