DXR will be turned off on Tuesday, December 29th. It will redirect to Searchfox.
See the announcement on Discourse.

DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (d1ed7de67f5a)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
////////////////////////////////////////////////////////////////////////////////
/// 
/// Sampled sound tempo changer/time stretch algorithm. Changes the sound tempo 
/// while maintaining the original pitch by using a time domain WSOLA-like 
/// method with several performance-increasing tweaks.
///
/// Note : MMX optimized functions reside in a separate, platform-specific 
/// file, e.g. 'mmx_win.cpp' or 'mmx_gcc.cpp'
///
/// Author        : Copyright (c) Olli Parviainen
/// Author e-mail : oparviai 'at' iki.fi
/// SoundTouch WWW: http://www.surina.net/soundtouch
///
////////////////////////////////////////////////////////////////////////////////
//
// Last changed  : $Date: 2014-04-06 10:57:21 -0500 (Sun, 06 Apr 2014) $
// File revision : $Revision: 1.12 $
//
// $Id: TDStretch.cpp 195 2014-04-06 15:57:21Z oparviai $
//
////////////////////////////////////////////////////////////////////////////////
//
// License :
//
//  SoundTouch audio processing library
//  Copyright (c) Olli Parviainen
//
//  This library is free software; you can redistribute it and/or
//  modify it under the terms of the GNU Lesser General Public
//  License as published by the Free Software Foundation; either
//  version 2.1 of the License, or (at your option) any later version.
//
//  This library is distributed in the hope that it will be useful,
//  but WITHOUT ANY WARRANTY; without even the implied warranty of
//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
//  Lesser General Public License for more details.
//
//  You should have received a copy of the GNU Lesser General Public
//  License along with this library; if not, write to the Free Software
//  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
//
////////////////////////////////////////////////////////////////////////////////

#include <string.h>
#include <limits.h>
#include <assert.h>
#include <math.h>
#include <float.h>

#include "STTypes.h"
#include "cpu_detect.h"
#include "TDStretch.h"

using namespace soundtouch;

#define max(x, y) (((x) > (y)) ? (x) : (y))


/*****************************************************************************
 *
 * Constant definitions
 *
 *****************************************************************************/

// Table for the hierarchical mixing position seeking algorithm
static const short _scanOffsets[5][24]={
    { 124,  186,  248,  310,  372,  434,  496,  558,  620,  682,  744, 806,
      868,  930,  992, 1054, 1116, 1178, 1240, 1302, 1364, 1426, 1488,   0},
    {-100,  -75,  -50,  -25,   25,   50,   75,  100,    0,    0,    0,   0,
        0,    0,    0,    0,    0,    0,    0,    0,    0,    0,    0,   0},
    { -20,  -15,  -10,   -5,    5,   10,   15,   20,    0,    0,    0,   0,
        0,    0,    0,    0,    0,    0,    0,    0,    0,    0,    0,   0},
    {  -4,   -3,   -2,   -1,    1,    2,    3,    4,    0,    0,    0,   0,
        0,    0,    0,    0,    0,    0,    0,    0,    0,    0,    0,   0},
    { 121,  114,   97,  114,   98,  105,  108,   32,  104,   99,  117,  111,
      116,  100,  110,  117,  111,  115,    0,    0,    0,    0,    0,   0}};

/*****************************************************************************
 *
 * Implementation of the class 'TDStretch'
 *
 *****************************************************************************/


TDStretch::TDStretch() : FIFOProcessor(&outputBuffer)
{
    bQuickSeek = false;
    channels = 2;

    pMidBuffer = NULL;
    pMidBufferUnaligned = NULL;
    overlapLength = 0;

    bAutoSeqSetting = true;
    bAutoSeekSetting = true;

//    outDebt = 0;
    skipFract = 0;

    tempo = 1.0f;
    setParameters(44100, DEFAULT_SEQUENCE_MS, DEFAULT_SEEKWINDOW_MS, DEFAULT_OVERLAP_MS);
    setTempo(1.0f);

    clear();
}



TDStretch::~TDStretch()
{
    delete[] pMidBufferUnaligned;
}



// Sets routine control parameters. These control are certain time constants
// defining how the sound is stretched to the desired duration.
//
// 'sampleRate' = sample rate of the sound
// 'sequenceMS' = one processing sequence length in milliseconds (default = 82 ms)
// 'seekwindowMS' = seeking window length for scanning the best overlapping 
//      position (default = 28 ms)
// 'overlapMS' = overlapping length (default = 12 ms)

void TDStretch::setParameters(int aSampleRate, int aSequenceMS, 
                              int aSeekWindowMS, int aOverlapMS)
{
    // accept only positive parameter values - if zero or negative, use old values instead
    if (aSampleRate > 0)   this->sampleRate = aSampleRate;
    if (aOverlapMS > 0)    this->overlapMs = aOverlapMS;

    if (aSequenceMS > 0)
    {
        this->sequenceMs = aSequenceMS;
        bAutoSeqSetting = false;
    } 
    else if (aSequenceMS == 0)
    {
        // if zero, use automatic setting
        bAutoSeqSetting = true;
    }

    if (aSeekWindowMS > 0) 
    {
        this->seekWindowMs = aSeekWindowMS;
        bAutoSeekSetting = false;
    } 
    else if (aSeekWindowMS == 0) 
    {
        // if zero, use automatic setting
        bAutoSeekSetting = true;
    }

    calcSeqParameters();

    calculateOverlapLength(overlapMs);

    // set tempo to recalculate 'sampleReq'
    setTempo(tempo);
}



/// Get routine control parameters, see setParameters() function.
/// Any of the parameters to this function can be NULL, in such case corresponding parameter
/// value isn't returned.
void TDStretch::getParameters(int *pSampleRate, int *pSequenceMs, int *pSeekWindowMs, int *pOverlapMs) const
{
    if (pSampleRate)
    {
        *pSampleRate = sampleRate;
    }

    if (pSequenceMs)
    {
        *pSequenceMs = (bAutoSeqSetting) ? (USE_AUTO_SEQUENCE_LEN) : sequenceMs;
    }

    if (pSeekWindowMs)
    {
        *pSeekWindowMs = (bAutoSeekSetting) ? (USE_AUTO_SEEKWINDOW_LEN) : seekWindowMs;
    }

    if (pOverlapMs)
    {
        *pOverlapMs = overlapMs;
    }
}


// Overlaps samples in 'midBuffer' with the samples in 'pInput'
void TDStretch::overlapMono(SAMPLETYPE *pOutput, const SAMPLETYPE *pInput) const
{
    int i;
    SAMPLETYPE m1, m2;

    m1 = (SAMPLETYPE)0;
    m2 = (SAMPLETYPE)overlapLength;

    for (i = 0; i < overlapLength ; i ++) 
    {
        pOutput[i] = (pInput[i] * m1 + pMidBuffer[i] * m2 ) / overlapLength;
        m1 += 1;
        m2 -= 1;
    }
}



void TDStretch::clearMidBuffer()
{
    memset(pMidBuffer, 0, channels * sizeof(SAMPLETYPE) * overlapLength);
}


void TDStretch::clearInput()
{
    inputBuffer.clear();
    clearMidBuffer();
}


// Clears the sample buffers
void TDStretch::clear()
{
    outputBuffer.clear();
    clearInput();
}



// Enables/disables the quick position seeking algorithm. Zero to disable, nonzero
// to enable
void TDStretch::enableQuickSeek(bool enable)
{
    bQuickSeek = enable;
}


// Returns nonzero if the quick seeking algorithm is enabled.
bool TDStretch::isQuickSeekEnabled() const
{
    return bQuickSeek;
}


// Seeks for the optimal overlap-mixing position.
int TDStretch::seekBestOverlapPosition(const SAMPLETYPE *refPos)
{
    if (bQuickSeek) 
    {
        return seekBestOverlapPositionQuick(refPos);
    } 
    else 
    {
        return seekBestOverlapPositionFull(refPos);
    }
}


// Overlaps samples in 'midBuffer' with the samples in 'pInputBuffer' at position
// of 'ovlPos'.
inline void TDStretch::overlap(SAMPLETYPE *pOutput, const SAMPLETYPE *pInput, uint ovlPos) const
{
#ifndef USE_MULTICH_ALWAYS
    if (channels == 1)
    {
        // mono sound.
        overlapMono(pOutput, pInput + ovlPos);
    }
    else if (channels == 2)
    {
        // stereo sound
        overlapStereo(pOutput, pInput + 2 * ovlPos);
    } 
    else 
#endif // USE_MULTICH_ALWAYS
    {
        assert(channels > 0);
        overlapMulti(pOutput, pInput + channels * ovlPos);
    }
}



// Seeks for the optimal overlap-mixing position. The 'stereo' version of the
// routine
//
// The best position is determined as the position where the two overlapped
// sample sequences are 'most alike', in terms of the highest cross-correlation
// value over the overlapping period
int TDStretch::seekBestOverlapPositionFull(const SAMPLETYPE *refPos) 
{
    int bestOffs;
    double bestCorr, corr;
    double norm;
    int i;

    bestCorr = FLT_MIN;
    bestOffs = 0;

    // Scans for the best correlation value by testing each possible position
    // over the permitted range.
    bestCorr = calcCrossCorr(refPos, pMidBuffer, norm);
    for (i = 1; i < seekLength; i ++) 
    {
        // Calculates correlation value for the mixing position corresponding
        // to 'i'. Now call "calcCrossCorrAccumulate" that is otherwise same as
        // "calcCrossCorr", but saves time by reusing & updating previously stored 
        // "norm" value
        corr = calcCrossCorrAccumulate(refPos + channels * i, pMidBuffer, norm);

        // heuristic rule to slightly favour values close to mid of the range
        double tmp = (double)(2 * i - seekLength) / (double)seekLength;
        corr = ((corr + 0.1) * (1.0 - 0.25 * tmp * tmp));

        // Checks for the highest correlation value
        if (corr > bestCorr) 
        {
            bestCorr = corr;
            bestOffs = i;
        }
    }
    // clear cross correlation routine state if necessary (is so e.g. in MMX routines).
    clearCrossCorrState();

    return bestOffs;
}


// Seeks for the optimal overlap-mixing position. The 'stereo' version of the
// routine
//
// The best position is determined as the position where the two overlapped
// sample sequences are 'most alike', in terms of the highest cross-correlation
// value over the overlapping period
int TDStretch::seekBestOverlapPositionQuick(const SAMPLETYPE *refPos) 
{
    int j;
    int bestOffs;
    double bestCorr, corr;
    int scanCount, corrOffset, tempOffset;

    bestCorr = FLT_MIN;
    bestOffs = _scanOffsets[0][0];
    corrOffset = 0;
    tempOffset = 0;

    // Scans for the best correlation value using four-pass hierarchical search.
    //
    // The look-up table 'scans' has hierarchical position adjusting steps.
    // In first pass the routine searhes for the highest correlation with 
    // relatively coarse steps, then rescans the neighbourhood of the highest
    // correlation with better resolution and so on.
    for (scanCount = 0;scanCount < 4; scanCount ++) 
    {
        j = 0;
        while (_scanOffsets[scanCount][j]) 
        {
            double norm;
            tempOffset = corrOffset + _scanOffsets[scanCount][j];
            if (tempOffset >= seekLength) break;

            // Calculates correlation value for the mixing position corresponding
            // to 'tempOffset'
            corr = (double)calcCrossCorr(refPos + channels * tempOffset, pMidBuffer, norm);
            // heuristic rule to slightly favour values close to mid of the range
            double tmp = (double)(2 * tempOffset - seekLength) / seekLength;
            corr = ((corr + 0.1) * (1.0 - 0.25 * tmp * tmp));

            // Checks for the highest correlation value
            if (corr > bestCorr) 
            {
                bestCorr = corr;
                bestOffs = tempOffset;
            }
            j ++;
        }
        corrOffset = bestOffs;
    }
    // clear cross correlation routine state if necessary (is so e.g. in MMX routines).
    clearCrossCorrState();

    return bestOffs;
}



/// clear cross correlation routine state if necessary 
void TDStretch::clearCrossCorrState()
{
    // default implementation is empty.
}


/// Calculates processing sequence length according to tempo setting
void TDStretch::calcSeqParameters()
{
    // Adjust tempo param according to tempo, so that variating processing sequence length is used
    // at varius tempo settings, between the given low...top limits
    #define AUTOSEQ_TEMPO_LOW   0.5     // auto setting low tempo range (-50%)
    #define AUTOSEQ_TEMPO_TOP   2.0     // auto setting top tempo range (+100%)

    // sequence-ms setting values at above low & top tempo
    #define AUTOSEQ_AT_MIN      125.0
    #define AUTOSEQ_AT_MAX      50.0
    #define AUTOSEQ_K           ((AUTOSEQ_AT_MAX - AUTOSEQ_AT_MIN) / (AUTOSEQ_TEMPO_TOP - AUTOSEQ_TEMPO_LOW))
    #define AUTOSEQ_C           (AUTOSEQ_AT_MIN - (AUTOSEQ_K) * (AUTOSEQ_TEMPO_LOW))

    // seek-window-ms setting values at above low & top tempo
    #define AUTOSEEK_AT_MIN     25.0
    #define AUTOSEEK_AT_MAX     15.0
    #define AUTOSEEK_K          ((AUTOSEEK_AT_MAX - AUTOSEEK_AT_MIN) / (AUTOSEQ_TEMPO_TOP - AUTOSEQ_TEMPO_LOW))
    #define AUTOSEEK_C          (AUTOSEEK_AT_MIN - (AUTOSEEK_K) * (AUTOSEQ_TEMPO_LOW))

    #define CHECK_LIMITS(x, mi, ma) (((x) < (mi)) ? (mi) : (((x) > (ma)) ? (ma) : (x)))

    double seq, seek;
    
    if (bAutoSeqSetting)
    {
        seq = AUTOSEQ_C + AUTOSEQ_K * tempo;
        seq = CHECK_LIMITS(seq, AUTOSEQ_AT_MAX, AUTOSEQ_AT_MIN);
        sequenceMs = (int)(seq + 0.5);
    }

    if (bAutoSeekSetting)
    {
        seek = AUTOSEEK_C + AUTOSEEK_K * tempo;
        seek = CHECK_LIMITS(seek, AUTOSEEK_AT_MAX, AUTOSEEK_AT_MIN);
        seekWindowMs = (int)(seek + 0.5);
    }

    // Update seek window lengths
    seekWindowLength = (sampleRate * sequenceMs) / 1000;
    if (seekWindowLength < 2 * overlapLength) 
    {
        seekWindowLength = 2 * overlapLength;
    }
    seekLength = (sampleRate * seekWindowMs) / 1000;
}



// Sets new target tempo. Normal tempo = 'SCALE', smaller values represent slower 
// tempo, larger faster tempo.
void TDStretch::setTempo(float newTempo)
{
    int intskip;

    tempo = newTempo;

    // Calculate new sequence duration
    calcSeqParameters();

    // Calculate ideal skip length (according to tempo value) 
    nominalSkip = tempo * (seekWindowLength - overlapLength);
    intskip = (int)(nominalSkip + 0.5f);

    // Calculate how many samples are needed in the 'inputBuffer' to 
    // process another batch of samples
    //sampleReq = max(intskip + overlapLength, seekWindowLength) + seekLength / 2;
    sampleReq = max(intskip + overlapLength, seekWindowLength) + seekLength;
}



// Sets the number of channels, 1 = mono, 2 = stereo
void TDStretch::setChannels(int numChannels)
{
    assert(numChannels > 0);
    if (channels == numChannels) return;
//    assert(numChannels == 1 || numChannels == 2);

    channels = numChannels;
    inputBuffer.setChannels(channels);
    outputBuffer.setChannels(channels);

    // re-init overlap/buffer
    overlapLength=0;
    setParameters(sampleRate);
}


// nominal tempo, no need for processing, just pass the samples through
// to outputBuffer
/*
void TDStretch::processNominalTempo()
{
    assert(tempo == 1.0f);

    if (bMidBufferDirty) 
    {
        // If there are samples in pMidBuffer waiting for overlapping,
        // do a single sliding overlapping with them in order to prevent a 
        // clicking distortion in the output sound
        if (inputBuffer.numSamples() < overlapLength) 
        {
            // wait until we've got overlapLength input samples
            return;
        }
        // Mix the samples in the beginning of 'inputBuffer' with the 
        // samples in 'midBuffer' using sliding overlapping 
        overlap(outputBuffer.ptrEnd(overlapLength), inputBuffer.ptrBegin(), 0);
        outputBuffer.putSamples(overlapLength);
        inputBuffer.receiveSamples(overlapLength);
        clearMidBuffer();
        // now we've caught the nominal sample flow and may switch to
        // bypass mode
    }

    // Simply bypass samples from input to output
    outputBuffer.moveSamples(inputBuffer);
}
*/


// Processes as many processing frames of the samples 'inputBuffer', store
// the result into 'outputBuffer'
void TDStretch::processSamples()
{
    int ovlSkip, offset;
    int temp;

    /* Removed this small optimization - can introduce a click to sound when tempo setting
       crosses the nominal value
    if (tempo == 1.0f) 
    {
        // tempo not changed from the original, so bypass the processing
        processNominalTempo();
        return;
    }
    */

    // Process samples as long as there are enough samples in 'inputBuffer'
    // to form a processing frame.
    while ((int)inputBuffer.numSamples() >= sampleReq) 
    {
        // If tempo differs from the normal ('SCALE'), scan for the best overlapping
        // position
        offset = seekBestOverlapPosition(inputBuffer.ptrBegin());

        // Mix the samples in the 'inputBuffer' at position of 'offset' with the 
        // samples in 'midBuffer' using sliding overlapping
        // ... first partially overlap with the end of the previous sequence
        // (that's in 'midBuffer')
        overlap(outputBuffer.ptrEnd((uint)overlapLength), inputBuffer.ptrBegin(), (uint)offset);
        outputBuffer.putSamples((uint)overlapLength);

        // ... then copy sequence samples from 'inputBuffer' to output:

        // length of sequence
        temp = (seekWindowLength - 2 * overlapLength);

        // crosscheck that we don't have buffer overflow...
        if ((int)inputBuffer.numSamples() < (offset + temp + overlapLength * 2))
        {
            continue;    // just in case, shouldn't really happen
        }

        outputBuffer.putSamples(inputBuffer.ptrBegin() + channels * (offset + overlapLength), (uint)temp);

        // Copies the end of the current sequence from 'inputBuffer' to 
        // 'midBuffer' for being mixed with the beginning of the next 
        // processing sequence and so on
        assert((offset + temp + overlapLength * 2) <= (int)inputBuffer.numSamples());
        memcpy(pMidBuffer, inputBuffer.ptrBegin() + channels * (offset + temp + overlapLength), 
            channels * sizeof(SAMPLETYPE) * overlapLength);

        // Remove the processed samples from the input buffer. Update
        // the difference between integer & nominal skip step to 'skipFract'
        // in order to prevent the error from accumulating over time.
        skipFract += nominalSkip;   // real skip size
        ovlSkip = (int)skipFract;   // rounded to integer skip
        skipFract -= ovlSkip;       // maintain the fraction part, i.e. real vs. integer skip
        inputBuffer.receiveSamples((uint)ovlSkip);
    }
}


// Adds 'numsamples' pcs of samples from the 'samples' memory position into
// the input of the object.
void TDStretch::putSamples(const SAMPLETYPE *samples, uint nSamples)
{
    // Add the samples into the input buffer
    inputBuffer.putSamples(samples, nSamples);
    // Process the samples in input buffer
    processSamples();
}



/// Set new overlap length parameter & reallocate RefMidBuffer if necessary.
void TDStretch::acceptNewOverlapLength(int newOverlapLength)
{
    int prevOvl;

    assert(newOverlapLength >= 0);
    prevOvl = overlapLength;
    overlapLength = newOverlapLength;

    if (overlapLength > prevOvl)
    {
        delete[] pMidBufferUnaligned;

        pMidBufferUnaligned = new SAMPLETYPE[overlapLength * channels + 16 / sizeof(SAMPLETYPE)];
        // ensure that 'pMidBuffer' is aligned to 16 byte boundary for efficiency
        pMidBuffer = (SAMPLETYPE *)SOUNDTOUCH_ALIGN_POINTER_16(pMidBufferUnaligned);

        clearMidBuffer();
    }
}


// Operator 'new' is overloaded so that it automatically creates a suitable instance 
// depending on if we've a MMX/SSE/etc-capable CPU available or not.
void * TDStretch::operator new(size_t s)
{
    // Notice! don't use "new TDStretch" directly, use "newInstance" to create a new instance instead!
    ST_THROW_RT_ERROR("Error in TDStretch::new: Don't use 'new TDStretch' directly, use 'newInstance' member instead!");
    return newInstance();
}


TDStretch * TDStretch::newInstance()
{
#if defined(SOUNDTOUCH_ALLOW_MMX) || defined(SOUNDTOUCH_ALLOW_SSE)
    uint uExtensions;

    uExtensions = detectCPUextensions();
#endif

    // Check if MMX/SSE instruction set extensions supported by CPU

#ifdef SOUNDTOUCH_ALLOW_MMX
    // MMX routines available only with integer sample types
    if (uExtensions & SUPPORT_MMX)
    {
        return ::new TDStretchMMX;
    }
    else
#endif // SOUNDTOUCH_ALLOW_MMX


#ifdef SOUNDTOUCH_ALLOW_SSE
    if (uExtensions & SUPPORT_SSE)
    {
        // SSE support
        return ::new TDStretchSSE;
    }
    else
#endif // SOUNDTOUCH_ALLOW_SSE

    {
        // ISA optimizations not supported, use plain C version
        return ::new TDStretch;
    }
}


//////////////////////////////////////////////////////////////////////////////
//
// Integer arithmetics specific algorithm implementations.
//
//////////////////////////////////////////////////////////////////////////////

#ifdef SOUNDTOUCH_INTEGER_SAMPLES

// Overlaps samples in 'midBuffer' with the samples in 'input'. The 'Stereo' 
// version of the routine.
void TDStretch::overlapStereo(short *poutput, const short *input) const
{
    int i;
    short temp;
    int cnt2;

    for (i = 0; i < overlapLength ; i ++) 
    {
        temp = (short)(overlapLength - i);
        cnt2 = 2 * i;
        poutput[cnt2] = (input[cnt2] * i + pMidBuffer[cnt2] * temp )  / overlapLength;
        poutput[cnt2 + 1] = (input[cnt2 + 1] * i + pMidBuffer[cnt2 + 1] * temp ) / overlapLength;
    }
}


// Overlaps samples in 'midBuffer' with the samples in 'input'. The 'Multi'
// version of the routine.
void TDStretch::overlapMulti(SAMPLETYPE *poutput, const SAMPLETYPE *input) const
{
    SAMPLETYPE m1=(SAMPLETYPE)0;
    SAMPLETYPE m2;
    int i=0;

    for (m2 = (SAMPLETYPE)overlapLength; m2; m2 --)
    {
        for (int c = 0; c < channels; c ++)
        {
            poutput[i] = (input[i] * m1 + pMidBuffer[i] * m2)  / overlapLength;
            i++;
        }

        m1++;
    }
}

// Calculates the x having the closest 2^x value for the given value
static int _getClosest2Power(double value)
{
    return (int)(log(value) / log(2.0) + 0.5);
}


/// Calculates overlap period length in samples.
/// Integer version rounds overlap length to closest power of 2
/// for a divide scaling operation.
void TDStretch::calculateOverlapLength(int aoverlapMs)
{
    int newOvl;

    assert(aoverlapMs >= 0);

    // calculate overlap length so that it's power of 2 - thus it's easy to do
    // integer division by right-shifting. Term "-1" at end is to account for 
    // the extra most significatnt bit left unused in result by signed multiplication 
    overlapDividerBits = _getClosest2Power((sampleRate * aoverlapMs) / 1000.0) - 1;
    if (overlapDividerBits > 9) overlapDividerBits = 9;
    if (overlapDividerBits < 3) overlapDividerBits = 3;
    newOvl = (int)pow(2.0, (int)overlapDividerBits + 1);    // +1 => account for -1 above

    acceptNewOverlapLength(newOvl);

    // calculate sloping divider so that crosscorrelation operation won't 
    // overflow 32-bit register. Max. sum of the crosscorrelation sum without 
    // divider would be 2^30*(N^3-N)/3, where N = overlap length
    slopingDivider = (newOvl * newOvl - 1) / 3;
}


double TDStretch::calcCrossCorr(const short *mixingPos, const short *compare, double &norm) const
{
    long corr;
    long lnorm;
    int i;

    corr = lnorm = 0;
    // Same routine for stereo and mono. For stereo, unroll loop for better
    // efficiency and gives slightly better resolution against rounding. 
    // For mono it same routine, just  unrolls loop by factor of 4
    for (i = 0; i < channels * overlapLength; i += 4) 
    {
        corr += (mixingPos[i] * compare[i] + 
                 mixingPos[i + 1] * compare[i + 1]) >> overlapDividerBits;  // notice: do intermediate division here to avoid integer overflow
        corr += (mixingPos[i + 2] * compare[i + 2] + 
                 mixingPos[i + 3] * compare[i + 3]) >> overlapDividerBits;
        lnorm += (mixingPos[i] * mixingPos[i] + 
                  mixingPos[i + 1] * mixingPos[i + 1]) >> overlapDividerBits; // notice: do intermediate division here to avoid integer overflow
        lnorm += (mixingPos[i + 2] * mixingPos[i + 2] + 
                  mixingPos[i + 3] * mixingPos[i + 3]) >> overlapDividerBits;
    }

    // Normalize result by dividing by sqrt(norm) - this step is easiest 
    // done using floating point operation
    norm = (double)lnorm;
    return (double)corr / sqrt((norm < 1e-9) ? 1.0 : norm);
}


/// Update cross-correlation by accumulating "norm" coefficient by previously calculated value
double TDStretch::calcCrossCorrAccumulate(const short *mixingPos, const short *compare, double &norm) const
{
    long corr;
    long lnorm;
    int i;

    // cancel first normalizer tap from previous round
    lnorm = 0;
    for (i = 1; i <= channels; i ++)
    {
        lnorm -= (mixingPos[-i] * mixingPos[-i]) >> overlapDividerBits;
    }

    corr = 0;
    // Same routine for stereo and mono. For stereo, unroll loop for better
    // efficiency and gives slightly better resolution against rounding. 
    // For mono it same routine, just  unrolls loop by factor of 4
    for (i = 0; i < channels * overlapLength; i += 4) 
    {
        corr += (mixingPos[i] * compare[i] + 
                 mixingPos[i + 1] * compare[i + 1]) >> overlapDividerBits;  // notice: do intermediate division here to avoid integer overflow
        corr += (mixingPos[i + 2] * compare[i + 2] + 
                 mixingPos[i + 3] * compare[i + 3]) >> overlapDividerBits;
    }

    // update normalizer with last samples of this round
    for (int j = 0; j < channels; j ++)
    {
        i --;
        lnorm += (mixingPos[i] * mixingPos[i]) >> overlapDividerBits;
    }
    norm += (double)lnorm;

    // Normalize result by dividing by sqrt(norm) - this step is easiest 
    // done using floating point operation
    return (double)corr / sqrt((norm < 1e-9) ? 1.0 : norm);
}

#endif // SOUNDTOUCH_INTEGER_SAMPLES

//////////////////////////////////////////////////////////////////////////////
//
// Floating point arithmetics specific algorithm implementations.
//

#ifdef SOUNDTOUCH_FLOAT_SAMPLES

// Overlaps samples in 'midBuffer' with the samples in 'pInput'
void TDStretch::overlapStereo(float *pOutput, const float *pInput) const
{
    int i;
    float fScale;
    float f1;
    float f2;

    fScale = 1.0f / (float)overlapLength;

    f1 = 0;
    f2 = 1.0f;

    for (i = 0; i < 2 * (int)overlapLength ; i += 2) 
    {
        pOutput[i + 0] = pInput[i + 0] * f1 + pMidBuffer[i + 0] * f2;
        pOutput[i + 1] = pInput[i + 1] * f1 + pMidBuffer[i + 1] * f2;

        f1 += fScale;
        f2 -= fScale;
    }
}


// Overlaps samples in 'midBuffer' with the samples in 'input'. 
void TDStretch::overlapMulti(float *pOutput, const float *pInput) const
{
    int i;
    float fScale;
    float f1;
    float f2;

    fScale = 1.0f / (float)overlapLength;

    f1 = 0;
    f2 = 1.0f;

    i=0;
    for (int i2 = 0; i2 < overlapLength; i2 ++)
    {
        // note: Could optimize this slightly by taking into account that always channels > 2
        for (int c = 0; c < channels; c ++)
        {
            pOutput[i] = pInput[i] * f1 + pMidBuffer[i] * f2;
            i++;
        }
        f1 += fScale;
        f2 -= fScale;
    }
}


/// Calculates overlapInMsec period length in samples.
void TDStretch::calculateOverlapLength(int overlapInMsec)
{
    int newOvl;

    assert(overlapInMsec >= 0);
    newOvl = (sampleRate * overlapInMsec) / 1000;
    if (newOvl < 16) newOvl = 16;

    // must be divisible by 8
    newOvl -= newOvl % 8;

    acceptNewOverlapLength(newOvl);
}


/// Calculate cross-correlation
double TDStretch::calcCrossCorr(const float *mixingPos, const float *compare, double &norm) const
{
    double corr;
    int i;

    corr = norm = 0;
    // Same routine for stereo and mono. For Stereo, unroll by factor of 2.
    // For mono it's same routine yet unrollsd by factor of 4.
    for (i = 0; i < channels * overlapLength; i += 4) 
    {
        corr += mixingPos[i] * compare[i] +
                mixingPos[i + 1] * compare[i + 1];

        norm += mixingPos[i] * mixingPos[i] + 
                mixingPos[i + 1] * mixingPos[i + 1];

        // unroll the loop for better CPU efficiency:
        corr += mixingPos[i + 2] * compare[i + 2] +
                mixingPos[i + 3] * compare[i + 3];

        norm += mixingPos[i + 2] * mixingPos[i + 2] +
                mixingPos[i + 3] * mixingPos[i + 3];
    }

    return corr / sqrt((norm < 1e-9 ? 1.0 : norm));
}


/// Update cross-correlation by accumulating "norm" coefficient by previously calculated value
double TDStretch::calcCrossCorrAccumulate(const float *mixingPos, const float *compare, double &norm) const
{
    double corr;
    int i;

    corr = 0;

    // cancel first normalizer tap from previous round
    for (i = 1; i <= channels; i ++)
    {
        norm -= mixingPos[-i] * mixingPos[-i];
    }

    // Same routine for stereo and mono. For Stereo, unroll by factor of 2.
    // For mono it's same routine yet unrollsd by factor of 4.
    for (i = 0; i < channels * overlapLength; i += 4) 
    {
        corr += mixingPos[i] * compare[i] +
                mixingPos[i + 1] * compare[i + 1] +
                mixingPos[i + 2] * compare[i + 2] +
                mixingPos[i + 3] * compare[i + 3];
    }

    // update normalizer with last samples of this round
    for (int j = 0; j < channels; j ++)
    {
        i --;
        norm += mixingPos[i] * mixingPos[i];
    }

    return corr / sqrt((norm < 1e-9 ? 1.0 : norm));
}


#endif // SOUNDTOUCH_FLOAT_SAMPLES