DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (d1ed7de67f5a)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
/* vim: set ts=8 sw=8 noexpandtab: */
//  qcms
//  Copyright (C) 2009 Mozilla Foundation
//  Copyright (C) 1998-2007 Marti Maria
//
// Permission is hereby granted, free of charge, to any person obtaining 
// a copy of this software and associated documentation files (the "Software"), 
// to deal in the Software without restriction, including without limitation 
// the rights to use, copy, modify, merge, publish, distribute, sublicense, 
// and/or sell copies of the Software, and to permit persons to whom the Software 
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in 
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO 
// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE 
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION 
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION 
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

#include <stdlib.h>
#include "qcmsint.h"
#include "matrix.h"

struct vector matrix_eval(struct matrix mat, struct vector v)
{
	struct vector result;
	result.v[0] = mat.m[0][0]*v.v[0] + mat.m[0][1]*v.v[1] + mat.m[0][2]*v.v[2];
	result.v[1] = mat.m[1][0]*v.v[0] + mat.m[1][1]*v.v[1] + mat.m[1][2]*v.v[2];
	result.v[2] = mat.m[2][0]*v.v[0] + mat.m[2][1]*v.v[1] + mat.m[2][2]*v.v[2];
	return result;
}

//XXX: should probably pass by reference and we could
//probably reuse this computation in matrix_invert
float matrix_det(struct matrix mat)
{
	float det;
	det = mat.m[0][0]*mat.m[1][1]*mat.m[2][2] +
		mat.m[0][1]*mat.m[1][2]*mat.m[2][0] +
		mat.m[0][2]*mat.m[1][0]*mat.m[2][1] -
		mat.m[0][0]*mat.m[1][2]*mat.m[2][1] -
		mat.m[0][1]*mat.m[1][0]*mat.m[2][2] -
		mat.m[0][2]*mat.m[1][1]*mat.m[2][0];
	return det;
}

/* from pixman and cairo and Mathematics for Game Programmers */
/* lcms uses gauss-jordan elimination with partial pivoting which is
 * less efficient and not as numerically stable. See Mathematics for
 * Game Programmers. */
struct matrix matrix_invert(struct matrix mat)
{
	struct matrix dest_mat;
	int i,j;
	static int a[3] = { 2, 2, 1 };
	static int b[3] = { 1, 0, 0 };

	/* inv  (A) = 1/det (A) * adj (A) */
	float det = matrix_det(mat);

	if (det == 0) {
		dest_mat.invalid = true;
	} else {
		dest_mat.invalid = false;
	}

	det = 1/det;

	for (j = 0; j < 3; j++) {
		for (i = 0; i < 3; i++) {
			double p;
			int ai = a[i];
			int aj = a[j];
			int bi = b[i];
			int bj = b[j];

			p = mat.m[ai][aj] * mat.m[bi][bj] -
				mat.m[ai][bj] * mat.m[bi][aj];
			if (((i + j) & 1) != 0)
				p = -p;

			dest_mat.m[j][i] = det * p;
		}
	}
	return dest_mat;
}

struct matrix matrix_identity(void)
{
	struct matrix i;
	i.m[0][0] = 1;
	i.m[0][1] = 0;
	i.m[0][2] = 0;
	i.m[1][0] = 0;
	i.m[1][1] = 1;
	i.m[1][2] = 0;
	i.m[2][0] = 0;
	i.m[2][1] = 0;
	i.m[2][2] = 1;
	i.invalid = false;
	return i;
}

struct matrix matrix_invalid(void)
{
	struct matrix inv = matrix_identity();
	inv.invalid = true;
	return inv;
}


/* from pixman */
/* MAT3per... */
struct matrix matrix_multiply(struct matrix a, struct matrix b)
{
	struct matrix result;
	int dx, dy;
	int o;
	for (dy = 0; dy < 3; dy++) {
		for (dx = 0; dx < 3; dx++) {
			double v = 0;
			for (o = 0; o < 3; o++) {
				v += a.m[dy][o] * b.m[o][dx];
			}
			result.m[dy][dx] = v;
		}
	}
	result.invalid = a.invalid || b.invalid;
	return result;
}