DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Implementation

Mercurial (d1ed7de67f5a)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef MOZILLA_GFX_MATRIX_H_
#define MOZILLA_GFX_MATRIX_H_

#include "Types.h"
#include "Rect.h"
#include "Point.h"
#include <math.h>

namespace mozilla {
namespace gfx {

static bool FuzzyEqual(Float aV1, Float aV2) {
  // XXX - Check if fabs does the smart thing and just negates the sign bit.
  return fabs(aV2 - aV1) < 1e-6;
}

class Matrix
{
public:
  Matrix()
    : _11(1.0f), _12(0)
    , _21(0), _22(1.0f)
    , _31(0), _32(0)
  {}
  Matrix(Float a11, Float a12, Float a21, Float a22, Float a31, Float a32)
    : _11(a11), _12(a12)
    , _21(a21), _22(a22)
    , _31(a31), _32(a32)
  {}
  Float _11, _12;
  Float _21, _22;
  Float _31, _32;

  Point operator *(const Point &aPoint) const
  {
    Point retPoint;

    retPoint.x = aPoint.x * _11 + aPoint.y * _21 + _31;
    retPoint.y = aPoint.x * _12 + aPoint.y * _22 + _32;

    return retPoint;
  }

  Size operator *(const Size &aSize) const
  {
    Size retSize;

    retSize.width = aSize.width * _11 + aSize.height * _21;
    retSize.height = aSize.width * _12 + aSize.height * _22;

    return retSize;
  }

  GFX2D_API Rect TransformBounds(const Rect& rect) const;

  // Apply a scale to this matrix. This scale will be applied -before- the
  // existing transformation of the matrix.
  Matrix &Scale(Float aX, Float aY)
  {
    _11 *= aX;
    _12 *= aX;
    _21 *= aY;
    _22 *= aY;

    return *this;
  }

  Matrix &Translate(Float aX, Float aY)
  {
    _31 += _11 * aX + _21 * aY;
    _32 += _12 * aX + _22 * aY;

    return *this;
  }
  
  Matrix &Translate(const Point &aPoint)
  {
    return Translate(aPoint.x, aPoint.y);
  }

  Matrix &PostTranslate(Float aX, Float aY)
  {
    _31 += aX;
    _32 += aY;
    return *this;
  }

  Matrix &PostTranslate(const Point &aPoint)
  {
    return PostTranslate(aPoint.x, aPoint.y);
  }

  Matrix &Rotate(Float aAngle)
  {
    return *this = Matrix::Rotation(aAngle) * *this;
  }

  bool Invert()
  {
    // Compute co-factors.
    Float A = _22;
    Float B = -_21;
    Float C = _21 * _32 - _22 * _31;
    Float D = -_12;
    Float E = _11;
    Float F = _31 * _12 - _11 * _32;

    Float det = Determinant();

    if (!det) {
      return false;
    }

    Float inv_det = 1 / det;

    _11 = inv_det * A;
    _12 = inv_det * D;
    _21 = inv_det * B;
    _22 = inv_det * E;
    _31 = inv_det * C;
    _32 = inv_det * F;

    return true;
  }

  Float Determinant() const
  {
    return _11 * _22 - _12 * _21;
  }

  static Matrix Translation(Float aX, Float aY)
  {
    return Matrix(1.0f, 0.0f, 0.0f, 1.0f, aX, aY);
  }

  static Matrix Translation(Point aPoint)
  {
    return Translation(aPoint.x, aPoint.y);
  }

  GFX2D_API static Matrix Rotation(Float aAngle);

  static Matrix Scaling(Float aX, Float aY)
  {
    return Matrix(aX, 0.0f, 0.0f, aY, 0.0f, 0.0f);
  }

  Matrix operator*(const Matrix &aMatrix) const
  {
    Matrix resultMatrix;

    resultMatrix._11 = this->_11 * aMatrix._11 + this->_12 * aMatrix._21;
    resultMatrix._12 = this->_11 * aMatrix._12 + this->_12 * aMatrix._22;
    resultMatrix._21 = this->_21 * aMatrix._11 + this->_22 * aMatrix._21;
    resultMatrix._22 = this->_21 * aMatrix._12 + this->_22 * aMatrix._22;
    resultMatrix._31 = this->_31 * aMatrix._11 + this->_32 * aMatrix._21 + aMatrix._31;
    resultMatrix._32 = this->_31 * aMatrix._12 + this->_32 * aMatrix._22 + aMatrix._32;

    return resultMatrix;
  }

  Matrix& operator*=(const Matrix &aMatrix)
  {
    Matrix resultMatrix = *this * aMatrix;
    return *this = resultMatrix;
  }

  /* Returns true if the other matrix is fuzzy-equal to this matrix.
   * Note that this isn't a cheap comparison!
   */
  bool operator==(const Matrix& other) const
  {
    return FuzzyEqual(_11, other._11) && FuzzyEqual(_12, other._12) &&
           FuzzyEqual(_21, other._21) && FuzzyEqual(_22, other._22) &&
           FuzzyEqual(_31, other._31) && FuzzyEqual(_32, other._32);
  }

  bool operator!=(const Matrix& other) const
  {
    return !(*this == other);
  }

  /* Returns true if the matrix is a rectilinear transformation (i.e.
   * grid-aligned rectangles are transformed to grid-aligned rectangles)
   */
  bool IsRectilinear() const {
    if (FuzzyEqual(_12, 0) && FuzzyEqual(_21, 0)) {
      return true;
    } else if (FuzzyEqual(_22, 0) && FuzzyEqual(_11, 0)) {
      return true;
    }

    return false;
  }

  /**
   * Returns true if the matrix is anything other than a straight
   * translation by integers.
  */
  bool HasNonIntegerTranslation() const {
    return HasNonTranslation() ||
      !FuzzyEqual(_31, floor(_31 + 0.5)) ||
      !FuzzyEqual(_32, floor(_32 + 0.5));
  }

  /**
   * Returns true if the matrix only has an integer translation.
   */
  bool HasOnlyIntegerTranslation() const {
    return !HasNonIntegerTranslation();
  }

  /**
   * Returns true if the matrix has any transform other
   * than a straight translation.
   */
  bool HasNonTranslation() const {
    return !FuzzyEqual(_11, 1.0) || !FuzzyEqual(_22, 1.0) ||
           !FuzzyEqual(_12, 0.0) || !FuzzyEqual(_21, 0.0);
  }

  /**
   * Returns true if the matrix has any transform other
   * than a translation or a -1 y scale (y axis flip)
   */
  bool HasNonTranslationOrFlip() const {
      return !FuzzyEqual(_11, 1.0) ||
             (!FuzzyEqual(_22, 1.0) && !FuzzyEqual(_22, -1.0)) ||
             !FuzzyEqual(_21, 0.0) || !FuzzyEqual(_12, 0.0);
  }

  /* Returns true if the matrix is an identity matrix.
   */
  bool IsIdentity() const
  {
    return _11 == 1.0f && _12 == 0.0f &&
           _21 == 0.0f && _22 == 1.0f &&
           _31 == 0.0f && _32 == 0.0f;
  }

  /* Returns true if the matrix is singular.
   */
  bool IsSingular() const
  {
    return Determinant() == 0;
  }

  GFX2D_API void NudgeToIntegers();

  bool IsTranslation() const
  {
    return FuzzyEqual(_11, 1.0f) && FuzzyEqual(_12, 0.0f) &&
           FuzzyEqual(_21, 0.0f) && FuzzyEqual(_22, 1.0f);
  }

  static bool FuzzyIsInteger(Float aValue)
  {
    return FuzzyEqual(aValue, floorf(aValue + 0.5f));
  }

  bool IsIntegerTranslation() const
  {
    return IsTranslation() && FuzzyIsInteger(_31) && FuzzyIsInteger(_32);
  }

  bool IsAllIntegers() const
  {
    return FuzzyIsInteger(_11) && FuzzyIsInteger(_12) &&
           FuzzyIsInteger(_21) && FuzzyIsInteger(_22) &&
           FuzzyIsInteger(_31) && FuzzyIsInteger(_32);
  }

  Point GetTranslation() const {
    return Point(_31, _32);
  }

  /**
   * Returns true if matrix is multiple of 90 degrees rotation with flipping,
   * scaling and translation.
   */
  bool PreservesAxisAlignedRectangles() const {
      return ((FuzzyEqual(_11, 0.0) && FuzzyEqual(_22, 0.0))
          || (FuzzyEqual(_12, 0.0) && FuzzyEqual(_21, 0.0)));
  }

  /**
   * Returns true if the matrix has any transform other
   * than a translation or scale; this is, if there is
   * no rotation.
   */
  bool HasNonAxisAlignedTransform() const {
      return !FuzzyEqual(_21, 0.0) || !FuzzyEqual(_12, 0.0);
  }
};

class Matrix4x4
{
public:
  Matrix4x4()
    : _11(1.0f), _12(0.0f), _13(0.0f), _14(0.0f)
    , _21(0.0f), _22(1.0f), _23(0.0f), _24(0.0f)
    , _31(0.0f), _32(0.0f), _33(1.0f), _34(0.0f)
    , _41(0.0f), _42(0.0f), _43(0.0f), _44(1.0f)
  {}

  Float _11, _12, _13, _14;
  Float _21, _22, _23, _24;
  Float _31, _32, _33, _34;
  Float _41, _42, _43, _44;

  Point4D& operator[](int aIndex)
  {
      MOZ_ASSERT(aIndex >= 0 && aIndex <= 3, "Invalid matrix array index");
      return *reinterpret_cast<Point4D*>((&_11)+4*aIndex);
  }
  const Point4D& operator[](int aIndex) const
  {
      MOZ_ASSERT(aIndex >= 0 && aIndex <= 3, "Invalid matrix array index");
      return *reinterpret_cast<const Point4D*>((&_11)+4*aIndex);
  }

  /**
   * Returns true if the matrix is isomorphic to a 2D affine transformation.
   */
  bool Is2D() const
  {
    if (_13 != 0.0f || _14 != 0.0f ||
        _23 != 0.0f || _24 != 0.0f ||
        _31 != 0.0f || _32 != 0.0f || _33 != 1.0f || _34 != 0.0f ||
        _43 != 0.0f || _44 != 1.0f) {
      return false;
    }
    return true;
  }

  bool Is2D(Matrix* aMatrix) const {
    if (!Is2D()) {
      return false;
    }
    if (aMatrix) {
      aMatrix->_11 = _11;
      aMatrix->_12 = _12;
      aMatrix->_21 = _21;
      aMatrix->_22 = _22;
      aMatrix->_31 = _41;
      aMatrix->_32 = _42;
    }
    return true;
  }

  Matrix As2D() const
  {
    MOZ_ASSERT(Is2D(), "Matrix is not a 2D affine transform");

    return Matrix(_11, _12, _21, _22, _41, _42);
  }

  bool CanDraw2D(Matrix* aMatrix = nullptr) const {
    if (_14 != 0.0f ||
        _24 != 0.0f ||
        _44 != 1.0f) {
      return false;
    }
    if (aMatrix) {
      aMatrix->_11 = _11;
      aMatrix->_12 = _12;
      aMatrix->_21 = _21;
      aMatrix->_22 = _22;
      aMatrix->_31 = _41;
      aMatrix->_32 = _42;
    }
    return true;
  }

  Matrix4x4& ProjectTo2D() {
    _31 = 0.0f;
    _32 = 0.0f;
    _13 = 0.0f;
    _23 = 0.0f;
    _33 = 1.0f;
    _43 = 0.0f;
    _34 = 0.0f;
    return *this;
  }

  Point4D ProjectPoint(const Point& aPoint) const {
    // Find a value for z that will transform to 0.

    // The transformed value of z is computed as:
    // z' = aPoint.x * _13 + aPoint.y * _23 + z * _33 + _43;

    // Solving for z when z' = 0 gives us:
    float z = -(aPoint.x * _13 + aPoint.y * _23 + _43) / _33;

    // Compute the transformed point
    return *this * Point4D(aPoint.x, aPoint.y, z, 1);
  }

  static Matrix4x4 From2D(const Matrix &aMatrix) {
    Matrix4x4 matrix;
    matrix._11 = aMatrix._11;
    matrix._12 = aMatrix._12;
    matrix._21 = aMatrix._21;
    matrix._22 = aMatrix._22;
    matrix._41 = aMatrix._31;
    matrix._42 = aMatrix._32;
    return matrix;
  }

  bool Is2DIntegerTranslation() const
  {
    return Is2D() && As2D().IsIntegerTranslation();
  }

  Point4D TransposeTransform4D(const Point4D& aPoint) const
  {
      Float x = aPoint.x * _11 + aPoint.y * _12 + aPoint.z * _13 + aPoint.w * _14;
      Float y = aPoint.x * _21 + aPoint.y * _22 + aPoint.z * _23 + aPoint.w * _24;
      Float z = aPoint.x * _31 + aPoint.y * _32 + aPoint.z * _33 + aPoint.w * _34;
      Float w = aPoint.x * _41 + aPoint.y * _42 + aPoint.z * _43 + aPoint.w * _44;

      return Point4D(x, y, z, w);
  }

  Point4D operator *(const Point4D& aPoint) const
  {
    Point4D retPoint;

    retPoint.x = aPoint.x * _11 + aPoint.y * _21 + aPoint.z * _31 + _41;
    retPoint.y = aPoint.x * _12 + aPoint.y * _22 + aPoint.z * _32 + _42;
    retPoint.z = aPoint.x * _13 + aPoint.y * _23 + aPoint.z * _33 + _43;
    retPoint.w = aPoint.x * _14 + aPoint.y * _24 + aPoint.z * _34 + _44;

    return retPoint;
  }

  Point3D operator *(const Point3D& aPoint) const
  {
    Point4D temp(aPoint.x, aPoint.y, aPoint.z, 1);

    temp = *this * temp;
    temp /= temp.w;

    return Point3D(temp.x, temp.y, temp.z);
  }

  Point operator *(const Point &aPoint) const
  {
    Point4D temp(aPoint.x, aPoint.y, 0, 1);

    temp = *this * temp;
    temp /= temp.w;

    return Point(temp.x, temp.y);
  }

  GFX2D_API Rect TransformBounds(const Rect& rect) const;

  // Apply a scale to this matrix. This scale will be applied -before- the
  // existing transformation of the matrix.
  Matrix4x4 &Scale(Float aX, Float aY, Float aZ)
  {
    _11 *= aX;
    _12 *= aX;
    _13 *= aX;
    _21 *= aY;
    _22 *= aY;
    _23 *= aY;
    _31 *= aZ;
    _32 *= aZ;
    _33 *= aZ;

    return *this;
  }

  Matrix4x4 &Translate(Float aX, Float aY, Float aZ)
  {
    _41 += aX * _11 + aY * _21 + aZ * _31;
    _42 += aX * _12 + aY * _22 + aZ * _32;
    _43 += aX * _13 + aY * _23 + aZ * _33;
    _44 += aX * _14 + aY * _24 + aZ * _34;

    return *this;
  }

  Rect ProjectRectBounds(const Rect& aRect) const;

  Matrix4x4 &PostTranslate(Float aX, Float aY, Float aZ)
  {
    _11 += _14 * aX;
    _21 += _24 * aX;
    _31 += _34 * aX;
    _41 += _44 * aX;
    _12 += _14 * aY;
    _22 += _24 * aY;
    _32 += _34 * aY;
    _42 += _44 * aY;
    _13 += _14 * aZ;
    _23 += _24 * aZ;
    _33 += _34 * aZ;
    _43 += _44 * aZ;

    return *this;
  }

  void SkewXY(Float aSkew)
  {
    (*this)[1] += (*this)[0] * aSkew;
  }

  void SkewXZ(Float aSkew)
  {
      (*this)[2] += (*this)[0] * aSkew;
  }

  void SkewYZ(Float aSkew)
  {
      (*this)[2] += (*this)[1] * aSkew;
  }

  Matrix4x4 &ChangeBasis(Float aX, Float aY, Float aZ)
  {
    // Translate to the origin before applying this matrix
    Translate(-aX, -aY, -aZ);

    // Translate back into position after applying this matrix
    PostTranslate(aX, aY, aZ);

    return *this;
  }

  bool operator==(const Matrix4x4& o) const
  {
    // XXX would be nice to memcmp here, but that breaks IEEE 754 semantics
    return _11 == o._11 && _12 == o._12 && _13 == o._13 && _14 == o._14 &&
           _21 == o._21 && _22 == o._22 && _23 == o._23 && _24 == o._24 &&
           _31 == o._31 && _32 == o._32 && _33 == o._33 && _34 == o._34 &&
           _41 == o._41 && _42 == o._42 && _43 == o._43 && _44 == o._44;
  }

  bool operator!=(const Matrix4x4& o) const
  {
    return !((*this) == o);
  }

  Matrix4x4 operator*(const Matrix4x4 &aMatrix) const
  {
    Matrix4x4 matrix;

    matrix._11 = _11 * aMatrix._11 + _12 * aMatrix._21 + _13 * aMatrix._31 + _14 * aMatrix._41;
    matrix._21 = _21 * aMatrix._11 + _22 * aMatrix._21 + _23 * aMatrix._31 + _24 * aMatrix._41;
    matrix._31 = _31 * aMatrix._11 + _32 * aMatrix._21 + _33 * aMatrix._31 + _34 * aMatrix._41;
    matrix._41 = _41 * aMatrix._11 + _42 * aMatrix._21 + _43 * aMatrix._31 + _44 * aMatrix._41;
    matrix._12 = _11 * aMatrix._12 + _12 * aMatrix._22 + _13 * aMatrix._32 + _14 * aMatrix._42;
    matrix._22 = _21 * aMatrix._12 + _22 * aMatrix._22 + _23 * aMatrix._32 + _24 * aMatrix._42;
    matrix._32 = _31 * aMatrix._12 + _32 * aMatrix._22 + _33 * aMatrix._32 + _34 * aMatrix._42;
    matrix._42 = _41 * aMatrix._12 + _42 * aMatrix._22 + _43 * aMatrix._32 + _44 * aMatrix._42;
    matrix._13 = _11 * aMatrix._13 + _12 * aMatrix._23 + _13 * aMatrix._33 + _14 * aMatrix._43;
    matrix._23 = _21 * aMatrix._13 + _22 * aMatrix._23 + _23 * aMatrix._33 + _24 * aMatrix._43;
    matrix._33 = _31 * aMatrix._13 + _32 * aMatrix._23 + _33 * aMatrix._33 + _34 * aMatrix._43;
    matrix._43 = _41 * aMatrix._13 + _42 * aMatrix._23 + _43 * aMatrix._33 + _44 * aMatrix._43;
    matrix._14 = _11 * aMatrix._14 + _12 * aMatrix._24 + _13 * aMatrix._34 + _14 * aMatrix._44;
    matrix._24 = _21 * aMatrix._14 + _22 * aMatrix._24 + _23 * aMatrix._34 + _24 * aMatrix._44;
    matrix._34 = _31 * aMatrix._14 + _32 * aMatrix._24 + _33 * aMatrix._34 + _34 * aMatrix._44;
    matrix._44 = _41 * aMatrix._14 + _42 * aMatrix._24 + _43 * aMatrix._34 + _44 * aMatrix._44;

    return matrix;
  }

  Matrix4x4& operator*=(const Matrix4x4 &aMatrix)
  {
    Matrix4x4 resultMatrix = *this * aMatrix;
    return *this = resultMatrix;
  }

  /* Returns true if the matrix is an identity matrix.
   */
  bool IsIdentity() const
  {
    return _11 == 1.0f && _12 == 0.0f && _13 == 0.0f && _14 == 0.0f &&
           _21 == 0.0f && _22 == 1.0f && _23 == 0.0f && _24 == 0.0f &&
           _31 == 0.0f && _32 == 0.0f && _33 == 1.0f && _34 == 0.0f &&
           _41 == 0.0f && _42 == 0.0f && _43 == 0.0f && _44 == 1.0f;
  }

  bool IsSingular() const
  {
    return Determinant() == 0.0;
  }

  Float Determinant() const
  {
    return _14 * _23 * _32 * _41
         - _13 * _24 * _32 * _41
         - _14 * _22 * _33 * _41
         + _12 * _24 * _33 * _41
         + _13 * _22 * _34 * _41
         - _12 * _23 * _34 * _41
         - _14 * _23 * _31 * _42
         + _13 * _24 * _31 * _42
         + _14 * _21 * _33 * _42
         - _11 * _24 * _33 * _42
         - _13 * _21 * _34 * _42
         + _11 * _23 * _34 * _42
         + _14 * _22 * _31 * _43
         - _12 * _24 * _31 * _43
         - _14 * _21 * _32 * _43
         + _11 * _24 * _32 * _43
         + _12 * _21 * _34 * _43
         - _11 * _22 * _34 * _43
         - _13 * _22 * _31 * _44
         + _12 * _23 * _31 * _44
         + _13 * _21 * _32 * _44
         - _11 * _23 * _32 * _44
         - _12 * _21 * _33 * _44
         + _11 * _22 * _33 * _44;
  }

  bool Invert();

  void Normalize()
  {
      for (int i = 0; i < 4; i++) {
          for (int j = 0; j < 4; j++) {
              (*this)[i][j] /= (*this)[3][3];
         }
      }
  }

  void ScalePost(Float aX, Float aY, Float aZ)
  {
    _11 *= aX;
    _21 *= aX;
    _31 *= aX;
    _41 *= aX;

    _12 *= aY;
    _22 *= aY;
    _32 *= aY;
    _42 *= aY;

    _13 *= aZ;
    _23 *= aZ;
    _33 *= aZ;
    _43 *= aZ;
  }

  void TranslatePost(Float aX, Float aY, Float aZ)
  {
      _11 += _14 * aX;
      _21 += _24 * aX;
      _31 += _34 * aX;
      _41 += _44 * aX;

      _12 += _14 * aY;
      _22 += _24 * aY;
      _32 += _34 * aY;
      _42 += _44 * aY;

      _13 += _14 * aZ;
      _23 += _24 * aZ;
      _33 += _34 * aZ;
      _43 += _44 * aZ;
  }

  bool FuzzyEqual(const Matrix4x4& o) const
  {
    return gfx::FuzzyEqual(_11, o._11) && gfx::FuzzyEqual(_12, o._12) &&
           gfx::FuzzyEqual(_13, o._13) && gfx::FuzzyEqual(_14, o._14) &&
           gfx::FuzzyEqual(_21, o._21) && gfx::FuzzyEqual(_22, o._22) &&
           gfx::FuzzyEqual(_23, o._23) && gfx::FuzzyEqual(_24, o._24) &&
           gfx::FuzzyEqual(_31, o._31) && gfx::FuzzyEqual(_32, o._32) &&
           gfx::FuzzyEqual(_33, o._33) && gfx::FuzzyEqual(_34, o._34) &&
           gfx::FuzzyEqual(_41, o._41) && gfx::FuzzyEqual(_42, o._42) &&
           gfx::FuzzyEqual(_43, o._43) && gfx::FuzzyEqual(_44, o._44);
  }

  bool IsBackfaceVisible() const
  {
    // Inverse()._33 < 0;
    Float det = Determinant();
    Float __33 = _12*_24*_41 - _14*_22*_41 +
                _14*_21*_42 - _11*_24*_42 -
                _12*_21*_44 + _11*_22*_44;
    return (__33 * det) < 0;
  }

  void NudgeToIntegersFixedEpsilon()
  {
    NudgeToInteger(&_11);
    NudgeToInteger(&_12);
    NudgeToInteger(&_13);
    NudgeToInteger(&_14);
    NudgeToInteger(&_21);
    NudgeToInteger(&_22);
    NudgeToInteger(&_23);
    NudgeToInteger(&_24);
    NudgeToInteger(&_31);
    NudgeToInteger(&_32);
    NudgeToInteger(&_33);
    NudgeToInteger(&_34);
    static const float error = 1e-5f;
    NudgeToInteger(&_41, error);
    NudgeToInteger(&_42, error);
    NudgeToInteger(&_43, error);
    NudgeToInteger(&_44, error);
  }

  Point4D TransposedVector(int aIndex) const
  {
      MOZ_ASSERT(aIndex >= 0 && aIndex <= 3, "Invalid matrix array index");
      return Point4D(*((&_11)+aIndex), *((&_21)+aIndex), *((&_31)+aIndex), *((&_41)+aIndex));
  }

  void SetTransposedVector(int aIndex, Point4D &aVector)
  {
      MOZ_ASSERT(aIndex >= 0 && aIndex <= 3, "Invalid matrix array index");
      *((&_11)+aIndex) = aVector.x;
      *((&_21)+aIndex) = aVector.y;
      *((&_31)+aIndex) = aVector.z;
      *((&_41)+aIndex) = aVector.w;
  }

  // Set all the members of the matrix to NaN
  void SetNAN();
};

class Matrix5x4
{
public:
  Matrix5x4()
    : _11(1.0f), _12(0), _13(0), _14(0)
    , _21(0), _22(1.0f), _23(0), _24(0)
    , _31(0), _32(0), _33(1.0f), _34(0)
    , _41(0), _42(0), _43(0), _44(1.0f)
    , _51(0), _52(0), _53(0), _54(0)
  {}
  Matrix5x4(Float a11, Float a12, Float a13, Float a14,
         Float a21, Float a22, Float a23, Float a24,
         Float a31, Float a32, Float a33, Float a34,
         Float a41, Float a42, Float a43, Float a44,
         Float a51, Float a52, Float a53, Float a54)
    : _11(a11), _12(a12), _13(a13), _14(a14)
    , _21(a21), _22(a22), _23(a23), _24(a24)
    , _31(a31), _32(a32), _33(a33), _34(a34)
    , _41(a41), _42(a42), _43(a43), _44(a44)
    , _51(a51), _52(a52), _53(a53), _54(a54)
  {}

  Matrix5x4 operator*(const Matrix5x4 &aMatrix) const
  {
    Matrix5x4 resultMatrix;

    resultMatrix._11 = this->_11 * aMatrix._11 + this->_12 * aMatrix._21 + this->_13 * aMatrix._31 + this->_14 * aMatrix._41;
    resultMatrix._12 = this->_11 * aMatrix._12 + this->_12 * aMatrix._22 + this->_13 * aMatrix._32 + this->_14 * aMatrix._42;
    resultMatrix._13 = this->_11 * aMatrix._13 + this->_12 * aMatrix._23 + this->_13 * aMatrix._33 + this->_14 * aMatrix._43;
    resultMatrix._14 = this->_11 * aMatrix._14 + this->_12 * aMatrix._24 + this->_13 * aMatrix._34 + this->_14 * aMatrix._44;
    resultMatrix._21 = this->_21 * aMatrix._11 + this->_22 * aMatrix._21 + this->_23 * aMatrix._31 + this->_24 * aMatrix._41;
    resultMatrix._22 = this->_21 * aMatrix._12 + this->_22 * aMatrix._22 + this->_23 * aMatrix._32 + this->_24 * aMatrix._42;
    resultMatrix._23 = this->_21 * aMatrix._13 + this->_22 * aMatrix._23 + this->_23 * aMatrix._33 + this->_24 * aMatrix._43;
    resultMatrix._24 = this->_21 * aMatrix._14 + this->_22 * aMatrix._24 + this->_23 * aMatrix._34 + this->_24 * aMatrix._44;
    resultMatrix._31 = this->_31 * aMatrix._11 + this->_32 * aMatrix._21 + this->_33 * aMatrix._31 + this->_34 * aMatrix._41;
    resultMatrix._32 = this->_31 * aMatrix._12 + this->_32 * aMatrix._22 + this->_33 * aMatrix._32 + this->_34 * aMatrix._42;
    resultMatrix._33 = this->_31 * aMatrix._13 + this->_32 * aMatrix._23 + this->_33 * aMatrix._33 + this->_34 * aMatrix._43;
    resultMatrix._34 = this->_31 * aMatrix._14 + this->_32 * aMatrix._24 + this->_33 * aMatrix._34 + this->_34 * aMatrix._44;
    resultMatrix._41 = this->_41 * aMatrix._11 + this->_42 * aMatrix._21 + this->_43 * aMatrix._31 + this->_44 * aMatrix._41;
    resultMatrix._42 = this->_41 * aMatrix._12 + this->_42 * aMatrix._22 + this->_43 * aMatrix._32 + this->_44 * aMatrix._42;
    resultMatrix._43 = this->_41 * aMatrix._13 + this->_42 * aMatrix._23 + this->_43 * aMatrix._33 + this->_44 * aMatrix._43;
    resultMatrix._44 = this->_41 * aMatrix._14 + this->_42 * aMatrix._24 + this->_43 * aMatrix._34 + this->_44 * aMatrix._44;
    resultMatrix._51 = this->_51 * aMatrix._11 + this->_52 * aMatrix._21 + this->_53 * aMatrix._31 + this->_54 * aMatrix._41 + aMatrix._51;
    resultMatrix._52 = this->_51 * aMatrix._12 + this->_52 * aMatrix._22 + this->_53 * aMatrix._32 + this->_54 * aMatrix._42 + aMatrix._52;
    resultMatrix._53 = this->_51 * aMatrix._13 + this->_52 * aMatrix._23 + this->_53 * aMatrix._33 + this->_54 * aMatrix._43 + aMatrix._53;
    resultMatrix._54 = this->_51 * aMatrix._14 + this->_52 * aMatrix._24 + this->_53 * aMatrix._34 + this->_54 * aMatrix._44 + aMatrix._54;

    return resultMatrix;
  }

  Float _11, _12, _13, _14;
  Float _21, _22, _23, _24;
  Float _31, _32, _33, _34;
  Float _41, _42, _43, _44;
  Float _51, _52, _53, _54;
};

}
}

#endif /* MOZILLA_GFX_MATRIX_H_ */