DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (d1ed7de67f5a)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "2D.h"
#include "PathAnalysis.h"
#include "PathHelpers.h"

namespace mozilla {
namespace gfx {

static float CubicRoot(float aValue) {
  if (aValue < 0.0) {
    return -CubicRoot(-aValue);
  }
  else {
    return powf(aValue, 1.0f / 3.0f);
  }
}

struct BezierControlPoints
{
  BezierControlPoints() {}
  BezierControlPoints(const Point &aCP1, const Point &aCP2,
                      const Point &aCP3, const Point &aCP4)
    : mCP1(aCP1), mCP2(aCP2), mCP3(aCP3), mCP4(aCP4)
  {
  }

  Point mCP1, mCP2, mCP3, mCP4;
};

void
FlattenBezier(const BezierControlPoints &aPoints,
              PathSink *aSink, Float aTolerance);


Path::Path()
{
}

Path::~Path()
{
}

Float
Path::ComputeLength()
{
  EnsureFlattenedPath();
  return mFlattenedPath->ComputeLength();
}

Point
Path::ComputePointAtLength(Float aLength, Point* aTangent)
{
  EnsureFlattenedPath();
  return mFlattenedPath->ComputePointAtLength(aLength, aTangent);
}

void
Path::EnsureFlattenedPath()
{
  if (!mFlattenedPath) {
    mFlattenedPath = new FlattenedPath();
    StreamToSink(mFlattenedPath);
  }
}

// This is the maximum deviation we allow (with an additional ~20% margin of
// error) of the approximation from the actual Bezier curve.
const Float kFlatteningTolerance = 0.0001f;

void
FlattenedPath::MoveTo(const Point &aPoint)
{
  MOZ_ASSERT(!mCalculatedLength);
  FlatPathOp op;
  op.mType = FlatPathOp::OP_MOVETO;
  op.mPoint = aPoint;
  mPathOps.push_back(op);

  mLastMove = aPoint;
}

void
FlattenedPath::LineTo(const Point &aPoint)
{
  MOZ_ASSERT(!mCalculatedLength);
  FlatPathOp op;
  op.mType = FlatPathOp::OP_LINETO;
  op.mPoint = aPoint;
  mPathOps.push_back(op);
}

void
FlattenedPath::BezierTo(const Point &aCP1,
                        const Point &aCP2,
                        const Point &aCP3)
{
  MOZ_ASSERT(!mCalculatedLength);
  FlattenBezier(BezierControlPoints(CurrentPoint(), aCP1, aCP2, aCP3), this, kFlatteningTolerance);
}

void
FlattenedPath::QuadraticBezierTo(const Point &aCP1,
                                 const Point &aCP2)
{
  MOZ_ASSERT(!mCalculatedLength);
  // We need to elevate the degree of this quadratic B�zier to cubic, so we're
  // going to add an intermediate control point, and recompute control point 1.
  // The first and last control points remain the same.
  // This formula can be found on http://fontforge.sourceforge.net/bezier.html
  Point CP0 = CurrentPoint();
  Point CP1 = (CP0 + aCP1 * 2.0) / 3.0;
  Point CP2 = (aCP2 + aCP1 * 2.0) / 3.0;
  Point CP3 = aCP2;

  BezierTo(CP1, CP2, CP3);
}

void
FlattenedPath::Close()
{
  MOZ_ASSERT(!mCalculatedLength);
  LineTo(mLastMove);
}

void
FlattenedPath::Arc(const Point &aOrigin, float aRadius, float aStartAngle,
                   float aEndAngle, bool aAntiClockwise)
{
  ArcToBezier(this, aOrigin, Size(aRadius, aRadius), aStartAngle, aEndAngle, aAntiClockwise);
}

Float
FlattenedPath::ComputeLength()
{
  if (!mCalculatedLength) {
    Point currentPoint;

    for (uint32_t i = 0; i < mPathOps.size(); i++) {
      if (mPathOps[i].mType == FlatPathOp::OP_MOVETO) {
        currentPoint = mPathOps[i].mPoint;
      } else {
        mCachedLength += Distance(currentPoint, mPathOps[i].mPoint);
        currentPoint = mPathOps[i].mPoint;
      }
    }

    mCalculatedLength =  true;
  }

  return mCachedLength;
}

Point
FlattenedPath::ComputePointAtLength(Float aLength, Point *aTangent)
{
  // We track the last point that -wasn't- in the same place as the current
  // point so if we pass the edge of the path with a bunch of zero length
  // paths we still get the correct tangent vector.
  Point lastPointSinceMove;
  Point currentPoint;
  for (uint32_t i = 0; i < mPathOps.size(); i++) {
    if (mPathOps[i].mType == FlatPathOp::OP_MOVETO) {
      if (Distance(currentPoint, mPathOps[i].mPoint)) {
        lastPointSinceMove = currentPoint;
      }
      currentPoint = mPathOps[i].mPoint;
    } else {
      Float segmentLength = Distance(currentPoint, mPathOps[i].mPoint);

      if (segmentLength) {
        lastPointSinceMove = currentPoint;
        if (segmentLength > aLength) {
          Point currentVector = mPathOps[i].mPoint - currentPoint;
          Point tangent = currentVector / segmentLength;
          if (aTangent) {
            *aTangent = tangent;
          }
          return currentPoint + tangent * aLength;
        }
      }

      aLength -= segmentLength;
      currentPoint = mPathOps[i].mPoint;
    }
  }

  Point currentVector = currentPoint - lastPointSinceMove;
  if (aTangent) {
    if (hypotf(currentVector.x, currentVector.y)) {
      *aTangent = currentVector / hypotf(currentVector.x, currentVector.y);
    } else {
      *aTangent = Point();
    }
  }
  return currentPoint;
}

// This function explicitly permits aControlPoints to refer to the same object
// as either of the other arguments.
static void 
SplitBezier(const BezierControlPoints &aControlPoints,
            BezierControlPoints *aFirstSegmentControlPoints,
            BezierControlPoints *aSecondSegmentControlPoints,
            Float t)
{
  MOZ_ASSERT(aSecondSegmentControlPoints);
  
  *aSecondSegmentControlPoints = aControlPoints;

  Point cp1a = aControlPoints.mCP1 + (aControlPoints.mCP2 - aControlPoints.mCP1) * t;
  Point cp2a = aControlPoints.mCP2 + (aControlPoints.mCP3 - aControlPoints.mCP2) * t;
  Point cp1aa = cp1a + (cp2a - cp1a) * t;
  Point cp3a = aControlPoints.mCP3 + (aControlPoints.mCP4 - aControlPoints.mCP3) * t;
  Point cp2aa = cp2a + (cp3a - cp2a) * t;
  Point cp1aaa = cp1aa + (cp2aa - cp1aa) * t;
  aSecondSegmentControlPoints->mCP4 = aControlPoints.mCP4;

  if(aFirstSegmentControlPoints) {
    aFirstSegmentControlPoints->mCP1 = aControlPoints.mCP1;
    aFirstSegmentControlPoints->mCP2 = cp1a;
    aFirstSegmentControlPoints->mCP3 = cp1aa;
    aFirstSegmentControlPoints->mCP4 = cp1aaa;
  }
  aSecondSegmentControlPoints->mCP1 = cp1aaa;
  aSecondSegmentControlPoints->mCP2 = cp2aa;
  aSecondSegmentControlPoints->mCP3 = cp3a;
}

static void
FlattenBezierCurveSegment(const BezierControlPoints &aControlPoints,
                          PathSink *aSink,
                          Float aTolerance)
{
  /* The algorithm implemented here is based on:
   * http://cis.usouthal.edu/~hain/general/Publications/Bezier/Bezier%20Offset%20Curves.pdf
   *
   * The basic premise is that for a small t the third order term in the
   * equation of a cubic bezier curve is insignificantly small. This can
   * then be approximated by a quadratic equation for which the maximum
   * difference from a linear approximation can be much more easily determined.
   */
  BezierControlPoints currentCP = aControlPoints;

  Float t = 0;
  while (t < 1.0f) {
    Point cp21 = currentCP.mCP2 - currentCP.mCP3;
    Point cp31 = currentCP.mCP3 - currentCP.mCP1;

    Float s3 = (cp31.x * cp21.y - cp31.y * cp21.x) / hypotf(cp21.x, cp21.y);

    t = 2 * Float(sqrt(aTolerance / (3. * abs(s3))));

    if (t >= 1.0f) {
      aSink->LineTo(aControlPoints.mCP4);
      break;
    }

    Point prevCP2, prevCP3, nextCP1, nextCP2, nextCP3;
    SplitBezier(currentCP, nullptr, &currentCP, t);

    aSink->LineTo(currentCP.mCP1);
  }
}

static inline void
FindInflectionApproximationRange(BezierControlPoints aControlPoints,
                                 Float *aMin, Float *aMax, Float aT,
                                 Float aTolerance)
{
    SplitBezier(aControlPoints, nullptr, &aControlPoints, aT);

    Point cp21 = aControlPoints.mCP2 - aControlPoints.mCP1;
    Point cp41 = aControlPoints.mCP4 - aControlPoints.mCP1;

    if (cp21.x == 0.f && cp21.y == 0.f) {
      // In this case s3 becomes lim[n->0] (cp41.x * n) / n - (cp41.y * n) / n = cp41.x - cp41.y.

      // Use the absolute value so that Min and Max will correspond with the
      // minimum and maximum of the range.
      *aMin = aT - CubicRoot(abs(aTolerance / (cp41.x - cp41.y)));
      *aMax = aT + CubicRoot(abs(aTolerance / (cp41.x - cp41.y)));
      return;
    }

    Float s3 = (cp41.x * cp21.y - cp41.y * cp21.x) / hypotf(cp21.x, cp21.y);

    if (s3 == 0) {
      // This means within the precision we have it can be approximated
      // infinitely by a linear segment. Deal with this by specifying the
      // approximation range as extending beyond the entire curve.
      *aMin = -1.0f;
      *aMax = 2.0f;
      return;
    }

    Float tf = CubicRoot(abs(aTolerance / s3));

    *aMin = aT - tf * (1 - aT);
    *aMax = aT + tf * (1 - aT);
}

/* Find the inflection points of a bezier curve. Will return false if the
 * curve is degenerate in such a way that it is best approximated by a straight
 * line.
 *
 * The below algorithm was written by Jeff Muizelaar <jmuizelaar@mozilla.com>, explanation follows:
 *
 * The lower inflection point is returned in aT1, the higher one in aT2. In the
 * case of a single inflection point this will be in aT1.
 *
 * The method is inspired by the algorithm in "analysis of in?ection points for planar cubic bezier curve"
 *
 * Here are some differences between this algorithm and versions discussed elsewhere in the literature:
 *
 * zhang et. al compute a0, d0 and e0 incrementally using the follow formula:
 *
 * Point a0 = CP2 - CP1
 * Point a1 = CP3 - CP2
 * Point a2 = CP4 - CP1
 *
 * Point d0 = a1 - a0
 * Point d1 = a2 - a1
 
 * Point e0 = d1 - d0
 *
 * this avoids any multiplications and may or may not be faster than the approach take below.
 *
 * "fast, precise flattening of cubic bezier path and ofset curves" by hain et. al
 * Point a = CP1 + 3 * CP2 - 3 * CP3 + CP4
 * Point b = 3 * CP1 - 6 * CP2 + 3 * CP3
 * Point c = -3 * CP1 + 3 * CP2
 * Point d = CP1
 * the a, b, c, d can be expressed in terms of a0, d0 and e0 defined above as:
 * c = 3 * a0
 * b = 3 * d0
 * a = e0
 *
 *
 * a = 3a = a.y * b.x - a.x * b.y
 * b = 3b = a.y * c.x - a.x * c.y
 * c = 9c = b.y * c.x - b.x * c.y
 *
 * The additional multiples of 3 cancel each other out as show below:
 *
 * x = (-b + sqrt(b * b - 4 * a * c)) / (2 * a)
 * x = (-3 * b + sqrt(3 * b * 3 * b - 4 * a * 3 * 9 * c / 3)) / (2 * 3 * a)
 * x = 3 * (-b + sqrt(b * b - 4 * a * c)) / (2 * 3 * a)
 * x = (-b + sqrt(b * b - 4 * a * c)) / (2 * a)
 *
 * I haven't looked into whether the formulation of the quadratic formula in
 * hain has any numerical advantages over the one used below.
 */
static inline void
FindInflectionPoints(const BezierControlPoints &aControlPoints,
                     Float *aT1, Float *aT2, uint32_t *aCount)
{
  // Find inflection points.
  // See www.faculty.idc.ac.il/arik/quality/appendixa.html for an explanation
  // of this approach.
  Point A = aControlPoints.mCP2 - aControlPoints.mCP1;
  Point B = aControlPoints.mCP3 - (aControlPoints.mCP2 * 2) + aControlPoints.mCP1;
  Point C = aControlPoints.mCP4 - (aControlPoints.mCP3 * 3) + (aControlPoints.mCP2 * 3) - aControlPoints.mCP1;

  Float a = Float(B.x) * C.y - Float(B.y) * C.x;
  Float b = Float(A.x) * C.y - Float(A.y) * C.x;
  Float c = Float(A.x) * B.y - Float(A.y) * B.x;

  if (a == 0) {
    // Not a quadratic equation.
    if (b == 0) {
      // Instead of a linear acceleration change we have a constant
      // acceleration change. This means the equation has no solution
      // and there are no inflection points, unless the constant is 0.
      // In that case the curve is a straight line, essentially that means
      // the easiest way to deal with is is by saying there's an inflection
      // point at t == 0. The inflection point approximation range found will
      // automatically extend into infinity.
      if (c == 0) {
        *aCount = 1;
        *aT1 = 0;
        return;
      }
      *aCount = 0;
      return;
    }
    *aT1 = -c / b;
    *aCount = 1;
    return;
  } else {
    Float discriminant = b * b - 4 * a * c;

    if (discriminant < 0) {
      // No inflection points.
      *aCount = 0;
    } else if (discriminant == 0) {
      *aCount = 1;
      *aT1 = -b / (2 * a);
    } else {
      /* Use the following formula for computing the roots:
       *
       * q = -1/2 * (b + sign(b) * sqrt(b^2 - 4ac))
       * t1 = q / a
       * t2 = c / q
       */
      Float q = sqrtf(discriminant);
      if (b < 0) {
        q = b - q;
      } else {
        q = b + q;
      }
      q *= Float(-1./2);

      *aT1 = q / a;
      *aT2 = c / q;
      if (*aT1 > *aT2) {
        std::swap(*aT1, *aT2);
      }
      *aCount = 2;
    }
  }

  return;
}

void
FlattenBezier(const BezierControlPoints &aControlPoints,
              PathSink *aSink, Float aTolerance)
{
  Float t1;
  Float t2;
  uint32_t count;

  FindInflectionPoints(aControlPoints, &t1, &t2, &count);

  // Check that at least one of the inflection points is inside [0..1]
  if (count == 0 || ((t1 < 0 || t1 > 1.0) && ((t2 < 0 || t2 > 1.0) || count == 1)) ) {
    FlattenBezierCurveSegment(aControlPoints, aSink, aTolerance);
    return;
  }

  Float t1min = t1, t1max = t1, t2min = t2, t2max = t2;

  BezierControlPoints remainingCP = aControlPoints;

  // For both inflection points, calulate the range where they can be linearly
  // approximated if they are positioned within [0,1]
  if (count > 0 && t1 >= 0 && t1 < 1.0) {
    FindInflectionApproximationRange(aControlPoints, &t1min, &t1max, t1, aTolerance);
  }
  if (count > 1 && t2 >= 0 && t2 < 1.0) {
    FindInflectionApproximationRange(aControlPoints, &t2min, &t2max, t2, aTolerance);
  }
  BezierControlPoints nextCPs = aControlPoints;
  BezierControlPoints prevCPs;

  // Process ranges. [t1min, t1max] and [t2min, t2max] are approximated by line
  // segments.
  if (t1min > 0) {
    // Flatten the Bezier up until the first inflection point's approximation
    // point.
    SplitBezier(aControlPoints, &prevCPs,
                &remainingCP, t1min);
    FlattenBezierCurveSegment(prevCPs, aSink, aTolerance);
  }
  if (t1max >= 0 && t1max < 1.0 && (count == 1 || t2min > t1max)) {
    // The second inflection point's approximation range begins after the end
    // of the first, approximate the first inflection point by a line and
    // subsequently flatten up until the end or the next inflection point.
    SplitBezier(aControlPoints, nullptr, &nextCPs, t1max);

    aSink->LineTo(nextCPs.mCP1);

    if (count == 1 || (count > 1 && t2min >= 1.0)) {
      // No more inflection points to deal with, flatten the rest of the curve.
      FlattenBezierCurveSegment(nextCPs, aSink, aTolerance);
    }
  } else if (count > 1 && t2min > 1.0) {
    // We've already concluded t2min <= t1max, so if this is true the
    // approximation range for the first inflection point runs past the
    // end of the curve, draw a line to the end and we're done.
    aSink->LineTo(aControlPoints.mCP4);
    return;
  }

  if (count > 1 && t2min < 1.0 && t2max > 0) {
    if (t2min > 0 && t2min < t1max) {
      // In this case the t2 approximation range starts inside the t1
      // approximation range.
      SplitBezier(aControlPoints, nullptr, &nextCPs, t1max);
      aSink->LineTo(nextCPs.mCP1);
    } else if (t2min > 0 && t1max > 0) {
      SplitBezier(aControlPoints, nullptr, &nextCPs, t1max);

      // Find a control points describing the portion of the curve between t1max and t2min.
      Float t2mina = (t2min - t1max) / (1 - t1max);
      SplitBezier(nextCPs, &prevCPs, &nextCPs, t2mina);
      FlattenBezierCurveSegment(prevCPs, aSink, aTolerance);
    } else if (t2min > 0) {
      // We have nothing interesting before t2min, find that bit and flatten it.
      SplitBezier(aControlPoints, &prevCPs, &nextCPs, t2min);
      FlattenBezierCurveSegment(prevCPs, aSink, aTolerance);
    }
    if (t2max < 1.0) {
      // Flatten the portion of the curve after t2max
      SplitBezier(aControlPoints, nullptr, &nextCPs, t2max);

      // Draw a line to the start, this is the approximation between t2min and
      // t2max.
      aSink->LineTo(nextCPs.mCP1);
      FlattenBezierCurveSegment(nextCPs, aSink, aTolerance);
    } else {
      // Our approximation range extends beyond the end of the curve.
      aSink->LineTo(aControlPoints.mCP4);
      return;
    }
  }
}

}
}