DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (d1ed7de67f5a)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */


#include "nsRegion.h"
#include "nsPrintfCString.h"
#include "nsTArray.h"
#include "gfx3DMatrix.h"
#include "gfxUtils.h"

bool nsRegion::Contains(const nsRegion& aRgn) const
{
  // XXX this could be made faster
  nsRegionRectIterator iter(aRgn);
  while (const nsRect* r = iter.Next()) {
    if (!Contains (*r)) {
      return false;
    }
  }
  return true;
}

bool nsRegion::Intersects(const nsRect& aRect) const
{
  // XXX this could be made faster
  nsRegionRectIterator iter(*this);
  while (const nsRect* r = iter.Next()) {
    if (r->Intersects(aRect)) {
      return true;
    }
  }
  return false;
}

void nsRegion::Inflate(const nsMargin& aMargin)
{
  int n;
  pixman_box32_t *boxes = pixman_region32_rectangles(&mImpl, &n);
  for (int i=0; i<n; i++) {
    nsRect rect = BoxToRect(boxes[i]);
    rect.Inflate(aMargin);
    boxes[i] = RectToBox(rect);
  }

  pixman_region32_t region;
  // This will union all of the rectangles and runs in about O(n lg(n))
  pixman_region32_init_rects(&region, boxes, n);

  pixman_region32_fini(&mImpl);
  mImpl = region;
}

void nsRegion::SimplifyOutward (uint32_t aMaxRects)
{
  MOZ_ASSERT(aMaxRects >= 1, "Invalid max rect count");

  if (GetNumRects() <= aMaxRects)
    return;

  pixman_box32_t *boxes;
  int n;
  boxes = pixman_region32_rectangles(&mImpl, &n);

  // Try combining rects in horizontal bands into a single rect
  int dest = 0;
  for (int src = 1; src < n; src++)
  {
    // The goal here is to try to keep groups of rectangles that are vertically
    // discontiguous as separate rectangles in the final region. This is
    // simple and fast to implement and page contents tend to vary more
    // vertically than horizontally (which is why our rectangles are stored
    // sorted by y-coordinate, too).
    //
    // Note: if boxes share y1 because of the canonical representation they
    // will share y2
    while ((src < (n)) && boxes[dest].y1 == boxes[src].y1) {
      // merge box[i] and box[i+1]
      boxes[dest].x2 = boxes[src].x2;
      src++;
    }
    if (src < n) {
      dest++;
      boxes[dest] = boxes[src];
    }
  }

  uint32_t reducedCount = dest+1;
  // pixman has a special representation for
  // regions of 1 rectangle. So just use the
  // bounds in that case
  if (reducedCount > 1 && reducedCount <= aMaxRects) {
    // reach into pixman and lower the number
    // of rects stored in data.
    mImpl.data->numRects = reducedCount;
  } else {
    *this = GetBounds();
  }
}

// compute the covered area difference between two rows.
// by iterating over both rows simultaneously and adding up
// the additional increase in area caused by extending each
// of the rectangles to the combined height of both rows
static uint32_t ComputeMergedAreaIncrease(pixman_box32_t *topRects,
		                     pixman_box32_t *topRectsEnd,
		                     pixman_box32_t *bottomRects,
		                     pixman_box32_t *bottomRectsEnd)
{
  uint32_t totalArea = 0;
  struct pt {
    int32_t x, y;
  };


  pt *i = (pt*)topRects;
  pt *end_i = (pt*)topRectsEnd;
  pt *j = (pt*)bottomRects;
  pt *end_j = (pt*)bottomRectsEnd;
  bool top = false;
  bool bottom = false;

  int cur_x = i->x;
  bool top_next = top;
  bool bottom_next = bottom;
  //XXX: we could probably simplify this condition and perhaps move it into the loop below
  if (j->x < cur_x) {
    cur_x = j->x;
    j++;
    bottom_next = !bottom;
  } else if (j->x == cur_x) {
    i++;
    top_next = !top;
    bottom_next = !bottom;
    j++;
  } else {
    top_next = !top;
    i++;
  }

  int topRectsHeight = topRects->y2 - topRects->y1;
  int bottomRectsHeight = bottomRects->y2 - bottomRects->y1;
  int inbetweenHeight = bottomRects->y1 - topRects->y2;
  int width = cur_x;
  // top and bottom are the in-status to the left of cur_x
  do {
    if (top && !bottom) {
      totalArea += (inbetweenHeight+bottomRectsHeight)*width;
    } else if (bottom && !top) {
      totalArea += (inbetweenHeight+topRectsHeight)*width;
    } else if (bottom && top) {
      totalArea += (inbetweenHeight)*width;
    }
    top = top_next;
    bottom = bottom_next;
    // find the next edge
    if (i->x < j->x) {
      top_next = !top;
      width = i->x - cur_x;
      cur_x = i->x;
      i++;
    } else if (j->x < i->x) {
      bottom_next = !bottom;
      width = j->x - cur_x;
      cur_x = j->x;
      j++;
    } else { // i->x == j->x
      top_next = !top;
      bottom_next = !bottom;
      width = i->x - cur_x;
      cur_x = i->x;
      i++;
      j++;
    }
  } while (i < end_i && j < end_j);

  // handle any remaining rects
  while (i < end_i) {
    width = i->x - cur_x;
    cur_x = i->x;
    i++;
    if (top)
      totalArea += (inbetweenHeight+bottomRectsHeight)*width;
    top = !top;
  }

  while (j < end_j) {
    width = j->x - cur_x;
    cur_x = j->x;
    j++;
    if (bottom)
      totalArea += (inbetweenHeight+topRectsHeight)*width;
    bottom = !bottom;
  }
  return totalArea;
}

static pixman_box32_t *
CopyRow(pixman_box32_t *dest_it, pixman_box32_t *src_start, pixman_box32_t *src_end)
{
    // XXX: std::copy
    pixman_box32_t *src_it = src_start;
    while (src_it < src_end) {
        *dest_it++ = *src_it++;
    }
    return dest_it;
}


#define WRITE_RECT(x1, x2, y1, y2) \
    do {                    \
         tmpRect->x1 = x1;  \
         tmpRect->x2 = x2;  \
         tmpRect->y1 = y1;  \
         tmpRect->y2 = y2;  \
         tmpRect++;         \
    } while (0)

/* If 'r' overlaps the current rect, then expand the current rect to include
 * it. Otherwise write the current rect out to tmpRect, and set r as the
 * updated current rect. */
#define MERGE_RECT(r)                 \
    do {                              \
      if (r->x1 <= x2) {              \
          if (x2 < r->x2)             \
              x2 = r->x2;             \
      } else {                        \
          WRITE_RECT(x1, x2, y1, y2); \
          x1 = r->x1;                 \
          x2 = r->x2;                 \
      }                               \
      r++;                            \
    } while (0)


/* Can we merge two sets of rects without extra space?
 * Yes, but not easily. We can even do it stably
 * but we don't need that property.
 *
 * This is written in the style of pixman_region_union_o */
static pixman_box32_t *
MergeRects(pixman_box32_t *r1,
           pixman_box32_t *r1_end,
           pixman_box32_t *r2,
           pixman_box32_t *r2_end,
           pixman_box32_t *tmpRect)
{
    /* This routine works by maintaining the current
     * rectangle in x1,x2,y1,y2 and either merging
     * in the left most rectangle if it overlaps or
     * outputing the current rectangle and setting
     * it to the the left most one */
    const int y1 = r1->y1;
    const int y2 = r2->y2;
    int x1;
    int x2;

    /* Find the left-most edge */
    if (r1->x1 < r2->x1) {
        x1 = r1->x1;
        x2 = r1->x2;
        r1++;
    } else {
        x1 = r2->x1;
        x2 = r2->x2;
        r2++;
    }

    while (r1 != r1_end && r2 != r2_end) {
        /* Find and merge the left-most rectangle */
        if (r1->x1 < r2->x1)
            MERGE_RECT (r1);
        else
            MERGE_RECT (r2);
    }

    /* Finish up any left overs */
    if (r1 != r1_end) {
        do {
            MERGE_RECT (r1);
        } while (r1 != r1_end);
    } else if (r2 != r2_end) {
        do {
            MERGE_RECT(r2);
        } while (r2 != r2_end);
    }

    /* Finish up the last rectangle */
    WRITE_RECT(x1, x2, y1, y2);

    return tmpRect;
}

void nsRegion::SimplifyOutwardByArea(uint32_t aThreshold)
{

  pixman_box32_t *boxes;
  int n;
  boxes = pixman_region32_rectangles(&mImpl, &n);

  // if we have no rectangles then we're done
  if (!n)
    return;

  pixman_box32_t *end = boxes + n;
  pixman_box32_t *topRectsEnd = boxes+1;
  pixman_box32_t *topRects = boxes;

  // we need some temporary storage for merging both rows of rectangles
  nsAutoTArray<pixman_box32_t, 10> tmpStorage;
  tmpStorage.SetCapacity(n);
  pixman_box32_t *tmpRect = tmpStorage.Elements();

  pixman_box32_t *destRect = boxes;
  pixman_box32_t *rect = tmpRect;
  // find the end of the first span of rectangles
  while (topRectsEnd < end && topRectsEnd->y1 == topRects->y1) {
    topRectsEnd++;
  }

  // if we only have one row we are done
  if (topRectsEnd == end)
    return;

  pixman_box32_t *bottomRects = topRectsEnd;
  pixman_box32_t *bottomRectsEnd = bottomRects+1;
  do {
    // find the end of the bottom span of rectangles
    while (bottomRectsEnd < end && bottomRectsEnd->y1 == bottomRects->y1) {
      bottomRectsEnd++;
    }
    uint32_t totalArea = ComputeMergedAreaIncrease(topRects, topRectsEnd,
                                                   bottomRects, bottomRectsEnd);

    if (totalArea <= aThreshold) {
      // merge the rects into tmpRect
      rect = MergeRects(topRects, topRectsEnd, bottomRects, bottomRectsEnd, tmpRect);

      // copy the merged rects back into the destination
      topRectsEnd = CopyRow(destRect, tmpRect, rect);
      topRects = destRect;
      bottomRects = bottomRectsEnd;
      destRect = topRects;
    } else {
      // copy the unmerged rects
      destRect = CopyRow(destRect, topRects, topRectsEnd);

      topRects = bottomRects;
      topRectsEnd = bottomRectsEnd;
      bottomRects = bottomRectsEnd;
      if (bottomRectsEnd == end) {
        // copy the last row when we are done
        topRectsEnd = CopyRow(destRect, topRects, topRectsEnd);
      }
    }
  } while (bottomRectsEnd != end);


  uint32_t reducedCount = topRectsEnd - pixman_region32_rectangles(&this->mImpl, &n);
  // pixman has a special representation for
  // regions of 1 rectangle. So just use the
  // bounds in that case
  if (reducedCount > 1) {
    // reach into pixman and lower the number
    // of rects stored in data.
    this->mImpl.data->numRects = reducedCount;
  } else {
    *this = GetBounds();
  }
}


typedef void (*visit_fn)(void *closure, VisitSide side, int x1, int y1, int x2, int y2);

static void VisitNextEdgeBetweenRect(visit_fn visit, void *closure, VisitSide side,
				     pixman_box32_t *&r1, pixman_box32_t *&r2, const int y, int &x1)
{
  // check for overlap
  if (r1->x2 >= r2->x1) {
    MOZ_ASSERT(r2->x1 >= x1);
    visit(closure, side, x1, y, r2->x1, y);

    // find the rect that ends first or always drop the one that comes first?
    if (r1->x2 < r2->x2) {
      x1 = r1->x2;
      r1++;
    } else {
      x1 = r2->x2;
      r2++;
    }
  } else {
    MOZ_ASSERT(r1->x2 < r2->x2);
    // we handle the corners by just extending the top and bottom edges
    visit(closure, side, x1, y, r1->x2+1, y);
    r1++;
    x1 = r2->x1 - 1;
  }
}

//XXX: if we need to this can compute the end of the row
static void
VisitSides(visit_fn visit, void *closure, pixman_box32_t *r, pixman_box32_t *r_end)
{
  // XXX: we can drop LEFT/RIGHT and just use the orientation
  // of the line if it makes sense
  while (r != r_end) {
    visit(closure, VisitSide::LEFT, r->x1, r->y1, r->x1, r->y2);
    visit(closure, VisitSide::RIGHT, r->x2, r->y1, r->x2, r->y2);
    r++;
  }
}

static void
VisitAbove(visit_fn visit, void *closure, pixman_box32_t *r, pixman_box32_t *r_end)
{
  while (r != r_end) {
    visit(closure, VisitSide::TOP, r->x1-1, r->y1, r->x2+1, r->y1);
    r++;
  }
}

static void
VisitBelow(visit_fn visit, void *closure, pixman_box32_t *r, pixman_box32_t *r_end)
{
  while (r != r_end) {
    visit(closure, VisitSide::BOTTOM, r->x1-1, r->y2, r->x2+1, r->y2);
    r++;
  }
}

static pixman_box32_t *
VisitInbetween(visit_fn visit, void *closure, pixman_box32_t *r1,
               pixman_box32_t *r1_end,
               pixman_box32_t *r2,
               pixman_box32_t *r2_end)
{
  const int y = r1->y2;
  int x1;

  /* Find the left-most edge */
  if (r1->x1 < r2->x1) {
    x1 = r1->x1 - 1;
  } else {
    x1 = r2->x1 - 1;
  }

  while (r1 != r1_end && r2 != r2_end) {
    MOZ_ASSERT((x1 >= (r1->x1 - 1)) || (x1 >= (r2->x1 - 1)));
    if (r1->x1 < r2->x1) {
      VisitNextEdgeBetweenRect(visit, closure, VisitSide::BOTTOM, r1, r2, y, x1);
    } else {
      VisitNextEdgeBetweenRect(visit, closure, VisitSide::TOP, r2, r1, y, x1);
    }
  }

  /* Finish up which ever row has remaining rects*/
  if (r1 != r1_end) {
    // top row
    do {
      visit(closure, VisitSide::BOTTOM, x1, y, r1->x2 + 1, y);
      r1++;
      if (r1 == r1_end)
	break;
      x1 = r1->x1 - 1;
    } while (true);
  } else if (r2 != r2_end) {
    // bottom row
    do {
      visit(closure, VisitSide::TOP, x1, y, r2->x2 + 1, y);
      r2++;
      if (r2 == r2_end)
	break;
      x1 = r2->x1 - 1;
    } while (true);
  }

  return 0;
}

void nsRegion::VisitEdges (visit_fn visit, void *closure)
{
  pixman_box32_t *boxes;
  int n;
  boxes = pixman_region32_rectangles(&mImpl, &n);

  // if we have no rectangles then we're done
  if (!n)
    return;

  pixman_box32_t *end = boxes + n;
  pixman_box32_t *topRectsEnd = boxes + 1;
  pixman_box32_t *topRects = boxes;

  // find the end of the first span of rectangles
  while (topRectsEnd < end && topRectsEnd->y1 == topRects->y1) {
    topRectsEnd++;
  }

  // In order to properly handle convex corners we always visit the sides first
  // that way when we visit the corners we can pad using the value from the sides
  VisitSides(visit, closure, topRects, topRectsEnd);

  VisitAbove(visit, closure, topRects, topRectsEnd);

  pixman_box32_t *bottomRects = topRects;
  pixman_box32_t *bottomRectsEnd = topRectsEnd;
  if (topRectsEnd != end) {
    do {
      // find the next row of rects
      bottomRects = topRectsEnd;
      bottomRectsEnd = topRectsEnd + 1;
      while (bottomRectsEnd < end && bottomRectsEnd->y1 == bottomRects->y1) {
        bottomRectsEnd++;
      }

      VisitSides(visit, closure, bottomRects, bottomRectsEnd);

      if (topRects->y2 == bottomRects->y1) {
        VisitInbetween(visit, closure, topRects, topRectsEnd,
                                       bottomRects, bottomRectsEnd);
      } else {
        VisitBelow(visit, closure, topRects, topRectsEnd);
        VisitAbove(visit, closure, bottomRects, bottomRectsEnd);
      }

      topRects = bottomRects;
      topRectsEnd = bottomRectsEnd;
    } while (bottomRectsEnd != end);
  }

  // the bottom of the region doesn't touch anything else so we
  // can always visit it at the end
  VisitBelow(visit, closure, bottomRects, bottomRectsEnd);
}


void nsRegion::SimplifyInward (uint32_t aMaxRects)
{
  NS_ASSERTION(aMaxRects >= 1, "Invalid max rect count");

  if (GetNumRects() <= aMaxRects)
    return;

  SetEmpty();
}

uint64_t nsRegion::Area () const
{
  uint64_t area = 0;
  nsRegionRectIterator iter(*this);
  const nsRect* r;
  while ((r = iter.Next()) != nullptr) {
    area += uint64_t(r->width)*r->height;
  }
  return area;
}

nsRegion& nsRegion::ScaleRoundOut (float aXScale, float aYScale)
{
  int n;
  pixman_box32_t *boxes = pixman_region32_rectangles(&mImpl, &n);
  for (int i=0; i<n; i++) {
    nsRect rect = BoxToRect(boxes[i]);
    rect.ScaleRoundOut(aXScale, aYScale);
    boxes[i] = RectToBox(rect);
  }

  pixman_region32_t region;
  // This will union all of the rectangles and runs in about O(n lg(n))
  pixman_region32_init_rects(&region, boxes, n);

  pixman_region32_fini(&mImpl);
  mImpl = region;
  return *this;
}

nsRegion& nsRegion::ScaleInverseRoundOut (float aXScale, float aYScale)
{
  int n;
  pixman_box32_t *boxes = pixman_region32_rectangles(&mImpl, &n);
  for (int i=0; i<n; i++) {
    nsRect rect = BoxToRect(boxes[i]);
    rect.ScaleInverseRoundOut(aXScale, aYScale);
    boxes[i] = RectToBox(rect);
  }

  pixman_region32_t region;
  // This will union all of the rectangles and runs in about O(n lg(n))
  pixman_region32_init_rects(&region, boxes, n);

  pixman_region32_fini(&mImpl);
  mImpl = region;
  return *this;
}

static nsIntRect
TransformRect(const nsIntRect& aRect, const gfx3DMatrix& aTransform)
{
    if (aRect.IsEmpty()) {
        return nsIntRect();
    }

    gfxRect rect(aRect.x, aRect.y, aRect.width, aRect.height);
    rect = aTransform.TransformBounds(rect);
    rect.RoundOut();

    nsIntRect intRect;
    if (!gfxUtils::GfxRectToIntRect(rect, &intRect)) {
        return nsIntRect();
    }

    return intRect;
}

nsRegion& nsRegion::Transform (const gfx3DMatrix &aTransform)
{
  int n;
  pixman_box32_t *boxes = pixman_region32_rectangles(&mImpl, &n);
  for (int i=0; i<n; i++) {
    nsRect rect = BoxToRect(boxes[i]);
    boxes[i] = RectToBox(nsIntRegion::ToRect(TransformRect(nsIntRegion::FromRect(rect), aTransform)));
  }

  pixman_region32_t region;
  // This will union all of the rectangles and runs in about O(n lg(n))
  pixman_region32_init_rects(&region, boxes, n);

  pixman_region32_fini(&mImpl);
  mImpl = region;
  return *this;
}


nsRegion nsRegion::ConvertAppUnitsRoundOut (int32_t aFromAPP, int32_t aToAPP) const
{
  if (aFromAPP == aToAPP) {
    return *this;
  }

  nsRegion region = *this;
  int n;
  pixman_box32_t *boxes = pixman_region32_rectangles(&region.mImpl, &n);
  for (int i=0; i<n; i++) {
    nsRect rect = BoxToRect(boxes[i]);
    rect = rect.ConvertAppUnitsRoundOut(aFromAPP, aToAPP);
    boxes[i] = RectToBox(rect);
  }

  pixman_region32_t pixmanRegion;
  // This will union all of the rectangles and runs in about O(n lg(n))
  pixman_region32_init_rects(&pixmanRegion, boxes, n);

  pixman_region32_fini(&region.mImpl);
  region.mImpl = pixmanRegion;
  return region;
}

nsRegion nsRegion::ConvertAppUnitsRoundIn (int32_t aFromAPP, int32_t aToAPP) const
{
  if (aFromAPP == aToAPP) {
    return *this;
  }

  nsRegion region = *this;
  int n;
  pixman_box32_t *boxes = pixman_region32_rectangles(&region.mImpl, &n);
  for (int i=0; i<n; i++) {
    nsRect rect = BoxToRect(boxes[i]);
    rect = rect.ConvertAppUnitsRoundIn(aFromAPP, aToAPP);
    boxes[i] = RectToBox(rect);
  }

  pixman_region32_t pixmanRegion;
  // This will union all of the rectangles and runs in about O(n lg(n))
  pixman_region32_init_rects(&pixmanRegion, boxes, n);

  pixman_region32_fini(&region.mImpl);
  region.mImpl = pixmanRegion;
  return region;
}

nsIntRegion nsRegion::ToPixels (nscoord aAppUnitsPerPixel, bool aOutsidePixels) const
{
  nsRegion region = *this;
  int n;
  pixman_box32_t *boxes = pixman_region32_rectangles(&region.mImpl, &n);
  for (int i=0; i<n; i++) {
    nsRect rect = BoxToRect(boxes[i]);
    nsIntRect deviceRect;
    if (aOutsidePixels)
      deviceRect = rect.ToOutsidePixels(aAppUnitsPerPixel);
    else
      deviceRect = rect.ToNearestPixels(aAppUnitsPerPixel);

    boxes[i] = RectToBox(deviceRect);
  }

  nsIntRegion intRegion;
  pixman_region32_fini(&intRegion.mImpl.mImpl);
  // This will union all of the rectangles and runs in about O(n lg(n))
  pixman_region32_init_rects(&intRegion.mImpl.mImpl, boxes, n);

  return intRegion;
}

nsIntRegion nsRegion::ToOutsidePixels (nscoord aAppUnitsPerPixel) const
{
  return ToPixels(aAppUnitsPerPixel, true);
}

nsIntRegion nsRegion::ToNearestPixels (nscoord aAppUnitsPerPixel) const
{
  return ToPixels(aAppUnitsPerPixel, false);
}

nsIntRegion nsRegion::ScaleToNearestPixels (float aScaleX, float aScaleY,
                                            nscoord aAppUnitsPerPixel) const
{
  nsIntRegion result;
  nsRegionRectIterator rgnIter(*this);
  const nsRect* currentRect;
  while ((currentRect = rgnIter.Next())) {
    nsIntRect deviceRect =
      currentRect->ScaleToNearestPixels(aScaleX, aScaleY, aAppUnitsPerPixel);
    result.Or(result, deviceRect);
  }
  return result;
}

nsIntRegion nsRegion::ScaleToOutsidePixels (float aScaleX, float aScaleY,
                                            nscoord aAppUnitsPerPixel) const
{
  nsIntRegion result;
  nsRegionRectIterator rgnIter(*this);
  const nsRect* currentRect;
  while ((currentRect = rgnIter.Next())) {
    nsIntRect deviceRect =
      currentRect->ScaleToOutsidePixels(aScaleX, aScaleY, aAppUnitsPerPixel);
    result.Or(result, deviceRect);
  }
  return result;
}

nsIntRegion nsRegion::ScaleToInsidePixels (float aScaleX, float aScaleY,
                                           nscoord aAppUnitsPerPixel) const
{
  /* When scaling a rect, walk forward through the rect list up until the y value is greater
   * than the current rect's YMost() value.
   *
   * For each rect found, check if the rects have a touching edge (in unscaled coordinates),
   * and if one edge is entirely contained within the other.
   *
   * If it is, then the contained edge can be moved (in scaled pixels) to ensure that no
   * gap exists.
   *
   * Since this could be potentially expensive - O(n^2), we only attempt this algorithm
   * for the first rect.
   */

  // make a copy of this region so that we can mutate it in place
  nsRegion region = *this;
  int n;
  pixman_box32_t *boxes = pixman_region32_rectangles(&region.mImpl, &n);

  nsIntRegion intRegion;
  if (n) {
    nsRect first = BoxToRect(boxes[0]);
    nsIntRect firstDeviceRect =
      first.ScaleToInsidePixels(aScaleX, aScaleY, aAppUnitsPerPixel);

    for (int i=1; i<n; i++) {
      nsRect rect = nsRect(boxes[i].x1, boxes[i].y1,
	  boxes[i].x2 - boxes[i].x1,
	  boxes[i].y2 - boxes[i].y1);
      nsIntRect deviceRect =
	rect.ScaleToInsidePixels(aScaleX, aScaleY, aAppUnitsPerPixel);

      if (rect.y <= first.YMost()) {
	if (rect.XMost() == first.x && rect.YMost() <= first.YMost()) {
	  // rect is touching on the left edge of the first rect and contained within
	  // the length of its left edge
	  deviceRect.SetRightEdge(firstDeviceRect.x);
	} else if (rect.x == first.XMost() && rect.YMost() <= first.YMost()) {
	  // rect is touching on the right edge of the first rect and contained within
	  // the length of its right edge
	  deviceRect.SetLeftEdge(firstDeviceRect.XMost());
	} else if (rect.y == first.YMost()) {
	  // The bottom of the first rect is on the same line as the top of rect, but
	  // they aren't necessarily contained.
	  if (rect.x <= first.x && rect.XMost() >= first.XMost()) {
	    // The top of rect contains the bottom of the first rect
	    firstDeviceRect.SetBottomEdge(deviceRect.y);
	  } else if (rect.x >= first.x && rect.XMost() <= first.XMost()) {
	    // The bottom of the first contains the top of rect
	    deviceRect.SetTopEdge(firstDeviceRect.YMost());
	  }
	}
      }

      boxes[i] = RectToBox(deviceRect);
    }

    boxes[0] = RectToBox(firstDeviceRect);

    pixman_region32_fini(&intRegion.mImpl.mImpl);
    // This will union all of the rectangles and runs in about O(n lg(n))
    pixman_region32_init_rects(&intRegion.mImpl.mImpl, boxes, n);
  }
  return intRegion;

}

// A cell's "value" is a pair consisting of
// a) the area of the subrectangle it corresponds to, if it's in
// aContainingRect and in the region, 0 otherwise
// b) the area of the subrectangle it corresponds to, if it's in the region,
// 0 otherwise
// Addition, subtraction and identity are defined on these values in the
// obvious way. Partial order is lexicographic.
// A "large negative value" is defined with large negative numbers for both
// fields of the pair. This negative value has the property that adding any
// number of non-negative values to it always results in a negative value.
//
// The GetLargestRectangle algorithm works in three phases:
//  1) Convert the region into a grid by adding vertical/horizontal lines for
//     each edge of each rectangle in the region.
//  2) For each rectangle in the region, for each cell it contains, set that
//     cells's value as described above.
//  3) Calculate the submatrix with the largest sum such that none of its cells
//     contain any 0s (empty regions). The rectangle represented by the
//     submatrix is the largest rectangle in the region.
//
// Let k be the number of rectangles in the region.
// Let m be the height of the grid generated in step 1.
// Let n be the width of the grid generated in step 1.
//
// Step 1 is O(k) in time and O(m+n) in space for the sparse grid.
// Step 2 is O(mn) in time and O(mn) in additional space for the full grid.
// Step 3 is O(m^2 n) in time and O(mn) in additional space
//
// The implementation of steps 1 and 2 are rather straightforward. However our
// implementation of step 3 uses dynamic programming to achieve its efficiency.
//
// Psuedo code for step 3 is as follows where G is the grid from step 1 and A
// is the array from step 2:
// Phase3 = function (G, A, m, n) {
//   let (t,b,l,r,_) = MaxSum2D(A,m,n)
//   return rect(G[t],G[l],G[r],G[b]);
// }
// MaxSum2D = function (A, m, n) {
//   S = array(m+1,n+1)
//   S[0][i] = 0 for i in [0,n]
//   S[j][0] = 0 for j in [0,m]
//   S[j][i] = (if A[j-1][i-1] = 0 then some large negative value else A[j-1][i-1])
//           + S[j-1][n] + S[j][i-1] - S[j-1][i-1]
//
//   // top, bottom, left, right, area
//   var maxRect = (-1, -1, -1, -1, 0);
//
//   for all (m',m'') in [0, m]^2 {
//     let B = { S[m'][i] - S[m''][i] | 0 <= i <= n }
//     let ((l,r),area) = MaxSum1D(B,n+1)
//     if (area > maxRect.area) {
//       maxRect := (m', m'', l, r, area)
//     }
//   }
//
//   return maxRect;
// }
//
// Originally taken from Improved algorithms for the k-maximum subarray problem
// for small k - SE Bae, T Takaoka but modified to show the explicit tracking
// of indices and we already have the prefix sums from our one call site so
// there's no need to construct them.
// MaxSum1D = function (A,n) {
//   var minIdx = 0;
//   var min = 0;
//   var maxIndices = (0,0);
//   var max = 0;
//   for i in range(n) {
//     let cand = A[i] - min;
//     if (cand > max) {
//       max := cand;
//       maxIndices := (minIdx, i)
//     }
//     if (min > A[i]) {
//       min := A[i];
//       minIdx := i;
//     }
//   }
//   return (minIdx, maxIdx, max);
// }

namespace {
  // This class represents a partitioning of an axis delineated by coordinates.
  // It internally maintains a sorted array of coordinates.
  class AxisPartition {
  public:
    // Adds a new partition at the given coordinate to this partitioning. If
    // the coordinate is already present in the partitioning, this does nothing.
    void InsertCoord(nscoord c) {
      uint32_t i = mStops.IndexOfFirstElementGt(c);
      if (i == 0 || mStops[i-1] != c) {
        mStops.InsertElementAt(i, c);
      }
    }

    // Returns the array index of the given partition point. The partition
    // point must already be present in the partitioning.
    int32_t IndexOf(nscoord p) const {
      return mStops.BinaryIndexOf(p);
    }

    // Returns the partition at the given index which must be non-zero and
    // less than the number of partitions in this partitioning.
    nscoord StopAt(int32_t index) const {
      return mStops[index];
    }

    // Returns the size of the gap between the partition at the given index and
    // the next partition in this partitioning. If the index is the last index
    // in the partitioning, the result is undefined.
    nscoord StopSize(int32_t index) const {
      return mStops[index+1] - mStops[index];
    }

    // Returns the number of partitions in this partitioning.
    int32_t GetNumStops() const { return mStops.Length(); }

  private:
    nsTArray<nscoord> mStops;
  };

  const int64_t kVeryLargeNegativeNumber = 0xffff000000000000ll;

  struct SizePair {
    int64_t mSizeContainingRect;
    int64_t mSize;

    SizePair() : mSizeContainingRect(0), mSize(0) {}

    static SizePair VeryLargeNegative() {
      SizePair result;
      result.mSize = result.mSizeContainingRect = kVeryLargeNegativeNumber;
      return result;
    }
    SizePair& operator=(const SizePair& aOther) {
      mSizeContainingRect = aOther.mSizeContainingRect;
      mSize = aOther.mSize;
      return *this;
    }
    bool operator<(const SizePair& aOther) const {
      if (mSizeContainingRect < aOther.mSizeContainingRect)
        return true;
      if (mSizeContainingRect > aOther.mSizeContainingRect)
        return false;
      return mSize < aOther.mSize;
    }
    bool operator>(const SizePair& aOther) const {
      return aOther.operator<(*this);
    }
    SizePair operator+(const SizePair& aOther) const {
      SizePair result = *this;
      result.mSizeContainingRect += aOther.mSizeContainingRect;
      result.mSize += aOther.mSize;
      return result;
    }
    SizePair operator-(const SizePair& aOther) const {
      SizePair result = *this;
      result.mSizeContainingRect -= aOther.mSizeContainingRect;
      result.mSize -= aOther.mSize;
      return result;
    }
  };

  // Returns the sum and indices of the subarray with the maximum sum of the
  // given array (A,n), assuming the array is already in prefix sum form.
  SizePair MaxSum1D(const nsTArray<SizePair> &A, int32_t n,
                    int32_t *minIdx, int32_t *maxIdx) {
    // The min/max indicies of the largest subarray found so far
    SizePair min, max;
    int32_t currentMinIdx = 0;

    *minIdx = 0;
    *maxIdx = 0;

    // Because we're given the array in prefix sum form, we know the first
    // element is 0
    for(int32_t i = 1; i < n; i++) {
      SizePair cand = A[i] - min;
      if (cand > max) {
        max = cand;
        *minIdx = currentMinIdx;
        *maxIdx = i;
      }
      if (min > A[i]) {
        min = A[i];
        currentMinIdx = i;
      }
    }

    return max;
  }
}

nsRect nsRegion::GetLargestRectangle (const nsRect& aContainingRect) const {
  nsRect bestRect;

  if (GetNumRects() <= 1) {
    bestRect = GetBounds();
    return bestRect;
  }

  AxisPartition xaxis, yaxis;

  // Step 1: Calculate the grid lines
  nsRegionRectIterator iter(*this);
  const nsRect *currentRect;
  while ((currentRect = iter.Next())) {
    xaxis.InsertCoord(currentRect->x);
    xaxis.InsertCoord(currentRect->XMost());
    yaxis.InsertCoord(currentRect->y);
    yaxis.InsertCoord(currentRect->YMost());
  }
  if (!aContainingRect.IsEmpty()) {
    xaxis.InsertCoord(aContainingRect.x);
    xaxis.InsertCoord(aContainingRect.XMost());
    yaxis.InsertCoord(aContainingRect.y);
    yaxis.InsertCoord(aContainingRect.YMost());
  }

  // Step 2: Fill out the grid with the areas
  // Note: due to the ordering of rectangles in the region, it is not always
  // possible to combine steps 2 and 3 so we don't try to be clever.
  int32_t matrixHeight = yaxis.GetNumStops() - 1;
  int32_t matrixWidth = xaxis.GetNumStops() - 1;
  int32_t matrixSize = matrixHeight * matrixWidth;
  nsTArray<SizePair> areas(matrixSize);
  areas.SetLength(matrixSize);

  iter.Reset();
  while ((currentRect = iter.Next())) {
    int32_t xstart = xaxis.IndexOf(currentRect->x);
    int32_t xend = xaxis.IndexOf(currentRect->XMost());
    int32_t y = yaxis.IndexOf(currentRect->y);
    int32_t yend = yaxis.IndexOf(currentRect->YMost());

    for (; y < yend; y++) {
      nscoord height = yaxis.StopSize(y);
      for (int32_t x = xstart; x < xend; x++) {
        nscoord width = xaxis.StopSize(x);
        int64_t size = width*int64_t(height);
        if (currentRect->Intersects(aContainingRect)) {
          areas[y*matrixWidth+x].mSizeContainingRect = size;
        }
        areas[y*matrixWidth+x].mSize = size;
      }
    }
  }

  // Step 3: Find the maximum submatrix sum that does not contain a rectangle
  {
    // First get the prefix sum array
    int32_t m = matrixHeight + 1;
    int32_t n = matrixWidth + 1;
    nsTArray<SizePair> pareas(m*n);
    pareas.SetLength(m*n);
    for (int32_t y = 1; y < m; y++) {
      for (int32_t x = 1; x < n; x++) {
        SizePair area = areas[(y-1)*matrixWidth+x-1];
        if (!area.mSize) {
          area = SizePair::VeryLargeNegative();
        }
        area = area + pareas[    y*n+x-1]
                    + pareas[(y-1)*n+x  ]
                    - pareas[(y-1)*n+x-1];
        pareas[y*n+x] = area;
      }
    }

    // No longer need the grid
    areas.SetLength(0);

    SizePair bestArea;
    struct {
      int32_t left, top, right, bottom;
    } bestRectIndices = { 0, 0, 0, 0 };
    for (int32_t m1 = 0; m1 < m; m1++) {
      for (int32_t m2 = m1+1; m2 < m; m2++) {
        nsTArray<SizePair> B;
        B.SetLength(n);
        for (int32_t i = 0; i < n; i++) {
          B[i] = pareas[m2*n+i] - pareas[m1*n+i];
        }
        int32_t minIdx, maxIdx;
        SizePair area = MaxSum1D(B, n, &minIdx, &maxIdx);
        if (area > bestArea) {
          bestRectIndices.left = minIdx;
          bestRectIndices.top = m1;
          bestRectIndices.right = maxIdx;
          bestRectIndices.bottom = m2;
          bestArea = area;
        }
      }
    }

    bestRect.MoveTo(xaxis.StopAt(bestRectIndices.left),
                    yaxis.StopAt(bestRectIndices.top));
    bestRect.SizeTo(xaxis.StopAt(bestRectIndices.right) - bestRect.x,
                    yaxis.StopAt(bestRectIndices.bottom) - bestRect.y);
  }

  return bestRect;
}

std::ostream& operator<<(std::ostream& stream, const nsRegion& m) {
  stream << "[";

  int n;
  pixman_box32_t *boxes = pixman_region32_rectangles(const_cast<pixman_region32_t*>(&m.mImpl), &n);
  for (int i=0; i<n; i++) {
    if (i != 0) {
      stream << "; ";
    }
    stream << boxes[i].x1 << "," << boxes[i].y1 << "," << boxes[i].x2 << "," << boxes[i].y2;
  }

  stream << "]";
  return stream;
}

nsCString
nsRegion::ToString() const {
  return nsCString(mozilla::ToString(this).c_str());
}


nsRegion nsIntRegion::ToAppUnits (nscoord aAppUnitsPerPixel) const
{
  nsRegion result;
  nsIntRegionRectIterator rgnIter(*this);
  const nsIntRect* currentRect;
  while ((currentRect = rgnIter.Next())) {
    nsRect appRect = currentRect->ToAppUnits(aAppUnitsPerPixel);
    result.Or(result, appRect);
  }
  return result;
}