DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (d1ed7de67f5a)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "PathCairo.h"
#include <math.h>
#include "DrawTargetCairo.h"
#include "Logging.h"
#include "PathHelpers.h"
#include "HelpersCairo.h"

namespace mozilla {
namespace gfx {

PathBuilderCairo::PathBuilderCairo(FillRule aFillRule)
  : mFillRule(aFillRule)
{
}

void
PathBuilderCairo::MoveTo(const Point &aPoint)
{
  cairo_path_data_t data;
  data.header.type = CAIRO_PATH_MOVE_TO;
  data.header.length = 2;
  mPathData.push_back(data);
  data.point.x = aPoint.x;
  data.point.y = aPoint.y;
  mPathData.push_back(data);

  mBeginPoint = mCurrentPoint = aPoint;
}

void
PathBuilderCairo::LineTo(const Point &aPoint)
{
  cairo_path_data_t data;
  data.header.type = CAIRO_PATH_LINE_TO;
  data.header.length = 2;
  mPathData.push_back(data);
  data.point.x = aPoint.x;
  data.point.y = aPoint.y;
  mPathData.push_back(data);

  mCurrentPoint = aPoint;
}

void
PathBuilderCairo::BezierTo(const Point &aCP1,
                           const Point &aCP2,
                           const Point &aCP3)
{
  cairo_path_data_t data;
  data.header.type = CAIRO_PATH_CURVE_TO;
  data.header.length = 4;
  mPathData.push_back(data);
  data.point.x = aCP1.x;
  data.point.y = aCP1.y;
  mPathData.push_back(data);
  data.point.x = aCP2.x;
  data.point.y = aCP2.y;
  mPathData.push_back(data);
  data.point.x = aCP3.x;
  data.point.y = aCP3.y;
  mPathData.push_back(data);

  mCurrentPoint = aCP3;
}

void
PathBuilderCairo::QuadraticBezierTo(const Point &aCP1,
                                    const Point &aCP2)
{
  // We need to elevate the degree of this quadratic B├ęzier to cubic, so we're
  // going to add an intermediate control point, and recompute control point 1.
  // The first and last control points remain the same.
  // This formula can be found on http://fontforge.sourceforge.net/bezier.html
  Point CP0 = CurrentPoint();
  Point CP1 = (CP0 + aCP1 * 2.0) / 3.0;
  Point CP2 = (aCP2 + aCP1 * 2.0) / 3.0;
  Point CP3 = aCP2;

  cairo_path_data_t data;
  data.header.type = CAIRO_PATH_CURVE_TO;
  data.header.length = 4;
  mPathData.push_back(data);
  data.point.x = CP1.x;
  data.point.y = CP1.y;
  mPathData.push_back(data);
  data.point.x = CP2.x;
  data.point.y = CP2.y;
  mPathData.push_back(data);
  data.point.x = CP3.x;
  data.point.y = CP3.y;
  mPathData.push_back(data);

  mCurrentPoint = aCP2;
}

void
PathBuilderCairo::Close()
{
  cairo_path_data_t data;
  data.header.type = CAIRO_PATH_CLOSE_PATH;
  data.header.length = 1;
  mPathData.push_back(data);

  mCurrentPoint = mBeginPoint;
}

void
PathBuilderCairo::Arc(const Point &aOrigin, float aRadius, float aStartAngle,
                     float aEndAngle, bool aAntiClockwise)
{
  ArcToBezier(this, aOrigin, Size(aRadius, aRadius), aStartAngle, aEndAngle, aAntiClockwise);
}

Point
PathBuilderCairo::CurrentPoint() const
{
  return mCurrentPoint;
}

TemporaryRef<Path>
PathBuilderCairo::Finish()
{
  return new PathCairo(mFillRule, mPathData, mCurrentPoint);
}

PathCairo::PathCairo(FillRule aFillRule, std::vector<cairo_path_data_t> &aPathData, const Point &aCurrentPoint)
  : mFillRule(aFillRule)
  , mContainingContext(nullptr)
  , mCurrentPoint(aCurrentPoint)
{
  mPathData.swap(aPathData);
}

PathCairo::PathCairo(cairo_t *aContext)
  : mFillRule(FillRule::FILL_WINDING)
  , mContainingContext(nullptr)
{
  cairo_path_t *path = cairo_copy_path(aContext);

  // XXX - mCurrentPoint is not properly set here, the same is true for the
  // D2D Path code, we never require current point when hitting this codepath
  // but this should be fixed.
  for (int i = 0; i < path->num_data; i++) {
    mPathData.push_back(path->data[i]);
  }

  cairo_path_destroy(path);
}

PathCairo::~PathCairo()
{
  if (mContainingContext) {
    cairo_destroy(mContainingContext);
  }
}

TemporaryRef<PathBuilder>
PathCairo::CopyToBuilder(FillRule aFillRule) const
{
  RefPtr<PathBuilderCairo> builder = new PathBuilderCairo(aFillRule);

  builder->mPathData = mPathData;
  builder->mCurrentPoint = mCurrentPoint;

  return builder.forget();
}

TemporaryRef<PathBuilder>
PathCairo::TransformedCopyToBuilder(const Matrix &aTransform, FillRule aFillRule) const
{
  RefPtr<PathBuilderCairo> builder = new PathBuilderCairo(aFillRule);

  AppendPathToBuilder(builder, &aTransform);
  builder->mCurrentPoint = aTransform * mCurrentPoint;

  return builder.forget();
}

bool
PathCairo::ContainsPoint(const Point &aPoint, const Matrix &aTransform) const
{
  Matrix inverse = aTransform;
  inverse.Invert();
  Point transformed = inverse * aPoint;

  EnsureContainingContext();

  return cairo_in_fill(mContainingContext, transformed.x, transformed.y);
}

bool
PathCairo::StrokeContainsPoint(const StrokeOptions &aStrokeOptions,
                               const Point &aPoint,
                               const Matrix &aTransform) const
{
  Matrix inverse = aTransform;
  inverse.Invert();
  Point transformed = inverse * aPoint;

  EnsureContainingContext();

  SetCairoStrokeOptions(mContainingContext, aStrokeOptions);

  return cairo_in_stroke(mContainingContext, transformed.x, transformed.y);
}

Rect
PathCairo::GetBounds(const Matrix &aTransform) const
{
  EnsureContainingContext();

  double x1, y1, x2, y2;

  cairo_path_extents(mContainingContext, &x1, &y1, &x2, &y2);
  Rect bounds(Float(x1), Float(y1), Float(x2 - x1), Float(y2 - y1));
  return aTransform.TransformBounds(bounds);
}

Rect
PathCairo::GetStrokedBounds(const StrokeOptions &aStrokeOptions,
                            const Matrix &aTransform) const
{
  EnsureContainingContext();

  double x1, y1, x2, y2;

  SetCairoStrokeOptions(mContainingContext, aStrokeOptions);

  cairo_stroke_extents(mContainingContext, &x1, &y1, &x2, &y2);
  Rect bounds((Float)x1, (Float)y1, (Float)(x2 - x1), (Float)(y2 - y1));
  return aTransform.TransformBounds(bounds);
}

void
PathCairo::StreamToSink(PathSink *aSink) const
{
  for (size_t i = 0; i < mPathData.size(); i++) {
    switch (mPathData[i].header.type) {
    case CAIRO_PATH_MOVE_TO:
      i++;
      aSink->MoveTo(Point(mPathData[i].point.x, mPathData[i].point.y));
      break;
    case CAIRO_PATH_LINE_TO:
      i++;
      aSink->LineTo(Point(mPathData[i].point.x, mPathData[i].point.y));
      break;
    case CAIRO_PATH_CURVE_TO:
      aSink->BezierTo(Point(mPathData[i + 1].point.x, mPathData[i + 1].point.y),
                      Point(mPathData[i + 2].point.x, mPathData[i + 2].point.y),
                      Point(mPathData[i + 3].point.x, mPathData[i + 3].point.y));
      i += 3;
      break;
    case CAIRO_PATH_CLOSE_PATH:
      aSink->Close();
      break;
    default:
      // Corrupt path data!
      MOZ_ASSERT(false);
    }
  }
}

void
PathCairo::EnsureContainingContext() const
{
  if (mContainingContext) {
    return;
  }

  mContainingContext = cairo_create(DrawTargetCairo::GetDummySurface());

  SetPathOnContext(mContainingContext);
}

void
PathCairo::SetPathOnContext(cairo_t *aContext) const
{
  // Needs the correct fill rule set.
  cairo_set_fill_rule(aContext, GfxFillRuleToCairoFillRule(mFillRule));

  cairo_new_path(aContext);

  if (mPathData.size()) {
    cairo_path_t path;
    path.data = const_cast<cairo_path_data_t*>(&mPathData.front());
    path.num_data = mPathData.size();
    path.status = CAIRO_STATUS_SUCCESS;
    cairo_append_path(aContext, &path);
  }
}

void
PathCairo::AppendPathToBuilder(PathBuilderCairo *aBuilder, const Matrix *aTransform) const
{
  if (aTransform) {
    size_t i = 0;
    while (i < mPathData.size()) {
      uint32_t pointCount = mPathData[i].header.length - 1;
      aBuilder->mPathData.push_back(mPathData[i]);
      i++;
      for (uint32_t c = 0; c < pointCount; c++) {
        cairo_path_data_t data;
        Point newPoint = *aTransform * Point(mPathData[i].point.x, mPathData[i].point.y);
        data.point.x = newPoint.x;
        data.point.y = newPoint.y;
        aBuilder->mPathData.push_back(data);
        i++;
      }
    }
  } else {
    for (size_t i = 0; i < mPathData.size(); i++) {
      aBuilder->mPathData.push_back(mPathData[i]);
    }
  }
}

}
}