DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Implementation

Mercurial (d1ed7de67f5a)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef MOZILLA_GFX_PATHHELPERS_H_
#define MOZILLA_GFX_PATHHELPERS_H_

#include "2D.h"
#include "mozilla/Constants.h"

namespace mozilla {
namespace gfx {

template <typename T>
void ArcToBezier(T* aSink, const Point &aOrigin, const Size &aRadius,
                 float aStartAngle, float aEndAngle, bool aAntiClockwise)
{
  Point startPoint(aOrigin.x + cosf(aStartAngle) * aRadius.width,
                   aOrigin.y + sinf(aStartAngle) * aRadius.height);

  aSink->LineTo(startPoint);

  // Clockwise we always sweep from the smaller to the larger angle, ccw
  // it's vice versa.
  if (!aAntiClockwise && (aEndAngle < aStartAngle)) {
    Float correction = Float(ceil((aStartAngle - aEndAngle) / (2.0f * M_PI)));
    aEndAngle += float(correction * 2.0f * M_PI);
  } else if (aAntiClockwise && (aStartAngle < aEndAngle)) {
    Float correction = (Float)ceil((aEndAngle - aStartAngle) / (2.0f * M_PI));
    aStartAngle += float(correction * 2.0f * M_PI);
  }

  // Sweeping more than 2 * pi is a full circle.
  if (!aAntiClockwise && (aEndAngle - aStartAngle > 2 * M_PI)) {
    aEndAngle = float(aStartAngle + 2.0f * M_PI);
  } else if (aAntiClockwise && (aStartAngle - aEndAngle > 2.0f * M_PI)) {
    aEndAngle = float(aStartAngle - 2.0f * M_PI);
  }

  // Calculate the total arc we're going to sweep.
  Float arcSweepLeft = fabs(aEndAngle - aStartAngle);

  Float sweepDirection = aAntiClockwise ? -1.0f : 1.0f;

  Float currentStartAngle = aStartAngle;

  while (arcSweepLeft > 0) {
    // We guarantee here the current point is the start point of the next
    // curve segment.
    Float currentEndAngle;

    if (arcSweepLeft > M_PI / 2.0f) {
      currentEndAngle = Float(currentStartAngle + M_PI / 2.0f * sweepDirection);
    } else {
      currentEndAngle = currentStartAngle + arcSweepLeft * sweepDirection;
    }

    Point currentStartPoint(aOrigin.x + cosf(currentStartAngle) * aRadius.width,
                            aOrigin.y + sinf(currentStartAngle) * aRadius.height);
    Point currentEndPoint(aOrigin.x + cosf(currentEndAngle) * aRadius.width,
                          aOrigin.y + sinf(currentEndAngle) * aRadius.height);

    // Calculate kappa constant for partial curve. The sign of angle in the
    // tangent will actually ensure this is negative for a counter clockwise
    // sweep, so changing signs later isn't needed.
    Float kappaFactor = (4.0f / 3.0f) * tan((currentEndAngle - currentStartAngle) / 4.0f);
    Float kappaX = kappaFactor * aRadius.width;
    Float kappaY = kappaFactor * aRadius.height;

    Point tangentStart(-sin(currentStartAngle), cos(currentStartAngle));
    Point cp1 = currentStartPoint;
    cp1 += Point(tangentStart.x * kappaX, tangentStart.y * kappaY);

    Point revTangentEnd(sin(currentEndAngle), -cos(currentEndAngle));
    Point cp2 = currentEndPoint;
    cp2 += Point(revTangentEnd.x * kappaX, revTangentEnd.y * kappaY);

    aSink->BezierTo(cp1, cp2, currentEndPoint);

    arcSweepLeft -= Float(M_PI / 2.0f);
    currentStartAngle = currentEndAngle;
  }
}

/* This is basically the ArcToBezier with the parameters for drawing a circle
 * inlined which vastly simplifies it and avoids a bunch of transcedental function
 * calls which should make it faster. */
template <typename T>
void EllipseToBezier(T* aSink, const Point &aOrigin, const Size &aRadius)
{
  Point startPoint(aOrigin.x + aRadius.width,
                   aOrigin.y);

  aSink->LineTo(startPoint);

  // Calculate kappa constant for partial curve. The sign of angle in the
  // tangent will actually ensure this is negative for a counter clockwise
  // sweep, so changing signs later isn't needed.
  Float kappaFactor = (4.0f / 3.0f) * tan((M_PI/2.0f) / 4.0f);
  Float kappaX = kappaFactor * aRadius.width;
  Float kappaY = kappaFactor * aRadius.height;
  Float cosStartAngle = 1;
  Float sinStartAngle = 0;
  for (int i = 0; i < 4; i++) {
    // We guarantee here the current point is the start point of the next
    // curve segment.
    Point currentStartPoint(aOrigin.x + cosStartAngle * aRadius.width,
                            aOrigin.y + sinStartAngle * aRadius.height);
    Point currentEndPoint(aOrigin.x + -sinStartAngle * aRadius.width,
                          aOrigin.y + cosStartAngle * aRadius.height);

    Point tangentStart(-sinStartAngle, cosStartAngle);
    Point cp1 = currentStartPoint;
    cp1 += Point(tangentStart.x * kappaX, tangentStart.y * kappaY);

    Point revTangentEnd(cosStartAngle, sinStartAngle);
    Point cp2 = currentEndPoint;
    cp2 += Point(revTangentEnd.x * kappaX, revTangentEnd.y * kappaY);

    aSink->BezierTo(cp1, cp2, currentEndPoint);

    // cos(x+pi/2) == -sin(x)
    // sin(x+pi/2) == cos(x)
    Float tmp = cosStartAngle;
    cosStartAngle = -sinStartAngle;
    sinStartAngle = tmp;
  }
}

/**
 * Appends a path represending a rounded rectangle to the path being built by
 * aPathBuilder.
 *
 * aRect           The rectangle to append.
 * aCornerRadii    Contains the radii of the top-left, top-right, bottom-right
 *                 and bottom-left corners, in that order.
 * aDrawClockwise  If set to true, the path will start at the left of the top
 *                 left edge and draw clockwise. If set to false the path will
 *                 start at the right of the top left edge and draw counter-
 *                 clockwise.
 */
GFX2D_API void AppendRoundedRectToPath(PathBuilder* aPathBuilder,
                                       const Rect& aRect,
                                       const Size(& aCornerRadii)[4],
                                       bool aDrawClockwise = true);

/**
 * Appends a path represending an ellipse to the path being built by
 * aPathBuilder.
 *
 * The ellipse extends aDimensions.width / 2.0 in the horizontal direction
 * from aCenter, and aDimensions.height / 2.0 in the vertical direction.
 */
GFX2D_API void AppendEllipseToPath(PathBuilder* aPathBuilder,
                                   const Point& aCenter,
                                   const Size& aDimensions);

static inline bool
UserToDevicePixelSnapped(Rect& aRect, const Matrix& aTransform)
{
  Point p1 = aTransform * aRect.TopLeft();
  Point p2 = aTransform * aRect.TopRight();
  Point p3 = aTransform * aRect.BottomRight();

  // Check that the rectangle is axis-aligned. For an axis-aligned rectangle,
  // two opposite corners define the entire rectangle. So check if
  // the axis-aligned rectangle with opposite corners p1 and p3
  // define an axis-aligned rectangle whose other corners are p2 and p4.
  // We actually only need to check one of p2 and p4, since an affine
  // transform maps parallelograms to parallelograms.
  if (p2 == Point(p1.x, p3.y) || p2 == Point(p3.x, p1.y)) {
      p1.Round();
      p3.Round();

      aRect.MoveTo(Point(std::min(p1.x, p3.x), std::min(p1.y, p3.y)));
      aRect.SizeTo(Size(std::max(p1.x, p3.x) - aRect.X(),
                        std::max(p1.y, p3.y) - aRect.Y()));
      return true;
  }

  return false;
}

} // namespace gfx
} // namespace mozilla

#endif /* MOZILLA_GFX_PATHHELPERS_H_ */