DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (d1ed7de67f5a)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "FilterProcessing.h"

#include "SIMD.h"
#include "SVGTurbulenceRenderer-inl.h"

namespace mozilla {
namespace gfx {

template<typename u8x16_t>
inline TemporaryRef<DataSourceSurface>
ConvertToB8G8R8A8_SIMD(SourceSurface* aSurface)
{
  IntSize size = aSurface->GetSize();
  RefPtr<DataSourceSurface> input = aSurface->GetDataSurface();
  RefPtr<DataSourceSurface> output =
    Factory::CreateDataSourceSurface(size, SurfaceFormat::B8G8R8A8);
  uint8_t *inputData = input->GetData();
  uint8_t *outputData = output->GetData();
  int32_t inputStride = input->Stride();
  int32_t outputStride = output->Stride();
  switch (input->GetFormat()) {
    case SurfaceFormat::B8G8R8A8:
      output = input;
      break;
    case SurfaceFormat::B8G8R8X8:
      for (int32_t y = 0; y < size.height; y++) {
        for (int32_t x = 0; x < size.width; x++) {
          int32_t inputIndex = y * inputStride + 4 * x;
          int32_t outputIndex = y * outputStride + 4 * x;
          outputData[outputIndex + 0] = inputData[inputIndex + 0];
          outputData[outputIndex + 1] = inputData[inputIndex + 1];
          outputData[outputIndex + 2] = inputData[inputIndex + 2];
          outputData[outputIndex + 3] = 255;
        }
      }
      break;
    case SurfaceFormat::R8G8B8A8:
      for (int32_t y = 0; y < size.height; y++) {
        for (int32_t x = 0; x < size.width; x++) {
          int32_t inputIndex = y * inputStride + 4 * x;
          int32_t outputIndex = y * outputStride + 4 * x;
          outputData[outputIndex + 2] = inputData[inputIndex + 0];
          outputData[outputIndex + 1] = inputData[inputIndex + 1];
          outputData[outputIndex + 0] = inputData[inputIndex + 2];
          outputData[outputIndex + 3] = inputData[inputIndex + 3];
        }
      }
      break;
    case SurfaceFormat::R8G8B8X8:
      for (int32_t y = 0; y < size.height; y++) {
        for (int32_t x = 0; x < size.width; x++) {
          int32_t inputIndex = y * inputStride + 4 * x;
          int32_t outputIndex = y * outputStride + 4 * x;
          outputData[outputIndex + 2] = inputData[inputIndex + 0];
          outputData[outputIndex + 1] = inputData[inputIndex + 1];
          outputData[outputIndex + 0] = inputData[inputIndex + 2];
          outputData[outputIndex + 3] = 255;
        }
      }
      break;
    case SurfaceFormat::A8:
      for (int32_t y = 0; y < size.height; y++) {
        for (int32_t x = 0; x < size.width; x += 16) {
          int32_t inputIndex = y * inputStride + x;
          int32_t outputIndex = y * outputStride + 4 * x;
          u8x16_t p1To16 = simd::Load8<u8x16_t>(&inputData[inputIndex]);
          // Turn AAAAAAAAAAAAAAAA into four chunks of 000A000A000A000A by
          // interleaving with 0000000000000000 twice.
          u8x16_t zero = simd::FromZero8<u8x16_t>();
          u8x16_t p1To8 = simd::InterleaveLo8(zero, p1To16);
          u8x16_t p9To16 = simd::InterleaveHi8(zero, p1To16);
          u8x16_t p1To4 = simd::InterleaveLo8(zero, p1To8);
          u8x16_t p5To8 = simd::InterleaveHi8(zero, p1To8);
          u8x16_t p9To12 = simd::InterleaveLo8(zero, p9To16);
          u8x16_t p13To16 = simd::InterleaveHi8(zero, p9To16);
          simd::Store8(&outputData[outputIndex], p1To4);
          if ((x + 4) * 4 < outputStride) {
            simd::Store8(&outputData[outputIndex + 4 * 4], p5To8);
          }
          if ((x + 8) * 4 < outputStride) {
            simd::Store8(&outputData[outputIndex + 4 * 8], p9To12);
          }
          if ((x + 12) * 4 < outputStride) {
            simd::Store8(&outputData[outputIndex + 4 * 12], p13To16);
          }
        }
      }
      break;
    default:
      output = nullptr;
      break;
  }
  return output;
}

template<typename u8x16_t>
inline void
ExtractAlpha_SIMD(const IntSize& size, uint8_t* sourceData, int32_t sourceStride, uint8_t* alphaData, int32_t alphaStride)
{
  for (int32_t y = 0; y < size.height; y++) {
    for (int32_t x = 0; x < size.width; x += 16) {
      // Process 16 pixels at a time.
      // Turn up to four chunks of BGRABGRABGRABGRA into one chunk of AAAAAAAAAAAAAAAA.
      int32_t sourceIndex = y * sourceStride + 4 * x;
      int32_t targetIndex = y * alphaStride + x;

      u8x16_t bgrabgrabgrabgra1 = simd::FromZero8<u8x16_t>();
      u8x16_t bgrabgrabgrabgra2 = simd::FromZero8<u8x16_t>();
      u8x16_t bgrabgrabgrabgra3 = simd::FromZero8<u8x16_t>();
      u8x16_t bgrabgrabgrabgra4 = simd::FromZero8<u8x16_t>();

      bgrabgrabgrabgra1 = simd::Load8<u8x16_t>(&sourceData[sourceIndex]);
      if (4 * (x + 4) < sourceStride) {
        bgrabgrabgrabgra2 = simd::Load8<u8x16_t>(&sourceData[sourceIndex + 4 * 4]);
      }
      if (4 * (x + 8) < sourceStride) {
        bgrabgrabgrabgra3 = simd::Load8<u8x16_t>(&sourceData[sourceIndex + 4 * 8]);
      }
      if (4 * (x + 12) < sourceStride) {
        bgrabgrabgrabgra4 = simd::Load8<u8x16_t>(&sourceData[sourceIndex + 4 * 12]);
      }

      u8x16_t bbggrraabbggrraa1 = simd::InterleaveLo8(bgrabgrabgrabgra1, bgrabgrabgrabgra3);
      u8x16_t bbggrraabbggrraa2 = simd::InterleaveHi8(bgrabgrabgrabgra1, bgrabgrabgrabgra3);
      u8x16_t bbggrraabbggrraa3 = simd::InterleaveLo8(bgrabgrabgrabgra2, bgrabgrabgrabgra4);
      u8x16_t bbggrraabbggrraa4 = simd::InterleaveHi8(bgrabgrabgrabgra2, bgrabgrabgrabgra4);
      u8x16_t bbbbggggrrrraaaa1 = simd::InterleaveLo8(bbggrraabbggrraa1, bbggrraabbggrraa3);
      u8x16_t bbbbggggrrrraaaa2 = simd::InterleaveHi8(bbggrraabbggrraa1, bbggrraabbggrraa3);
      u8x16_t bbbbggggrrrraaaa3 = simd::InterleaveLo8(bbggrraabbggrraa2, bbggrraabbggrraa4);
      u8x16_t bbbbggggrrrraaaa4 = simd::InterleaveHi8(bbggrraabbggrraa2, bbggrraabbggrraa4);
      u8x16_t rrrrrrrraaaaaaaa1 = simd::InterleaveHi8(bbbbggggrrrraaaa1, bbbbggggrrrraaaa3);
      u8x16_t rrrrrrrraaaaaaaa2 = simd::InterleaveHi8(bbbbggggrrrraaaa2, bbbbggggrrrraaaa4);
      u8x16_t aaaaaaaaaaaaaaaa = simd::InterleaveHi8(rrrrrrrraaaaaaaa1, rrrrrrrraaaaaaaa2);

      simd::Store8(&alphaData[targetIndex], aaaaaaaaaaaaaaaa);
    }
  }
}

// This function calculates the result color values for four pixels, but for
// only two color channels - either b & r or g & a. However, the a result will
// not be used.
// source and dest each contain 8 values, either bbbb gggg or rrrr aaaa.
// sourceAlpha and destAlpha are of the form aaaa aaaa, where each aaaa is the
// alpha of all four pixels (and both aaaa's are the same).
// blendendComponent1 and blendedComponent2 are the out parameters.
template<typename i16x8_t, typename i32x4_t, uint32_t aBlendMode>
inline void
BlendTwoComponentsOfFourPixels(i16x8_t source, i16x8_t sourceAlpha,
                               i16x8_t dest, const i16x8_t& destAlpha,
                               i32x4_t& blendedComponent1, i32x4_t& blendedComponent2)
{
  i16x8_t x255 = simd::FromI16<i16x8_t>(255);

  switch (aBlendMode) {

    case BLEND_MODE_MULTIPLY:
    {
      // val = ((255 - destAlpha) * source + (255 - sourceAlpha + source) * dest);
      i16x8_t twoFiftyFiveMinusDestAlpha = simd::Sub16(x255, destAlpha);
      i16x8_t twoFiftyFiveMinusSourceAlpha = simd::Sub16(x255, sourceAlpha);
      i16x8_t twoFiftyFiveMinusSourceAlphaPlusSource = simd::Add16(twoFiftyFiveMinusSourceAlpha, source);

      i16x8_t sourceInterleavedWithDest1 = simd::InterleaveLo16(source, dest);
      i16x8_t leftFactor1 = simd::InterleaveLo16(twoFiftyFiveMinusDestAlpha, twoFiftyFiveMinusSourceAlphaPlusSource);
      blendedComponent1 = simd::MulAdd16x8x2To32x4(sourceInterleavedWithDest1, leftFactor1);
      blendedComponent1 = simd::FastDivideBy255(blendedComponent1);

      i16x8_t sourceInterleavedWithDest2 = simd::InterleaveHi16(source, dest);
      i16x8_t leftFactor2 = simd::InterleaveHi16(twoFiftyFiveMinusDestAlpha, twoFiftyFiveMinusSourceAlphaPlusSource);
      blendedComponent2 = simd::MulAdd16x8x2To32x4(sourceInterleavedWithDest2, leftFactor2);
      blendedComponent2 = simd::FastDivideBy255(blendedComponent2);

      break;
    }

    case BLEND_MODE_SCREEN:
    {
      // val = 255 * (source + dest) + (0 - dest) * source;
      i16x8_t sourcePlusDest = simd::Add16(source, dest);
      i16x8_t zeroMinusDest = simd::Sub16(simd::FromI16<i16x8_t>(0), dest);

      i16x8_t twoFiftyFiveInterleavedWithZeroMinusDest1 = simd::InterleaveLo16(x255, zeroMinusDest);
      i16x8_t sourcePlusDestInterleavedWithSource1 = simd::InterleaveLo16(sourcePlusDest, source);
      blendedComponent1 = simd::MulAdd16x8x2To32x4(twoFiftyFiveInterleavedWithZeroMinusDest1, sourcePlusDestInterleavedWithSource1);
      blendedComponent1 = simd::FastDivideBy255(blendedComponent1);

      i16x8_t twoFiftyFiveInterleavedWithZeroMinusDest2 = simd::InterleaveHi16(x255, zeroMinusDest);
      i16x8_t sourcePlusDestInterleavedWithSource2 = simd::InterleaveHi16(sourcePlusDest, source);
      blendedComponent2 = simd::MulAdd16x8x2To32x4(twoFiftyFiveInterleavedWithZeroMinusDest2, sourcePlusDestInterleavedWithSource2);
      blendedComponent2 = simd::FastDivideBy255(blendedComponent2);

      break;
    }

    case BLEND_MODE_DARKEN:
    case BLEND_MODE_LIGHTEN:
    {
      // Darken:
      // val = min((255 - destAlpha) * source + 255                 * dest,
      //           255               * source + (255 - sourceAlpha) * dest);
      //
      // Lighten:
      // val = max((255 - destAlpha) * source + 255                 * dest,
      //           255               * source + (255 - sourceAlpha) * dest);

      i16x8_t twoFiftyFiveMinusDestAlpha = simd::Sub16(x255, destAlpha);
      i16x8_t twoFiftyFiveMinusSourceAlpha = simd::Sub16(x255, sourceAlpha);

      i16x8_t twoFiftyFiveMinusDestAlphaInterleavedWithTwoFiftyFive1 = simd::InterleaveLo16(twoFiftyFiveMinusDestAlpha, x255);
      i16x8_t twoFiftyFiveInterleavedWithTwoFiftyFiveMinusSourceAlpha1 = simd::InterleaveLo16(x255, twoFiftyFiveMinusSourceAlpha);
      i16x8_t sourceInterleavedWithDest1 = simd::InterleaveLo16(source, dest);
      i32x4_t product1_1 = simd::MulAdd16x8x2To32x4(twoFiftyFiveMinusDestAlphaInterleavedWithTwoFiftyFive1, sourceInterleavedWithDest1);
      i32x4_t product1_2 = simd::MulAdd16x8x2To32x4(twoFiftyFiveInterleavedWithTwoFiftyFiveMinusSourceAlpha1, sourceInterleavedWithDest1);
      blendedComponent1 = aBlendMode == BLEND_MODE_DARKEN ? simd::Min32(product1_1, product1_2) : simd::Max32(product1_1, product1_2);
      blendedComponent1 = simd::FastDivideBy255(blendedComponent1);

      i16x8_t twoFiftyFiveMinusDestAlphaInterleavedWithTwoFiftyFive2 = simd::InterleaveHi16(twoFiftyFiveMinusDestAlpha, x255);
      i16x8_t twoFiftyFiveInterleavedWithTwoFiftyFiveMinusSourceAlpha2 = simd::InterleaveHi16(x255, twoFiftyFiveMinusSourceAlpha);
      i16x8_t sourceInterleavedWithDest2 = simd::InterleaveHi16(source, dest);
      i32x4_t product2_1 = simd::MulAdd16x8x2To32x4(twoFiftyFiveMinusDestAlphaInterleavedWithTwoFiftyFive2, sourceInterleavedWithDest2);
      i32x4_t product2_2 = simd::MulAdd16x8x2To32x4(twoFiftyFiveInterleavedWithTwoFiftyFiveMinusSourceAlpha2, sourceInterleavedWithDest2);
      blendedComponent2 = aBlendMode == BLEND_MODE_DARKEN ? simd::Min32(product2_1, product2_2) : simd::Max32(product2_1, product2_2);
      blendedComponent2 = simd::FastDivideBy255(blendedComponent2);

      break;
    }

  }
}

// The alpha channel is subject to a different calculation than the RGB
// channels, and this calculation is the same for all blend modes:
// resultAlpha * 255 = 255 * 255 - (255 - sourceAlpha) * (255 - destAlpha)
template<typename i16x8_t, typename i32x4_t>
inline i32x4_t
BlendAlphaOfFourPixels(i16x8_t s_rrrraaaa1234, i16x8_t d_rrrraaaa1234)
{
  // We're using MulAdd16x8x2To32x4, so we need to interleave our factors
  // appropriately. The calculation is rewritten as follows:
  // resultAlpha[0] * 255 = 255 * 255 - (255 - sourceAlpha[0]) * (255 - destAlpha[0])
  //                      = 255 * 255 + (255 - sourceAlpha[0]) * (destAlpha[0] - 255)
  //                      = (255 - 0) * (510 - 255) + (255 - sourceAlpha[0]) * (destAlpha[0] - 255)
  //                      = MulAdd(255 - IntLv(0, sourceAlpha), IntLv(510, destAlpha) - 255)[0]
  i16x8_t zeroInterleavedWithSourceAlpha = simd::InterleaveHi16(simd::FromI16<i16x8_t>(0), s_rrrraaaa1234);
  i16x8_t fiveTenInterleavedWithDestAlpha = simd::InterleaveHi16(simd::FromI16<i16x8_t>(510), d_rrrraaaa1234);
  i16x8_t f1 = simd::Sub16(simd::FromI16<i16x8_t>(255), zeroInterleavedWithSourceAlpha);
  i16x8_t f2 = simd::Sub16(fiveTenInterleavedWithDestAlpha, simd::FromI16<i16x8_t>(255));
  return simd::FastDivideBy255(simd::MulAdd16x8x2To32x4(f1, f2));
}

template<typename u8x16_t, typename i16x8_t>
inline void
UnpackAndShuffleComponents(u8x16_t bgrabgrabgrabgra1234,
                           i16x8_t& bbbbgggg1234, i16x8_t& rrrraaaa1234)
{
  // bgrabgrabgrabgra1234 -> bbbbgggg1234, rrrraaaa1234
  i16x8_t bgrabgra12 = simd::UnpackLo8x8ToI16x8(bgrabgrabgrabgra1234);
  i16x8_t bgrabgra34 = simd::UnpackHi8x8ToI16x8(bgrabgrabgrabgra1234);
  i16x8_t bbggrraa13 = simd::InterleaveLo16(bgrabgra12, bgrabgra34);
  i16x8_t bbggrraa24 = simd::InterleaveHi16(bgrabgra12, bgrabgra34);
  bbbbgggg1234 = simd::InterleaveLo16(bbggrraa13, bbggrraa24);
  rrrraaaa1234 = simd::InterleaveHi16(bbggrraa13, bbggrraa24);
}

template<typename i32x4_t, typename i16x8_t, typename u8x16_t>
inline u8x16_t
ShuffleAndPackComponents(i32x4_t bbbb1234, i32x4_t gggg1234,
                         i32x4_t rrrr1234, const i32x4_t& aaaa1234)
{
  // bbbb1234, gggg1234, rrrr1234, aaaa1234 -> bgrabgrabgrabgra1234
  i16x8_t bbbbgggg1234 = simd::PackAndSaturate32To16(bbbb1234, gggg1234);
  i16x8_t rrrraaaa1234 = simd::PackAndSaturate32To16(rrrr1234, aaaa1234);
  i16x8_t brbrbrbr1234 = simd::InterleaveLo16(bbbbgggg1234, rrrraaaa1234);
  i16x8_t gagagaga1234 = simd::InterleaveHi16(bbbbgggg1234, rrrraaaa1234);
  i16x8_t bgrabgra12 = simd::InterleaveLo16(brbrbrbr1234, gagagaga1234);
  i16x8_t bgrabgra34 = simd::InterleaveHi16(brbrbrbr1234, gagagaga1234);
  return simd::PackAndSaturate16To8(bgrabgra12, bgrabgra34);
}

template<typename i32x4_t, typename i16x8_t, typename u8x16_t, BlendMode mode>
inline TemporaryRef<DataSourceSurface>
ApplyBlending_SIMD(DataSourceSurface* aInput1, DataSourceSurface* aInput2)
{
  IntSize size = aInput1->GetSize();
  RefPtr<DataSourceSurface> target =
    Factory::CreateDataSourceSurface(size, SurfaceFormat::B8G8R8A8);
  if (!target) {
    return nullptr;
  }

  uint8_t* source1Data = aInput1->GetData();
  uint8_t* source2Data = aInput2->GetData();
  uint8_t* targetData = target->GetData();
  int32_t targetStride = target->Stride();
  int32_t source1Stride = aInput1->Stride();
  int32_t source2Stride = aInput2->Stride();

  for (int32_t y = 0; y < size.height; y++) {
    for (int32_t x = 0; x < size.width; x += 4) {
      int32_t targetIndex = y * targetStride + 4 * x;
      int32_t source1Index = y * source1Stride + 4 * x;
      int32_t source2Index = y * source2Stride + 4 * x;

      u8x16_t s1234 = simd::Load8<u8x16_t>(&source2Data[source2Index]);
      u8x16_t d1234 = simd::Load8<u8x16_t>(&source1Data[source1Index]);

      // The blending calculation for the RGB channels all need access to the
      // alpha channel of their pixel, and the alpha calculation is different,
      // so it makes sense to separate by channel.

      i16x8_t s_bbbbgggg1234, s_rrrraaaa1234;
      i16x8_t d_bbbbgggg1234, d_rrrraaaa1234;
      UnpackAndShuffleComponents(s1234, s_bbbbgggg1234, s_rrrraaaa1234);
      UnpackAndShuffleComponents(d1234, d_bbbbgggg1234, d_rrrraaaa1234);
      i16x8_t s_aaaaaaaa1234 = simd::Shuffle32<3,2,3,2>(s_rrrraaaa1234);
      i16x8_t d_aaaaaaaa1234 = simd::Shuffle32<3,2,3,2>(d_rrrraaaa1234);

      // We only use blendedB, blendedG and blendedR.
      i32x4_t blendedB, blendedG, blendedR, blendedA;
      BlendTwoComponentsOfFourPixels<i16x8_t,i32x4_t,mode>(s_bbbbgggg1234, s_aaaaaaaa1234, d_bbbbgggg1234, d_aaaaaaaa1234, blendedB, blendedG);
      BlendTwoComponentsOfFourPixels<i16x8_t,i32x4_t,mode>(s_rrrraaaa1234, s_aaaaaaaa1234, d_rrrraaaa1234, d_aaaaaaaa1234, blendedR, blendedA);

      // Throw away blendedA and overwrite it with the correct blended alpha.
      blendedA = BlendAlphaOfFourPixels<i16x8_t,i32x4_t>(s_rrrraaaa1234, d_rrrraaaa1234);

      u8x16_t result1234 = ShuffleAndPackComponents<i32x4_t,i16x8_t,u8x16_t>(blendedB, blendedG, blendedR, blendedA);
      simd::Store8(&targetData[targetIndex], result1234);
    }
  }

  return target;
}

template<typename i32x4_t, typename i16x8_t, typename u8x16_t>
static TemporaryRef<DataSourceSurface>
ApplyBlending_SIMD(DataSourceSurface* aInput1, DataSourceSurface* aInput2,
                      BlendMode aBlendMode)
{
  switch (aBlendMode) {
    case BLEND_MODE_MULTIPLY:
      return ApplyBlending_SIMD<i32x4_t,i16x8_t,u8x16_t, BLEND_MODE_MULTIPLY>(aInput1, aInput2);
    case BLEND_MODE_SCREEN:
      return ApplyBlending_SIMD<i32x4_t,i16x8_t,u8x16_t, BLEND_MODE_SCREEN>(aInput1, aInput2);
    case BLEND_MODE_DARKEN:
      return ApplyBlending_SIMD<i32x4_t,i16x8_t,u8x16_t, BLEND_MODE_DARKEN>(aInput1, aInput2);
    case BLEND_MODE_LIGHTEN:
      return ApplyBlending_SIMD<i32x4_t,i16x8_t,u8x16_t, BLEND_MODE_LIGHTEN>(aInput1, aInput2);
    default:
      return nullptr;
  }
}

template<MorphologyOperator Operator, typename u8x16_t>
static u8x16_t
Morph8(u8x16_t a, u8x16_t b)
{
  return Operator == MORPHOLOGY_OPERATOR_ERODE ?
    simd::Min8(a, b) : simd::Max8(a, b);
}

// Set every pixel to the per-component minimum or maximum of the pixels around
// it that are up to aRadius pixels away from it (horizontally).
template<MorphologyOperator op, typename i16x8_t, typename u8x16_t>
inline void ApplyMorphologyHorizontal_SIMD(uint8_t* aSourceData, int32_t aSourceStride,
                                           uint8_t* aDestData, int32_t aDestStride,
                                           const IntRect& aDestRect, int32_t aRadius)
{
  static_assert(op == MORPHOLOGY_OPERATOR_ERODE ||
                op == MORPHOLOGY_OPERATOR_DILATE,
                "unexpected morphology operator");

  int32_t kernelSize = aRadius + 1 + aRadius;
  MOZ_ASSERT(kernelSize >= 3, "don't call this with aRadius <= 0");
  MOZ_ASSERT(kernelSize % 4 == 1 || kernelSize % 4 == 3);
  int32_t completeKernelSizeForFourPixels = kernelSize + 3;
  MOZ_ASSERT(completeKernelSizeForFourPixels % 4 == 0 ||
             completeKernelSizeForFourPixels % 4 == 2);

  // aSourceData[-aRadius] and aDestData[0] are both aligned to 16 bytes, just
  // the way we need them to be.

  IntRect sourceRect = aDestRect;
  sourceRect.Inflate(aRadius, 0);

  for (int32_t y = aDestRect.y; y < aDestRect.YMost(); y++) {
    int32_t kernelStartX = aDestRect.x - aRadius;
    for (int32_t x = aDestRect.x; x < aDestRect.XMost(); x += 4, kernelStartX += 4) {
      // We process four pixels (16 color values) at a time.
      // aSourceData[0] points to the pixel located at aDestRect.TopLeft();
      // source values can be read beyond that because the source is extended
      // by aRadius pixels.

      int32_t sourceIndex = y * aSourceStride + 4 * kernelStartX;
      u8x16_t p1234 = simd::Load8<u8x16_t>(&aSourceData[sourceIndex]);
      u8x16_t m1234 = p1234;

      for (int32_t i = 4; i < completeKernelSizeForFourPixels; i += 4) {
        u8x16_t p5678 = (kernelStartX + i < sourceRect.XMost()) ?
          simd::Load8<u8x16_t>(&aSourceData[sourceIndex + 4 * i]) :
          simd::FromZero8<u8x16_t>();
        u8x16_t p2345 = simd::Rotate8<4>(p1234, p5678);
        u8x16_t p3456 = simd::Rotate8<8>(p1234, p5678);
        m1234 = Morph8<op,u8x16_t>(m1234, p2345);
        m1234 = Morph8<op,u8x16_t>(m1234, p3456);
        if (i + 2 < completeKernelSizeForFourPixels) {
          u8x16_t p4567 = simd::Rotate8<12>(p1234, p5678);
          m1234 = Morph8<op,u8x16_t>(m1234, p4567);
          m1234 = Morph8<op,u8x16_t>(m1234, p5678);
        }
        p1234 = p5678;
      }

      int32_t destIndex = y * aDestStride + 4 * x;
      simd::Store8(&aDestData[destIndex], m1234);
    }
  }
}

template<typename i16x8_t, typename u8x16_t>
inline void ApplyMorphologyHorizontal_SIMD(uint8_t* aSourceData, int32_t aSourceStride,
                                           uint8_t* aDestData, int32_t aDestStride,
                                           const IntRect& aDestRect, int32_t aRadius,
                                           MorphologyOperator aOp)
{
  if (aOp == MORPHOLOGY_OPERATOR_ERODE) {
    ApplyMorphologyHorizontal_SIMD<MORPHOLOGY_OPERATOR_ERODE,i16x8_t,u8x16_t>(
      aSourceData, aSourceStride, aDestData, aDestStride, aDestRect, aRadius);
  } else {
    ApplyMorphologyHorizontal_SIMD<MORPHOLOGY_OPERATOR_DILATE,i16x8_t,u8x16_t>(
      aSourceData, aSourceStride, aDestData, aDestStride, aDestRect, aRadius);
  }
}

// Set every pixel to the per-component minimum or maximum of the pixels around
// it that are up to aRadius pixels away from it (vertically).
template<MorphologyOperator op, typename i16x8_t, typename u8x16_t>
static void ApplyMorphologyVertical_SIMD(uint8_t* aSourceData, int32_t aSourceStride,
                                         uint8_t* aDestData, int32_t aDestStride,
                                         const IntRect& aDestRect, int32_t aRadius)
{
  static_assert(op == MORPHOLOGY_OPERATOR_ERODE ||
                op == MORPHOLOGY_OPERATOR_DILATE,
                "unexpected morphology operator");

  int32_t startY = aDestRect.y - aRadius;
  int32_t endY = aDestRect.y + aRadius;
  for (int32_t y = aDestRect.y; y < aDestRect.YMost(); y++, startY++, endY++) {
    for (int32_t x = aDestRect.x; x < aDestRect.XMost(); x += 4) {
      int32_t sourceIndex = startY * aSourceStride + 4 * x;
      u8x16_t u = simd::Load8<u8x16_t>(&aSourceData[sourceIndex]);
      sourceIndex += aSourceStride;
      for (int32_t iy = startY + 1; iy <= endY; iy++, sourceIndex += aSourceStride) {
        u8x16_t u2 = simd::Load8<u8x16_t>(&aSourceData[sourceIndex]);
        u = Morph8<op,u8x16_t>(u, u2);
      }

      int32_t destIndex = y * aDestStride + 4 * x;
      simd::Store8(&aDestData[destIndex], u);
    }
  }
}

template<typename i16x8_t, typename u8x16_t>
inline void ApplyMorphologyVertical_SIMD(uint8_t* aSourceData, int32_t aSourceStride,
                                           uint8_t* aDestData, int32_t aDestStride,
                                           const IntRect& aDestRect, int32_t aRadius,
                                           MorphologyOperator aOp)
{
  if (aOp == MORPHOLOGY_OPERATOR_ERODE) {
    ApplyMorphologyVertical_SIMD<MORPHOLOGY_OPERATOR_ERODE,i16x8_t,u8x16_t>(
      aSourceData, aSourceStride, aDestData, aDestStride, aDestRect, aRadius);
  } else {
    ApplyMorphologyVertical_SIMD<MORPHOLOGY_OPERATOR_DILATE,i16x8_t,u8x16_t>(
      aSourceData, aSourceStride, aDestData, aDestStride, aDestRect, aRadius);
  }
}

template<typename i32x4_t, typename i16x8_t>
static i32x4_t
ColorMatrixMultiply(i16x8_t p, i16x8_t rows_bg, i16x8_t rows_ra, const i32x4_t& bias)
{
  // int16_t p[8] == { b, g, r, a, b, g, r, a }.
  // int16_t rows_bg[8] == { bB, bG, bR, bA, gB, gG, gR, gA }.
  // int16_t rows_ra[8] == { rB, rG, rR, rA, aB, aG, aR, aA }.
  // int32_t bias[4] == { _B, _G, _R, _A }.

  i32x4_t sum = bias;

  // int16_t bg[8] = { b, g, b, g, b, g, b, g };
  i16x8_t bg = simd::ShuffleHi16<1,0,1,0>(simd::ShuffleLo16<1,0,1,0>(p));
  // int32_t prodsum_bg[4] = { b * bB + g * gB, b * bG + g * gG, b * bR + g * gR, b * bA + g * gA }
  i32x4_t prodsum_bg = simd::MulAdd16x8x2To32x4(bg, rows_bg);
  sum = simd::Add32(sum, prodsum_bg);

  // uint16_t ra[8] = { r, a, r, a, r, a, r, a };
  i16x8_t ra = simd::ShuffleHi16<3,2,3,2>(simd::ShuffleLo16<3,2,3,2>(p));
  // int32_t prodsum_ra[4] = { r * rB + a * aB, r * rG + a * aG, r * rR + a * aR, r * rA + a * aA }
  i32x4_t prodsum_ra = simd::MulAdd16x8x2To32x4(ra, rows_ra);
  sum = simd::Add32(sum, prodsum_ra);

  // int32_t sum[4] == { b * bB + g * gB + r * rB + a * aB + _B, ... }.
  return sum;
}

template<typename i32x4_t, typename i16x8_t, typename u8x16_t>
static TemporaryRef<DataSourceSurface>
ApplyColorMatrix_SIMD(DataSourceSurface* aInput, const Matrix5x4 &aMatrix)
{
  IntSize size = aInput->GetSize();
  RefPtr<DataSourceSurface> target =
    Factory::CreateDataSourceSurface(size, SurfaceFormat::B8G8R8A8);
  if (!target) {
    return nullptr;
  }

  uint8_t* sourceData = aInput->GetData();
  uint8_t* targetData = target->GetData();
  int32_t sourceStride = aInput->Stride();
  int32_t targetStride = target->Stride();

  const int16_t factor = 128;
  const Float floatElementMax = INT16_MAX / factor; // 255
  MOZ_ASSERT((floatElementMax * factor) <= INT16_MAX, "badly chosen float-to-int scale");

  const Float *floats = &aMatrix._11;

  ptrdiff_t componentOffsets[4] = {
    B8G8R8A8_COMPONENT_BYTEOFFSET_R,
    B8G8R8A8_COMPONENT_BYTEOFFSET_G,
    B8G8R8A8_COMPONENT_BYTEOFFSET_B,
    B8G8R8A8_COMPONENT_BYTEOFFSET_A
  };

  // We store the color matrix in rows_bgra in the following format:
  // { bB, bG, bR, bA, gB, gG, gR, gA }.
  // { bB, gB, bG, gG, bR, gR, bA, gA }
  // The way this is interleaved allows us to use the intrinsic _mm_madd_epi16
  // which works especially well for our use case.
  int16_t rows_bgra[2][8];
  for (size_t rowIndex = 0; rowIndex < 4; rowIndex++) {
    for (size_t colIndex = 0; colIndex < 4; colIndex++) {
      const Float& floatMatrixElement = floats[rowIndex * 4 + colIndex];
      Float clampedFloatMatrixElement = std::min(std::max(floatMatrixElement, -floatElementMax), floatElementMax);
      int16_t scaledIntMatrixElement = int16_t(clampedFloatMatrixElement * factor + 0.5);
      int8_t bg_or_ra = componentOffsets[rowIndex] / 2;
      int8_t g_or_a = componentOffsets[rowIndex] % 2;
      int8_t B_or_G_or_R_or_A = componentOffsets[colIndex];
      rows_bgra[bg_or_ra][B_or_G_or_R_or_A * 2 + g_or_a] = scaledIntMatrixElement;
    }
  }

  int32_t rowBias[4];
  Float biasMax = (INT32_MAX - 4 * 255 * INT16_MAX) / (factor * 255);
  for (size_t colIndex = 0; colIndex < 4; colIndex++) {
    size_t rowIndex = 4;
    const Float& floatMatrixElement = floats[rowIndex * 4 + colIndex];
    Float clampedFloatMatrixElement = std::min(std::max(floatMatrixElement, -biasMax), biasMax);
    int32_t scaledIntMatrixElement = int32_t(clampedFloatMatrixElement * factor * 255 + 0.5);
    rowBias[componentOffsets[colIndex]] = scaledIntMatrixElement;
  }

  i16x8_t row_bg_v = simd::FromI16<i16x8_t>(
    rows_bgra[0][0], rows_bgra[0][1], rows_bgra[0][2], rows_bgra[0][3],
    rows_bgra[0][4], rows_bgra[0][5], rows_bgra[0][6], rows_bgra[0][7]);

  i16x8_t row_ra_v = simd::FromI16<i16x8_t>(
    rows_bgra[1][0], rows_bgra[1][1], rows_bgra[1][2], rows_bgra[1][3],
    rows_bgra[1][4], rows_bgra[1][5], rows_bgra[1][6], rows_bgra[1][7]);

  i32x4_t rowsBias_v =
    simd::From32<i32x4_t>(rowBias[0], rowBias[1], rowBias[2], rowBias[3]);

  for (int32_t y = 0; y < size.height; y++) {
    for (int32_t x = 0; x < size.width; x += 4) {
      MOZ_ASSERT(sourceStride >= 4 * (x + 4), "need to be able to read 4 pixels at this position");
      MOZ_ASSERT(targetStride >= 4 * (x + 4), "need to be able to write 4 pixels at this position");
      int32_t sourceIndex = y * sourceStride + 4 * x;
      int32_t targetIndex = y * targetStride + 4 * x;

      // We load 4 pixels, unpack them, process them 1 pixel at a time, and
      // finally pack and store the 4 result pixels.

      u8x16_t p1234 = simd::Load8<u8x16_t>(&sourceData[sourceIndex]);

      // Splat needed to get each pixel twice into i16x8
      i16x8_t p11 = simd::UnpackLo8x8ToI16x8(simd::Splat32On8<0>(p1234));
      i16x8_t p22 = simd::UnpackLo8x8ToI16x8(simd::Splat32On8<1>(p1234));
      i16x8_t p33 = simd::UnpackLo8x8ToI16x8(simd::Splat32On8<2>(p1234));
      i16x8_t p44 = simd::UnpackLo8x8ToI16x8(simd::Splat32On8<3>(p1234));

      i32x4_t result_p1 = ColorMatrixMultiply(p11, row_bg_v, row_ra_v, rowsBias_v);
      i32x4_t result_p2 = ColorMatrixMultiply(p22, row_bg_v, row_ra_v, rowsBias_v);
      i32x4_t result_p3 = ColorMatrixMultiply(p33, row_bg_v, row_ra_v, rowsBias_v);
      i32x4_t result_p4 = ColorMatrixMultiply(p44, row_bg_v, row_ra_v, rowsBias_v);

      static_assert(factor == 1 << 7, "Please adapt the calculation in the lines below for a different factor.");
      u8x16_t result_p1234 = simd::PackAndSaturate32To8(simd::ShiftRight32<7>(result_p1),
                                                        simd::ShiftRight32<7>(result_p2),
                                                        simd::ShiftRight32<7>(result_p3),
                                                        simd::ShiftRight32<7>(result_p4));
      simd::Store8(&targetData[targetIndex], result_p1234);
    }
  }

  return target;
}

// source / dest: bgra bgra
// sourceAlpha / destAlpha: aaaa aaaa
// result: bgra bgra
template<typename i32x4_t, typename u16x8_t, uint32_t aCompositeOperator>
static inline u16x8_t
CompositeTwoPixels(u16x8_t source, u16x8_t sourceAlpha, u16x8_t dest, const u16x8_t& destAlpha)
{
  u16x8_t x255 = simd::FromU16<u16x8_t>(255);

  switch (aCompositeOperator) {

    case COMPOSITE_OPERATOR_OVER:
    {
      // val = dest * (255 - sourceAlpha) + source * 255;
      u16x8_t twoFiftyFiveMinusSourceAlpha = simd::Sub16(x255, sourceAlpha);

      u16x8_t destSourceInterleaved1 = simd::InterleaveLo16(dest, source);
      u16x8_t rightFactor1 = simd::InterleaveLo16(twoFiftyFiveMinusSourceAlpha, x255);
      i32x4_t result1 = simd::MulAdd16x8x2To32x4(destSourceInterleaved1, rightFactor1);

      u16x8_t destSourceInterleaved2 = simd::InterleaveHi16(dest, source);
      u16x8_t rightFactor2 = simd::InterleaveHi16(twoFiftyFiveMinusSourceAlpha, x255);
      i32x4_t result2 = simd::MulAdd16x8x2To32x4(destSourceInterleaved2, rightFactor2);

      return simd::PackAndSaturate32ToU16(simd::FastDivideBy255(result1),
                                          simd::FastDivideBy255(result2));
    }

    case COMPOSITE_OPERATOR_IN:
    {
      // val = source * destAlpha;
      return simd::FastDivideBy255_16(simd::Mul16(source, destAlpha));
    }

    case COMPOSITE_OPERATOR_OUT:
    {
      // val = source * (255 - destAlpha);
      u16x8_t prod = simd::Mul16(source, simd::Sub16(x255, destAlpha));
      return simd::FastDivideBy255_16(prod);
    }

    case COMPOSITE_OPERATOR_ATOP:
    {
      // val = dest * (255 - sourceAlpha) + source * destAlpha;
      u16x8_t twoFiftyFiveMinusSourceAlpha = simd::Sub16(x255, sourceAlpha);

      u16x8_t destSourceInterleaved1 = simd::InterleaveLo16(dest, source);
      u16x8_t rightFactor1 = simd::InterleaveLo16(twoFiftyFiveMinusSourceAlpha, destAlpha);
      i32x4_t result1 = simd::MulAdd16x8x2To32x4(destSourceInterleaved1, rightFactor1);

      u16x8_t destSourceInterleaved2 = simd::InterleaveHi16(dest, source);
      u16x8_t rightFactor2 = simd::InterleaveHi16(twoFiftyFiveMinusSourceAlpha, destAlpha);
      i32x4_t result2 = simd::MulAdd16x8x2To32x4(destSourceInterleaved2, rightFactor2);

      return simd::PackAndSaturate32ToU16(simd::FastDivideBy255(result1),
                                          simd::FastDivideBy255(result2));
    }

    case COMPOSITE_OPERATOR_XOR:
    {
      // val = dest * (255 - sourceAlpha) + source * (255 - destAlpha);
      u16x8_t twoFiftyFiveMinusSourceAlpha = simd::Sub16(x255, sourceAlpha);
      u16x8_t twoFiftyFiveMinusDestAlpha = simd::Sub16(x255, destAlpha);

      u16x8_t destSourceInterleaved1 = simd::InterleaveLo16(dest, source);
      u16x8_t rightFactor1 = simd::InterleaveLo16(twoFiftyFiveMinusSourceAlpha,
                                                     twoFiftyFiveMinusDestAlpha);
      i32x4_t result1 = simd::MulAdd16x8x2To32x4(destSourceInterleaved1, rightFactor1);

      u16x8_t destSourceInterleaved2 = simd::InterleaveHi16(dest, source);
      u16x8_t rightFactor2 = simd::InterleaveHi16(twoFiftyFiveMinusSourceAlpha,
                                                     twoFiftyFiveMinusDestAlpha);
      i32x4_t result2 = simd::MulAdd16x8x2To32x4(destSourceInterleaved2, rightFactor2);

      return simd::PackAndSaturate32ToU16(simd::FastDivideBy255(result1),
                                          simd::FastDivideBy255(result2));
    }

    default:
      return simd::FromU16<u16x8_t>(0);

  }
}

template<typename i32x4_t, typename u16x8_t, typename u8x16_t, uint32_t op>
static void
ApplyComposition(DataSourceSurface* aSource, DataSourceSurface* aDest)
{
  IntSize size = aDest->GetSize();

  uint8_t* sourceData = aSource->GetData();
  uint8_t* destData = aDest->GetData();
  uint32_t sourceStride = aSource->Stride();
  uint32_t destStride = aDest->Stride();

  for (int32_t y = 0; y < size.height; y++) {
    for (int32_t x = 0; x < size.width; x += 4) {
      uint32_t sourceIndex = y * sourceStride + 4 * x;
      uint32_t destIndex = y * destStride + 4 * x;

      u8x16_t s1234 = simd::Load8<u8x16_t>(&sourceData[sourceIndex]);
      u8x16_t d1234 = simd::Load8<u8x16_t>(&destData[destIndex]);

      u16x8_t s12 = simd::UnpackLo8x8ToU16x8(s1234);
      u16x8_t d12 = simd::UnpackLo8x8ToU16x8(d1234);
      u16x8_t sa12 = simd::Splat16<3,3>(s12);
      u16x8_t da12 = simd::Splat16<3,3>(d12);
      u16x8_t result12 = CompositeTwoPixels<i32x4_t,u16x8_t,op>(s12, sa12, d12, da12);

      u16x8_t s34 = simd::UnpackHi8x8ToU16x8(s1234);
      u16x8_t d34 = simd::UnpackHi8x8ToU16x8(d1234);
      u16x8_t sa34 = simd::Splat16<3,3>(s34);
      u16x8_t da34 = simd::Splat16<3,3>(d34);
      u16x8_t result34 = CompositeTwoPixels<i32x4_t,u16x8_t,op>(s34, sa34, d34, da34);

      u8x16_t result1234 = simd::PackAndSaturate16To8(result12, result34);
      simd::Store8(&destData[destIndex], result1234);
    }
  }
}

template<typename i32x4_t, typename i16x8_t, typename u8x16_t>
static void
ApplyComposition_SIMD(DataSourceSurface* aSource, DataSourceSurface* aDest,
                      CompositeOperator aOperator)
{
  switch (aOperator) {
    case COMPOSITE_OPERATOR_OVER:
      ApplyComposition<i32x4_t,i16x8_t,u8x16_t, COMPOSITE_OPERATOR_OVER>(aSource, aDest);
      break;
    case COMPOSITE_OPERATOR_IN:
      ApplyComposition<i32x4_t,i16x8_t,u8x16_t, COMPOSITE_OPERATOR_IN>(aSource, aDest);
      break;
    case COMPOSITE_OPERATOR_OUT:
      ApplyComposition<i32x4_t,i16x8_t,u8x16_t, COMPOSITE_OPERATOR_OUT>(aSource, aDest);
      break;
    case COMPOSITE_OPERATOR_ATOP:
      ApplyComposition<i32x4_t,i16x8_t,u8x16_t, COMPOSITE_OPERATOR_ATOP>(aSource, aDest);
      break;
    case COMPOSITE_OPERATOR_XOR:
      ApplyComposition<i32x4_t,i16x8_t,u8x16_t, COMPOSITE_OPERATOR_XOR>(aSource, aDest);
      break;
    default:
      MOZ_CRASH();
  }
}

template<typename u8x16_t>
static void
SeparateColorChannels_SIMD(const IntSize &size, uint8_t* sourceData, int32_t sourceStride,
                           uint8_t* channel0Data, uint8_t* channel1Data,
                           uint8_t* channel2Data, uint8_t* channel3Data,
                           int32_t channelStride)
{
  for (int32_t y = 0; y < size.height; y++) {
    for (int32_t x = 0; x < size.width; x += 16) {
      // Process 16 pixels at a time.
      int32_t sourceIndex = y * sourceStride + 4 * x;
      int32_t targetIndex = y * channelStride + x;

      u8x16_t bgrabgrabgrabgra1 = simd::FromZero8<u8x16_t>();
      u8x16_t bgrabgrabgrabgra2 = simd::FromZero8<u8x16_t>();
      u8x16_t bgrabgrabgrabgra3 = simd::FromZero8<u8x16_t>();
      u8x16_t bgrabgrabgrabgra4 = simd::FromZero8<u8x16_t>();

      bgrabgrabgrabgra1 = simd::Load8<u8x16_t>(&sourceData[sourceIndex]);
      if (4 * (x + 4) < sourceStride) {
        bgrabgrabgrabgra2 = simd::Load8<u8x16_t>(&sourceData[sourceIndex + 4 * 4]);
      }
      if (4 * (x + 8) < sourceStride) {
        bgrabgrabgrabgra3 = simd::Load8<u8x16_t>(&sourceData[sourceIndex + 4 * 8]);
      }
      if (4 * (x + 12) < sourceStride) {
        bgrabgrabgrabgra4 = simd::Load8<u8x16_t>(&sourceData[sourceIndex + 4 * 12]);
      }

      u8x16_t bbggrraabbggrraa1 = simd::InterleaveLo8(bgrabgrabgrabgra1, bgrabgrabgrabgra3);
      u8x16_t bbggrraabbggrraa2 = simd::InterleaveHi8(bgrabgrabgrabgra1, bgrabgrabgrabgra3);
      u8x16_t bbggrraabbggrraa3 = simd::InterleaveLo8(bgrabgrabgrabgra2, bgrabgrabgrabgra4);
      u8x16_t bbggrraabbggrraa4 = simd::InterleaveHi8(bgrabgrabgrabgra2, bgrabgrabgrabgra4);
      u8x16_t bbbbggggrrrraaaa1 = simd::InterleaveLo8(bbggrraabbggrraa1, bbggrraabbggrraa3);
      u8x16_t bbbbggggrrrraaaa2 = simd::InterleaveHi8(bbggrraabbggrraa1, bbggrraabbggrraa3);
      u8x16_t bbbbggggrrrraaaa3 = simd::InterleaveLo8(bbggrraabbggrraa2, bbggrraabbggrraa4);
      u8x16_t bbbbggggrrrraaaa4 = simd::InterleaveHi8(bbggrraabbggrraa2, bbggrraabbggrraa4);
      u8x16_t bbbbbbbbgggggggg1 = simd::InterleaveLo8(bbbbggggrrrraaaa1, bbbbggggrrrraaaa3);
      u8x16_t rrrrrrrraaaaaaaa1 = simd::InterleaveHi8(bbbbggggrrrraaaa1, bbbbggggrrrraaaa3);
      u8x16_t bbbbbbbbgggggggg2 = simd::InterleaveLo8(bbbbggggrrrraaaa2, bbbbggggrrrraaaa4);
      u8x16_t rrrrrrrraaaaaaaa2 = simd::InterleaveHi8(bbbbggggrrrraaaa2, bbbbggggrrrraaaa4);
      u8x16_t bbbbbbbbbbbbbbbb = simd::InterleaveLo8(bbbbbbbbgggggggg1, bbbbbbbbgggggggg2);
      u8x16_t gggggggggggggggg = simd::InterleaveHi8(bbbbbbbbgggggggg1, bbbbbbbbgggggggg2);
      u8x16_t rrrrrrrrrrrrrrrr = simd::InterleaveLo8(rrrrrrrraaaaaaaa1, rrrrrrrraaaaaaaa2);
      u8x16_t aaaaaaaaaaaaaaaa = simd::InterleaveHi8(rrrrrrrraaaaaaaa1, rrrrrrrraaaaaaaa2);

      simd::Store8(&channel0Data[targetIndex], bbbbbbbbbbbbbbbb);
      simd::Store8(&channel1Data[targetIndex], gggggggggggggggg);
      simd::Store8(&channel2Data[targetIndex], rrrrrrrrrrrrrrrr);
      simd::Store8(&channel3Data[targetIndex], aaaaaaaaaaaaaaaa);
    }
  }
}

template<typename u8x16_t>
static void
CombineColorChannels_SIMD(const IntSize &size, int32_t resultStride, uint8_t* resultData, int32_t channelStride, uint8_t* channel0Data, uint8_t* channel1Data, uint8_t* channel2Data, uint8_t* channel3Data)
{
  for (int32_t y = 0; y < size.height; y++) {
    for (int32_t x = 0; x < size.width; x += 16) {
      // Process 16 pixels at a time.
      int32_t resultIndex = y * resultStride + 4 * x;
      int32_t channelIndex = y * channelStride + x;

      u8x16_t bbbbbbbbbbbbbbbb = simd::Load8<u8x16_t>(&channel0Data[channelIndex]);
      u8x16_t gggggggggggggggg = simd::Load8<u8x16_t>(&channel1Data[channelIndex]);
      u8x16_t rrrrrrrrrrrrrrrr = simd::Load8<u8x16_t>(&channel2Data[channelIndex]);
      u8x16_t aaaaaaaaaaaaaaaa = simd::Load8<u8x16_t>(&channel3Data[channelIndex]);

      u8x16_t brbrbrbrbrbrbrbr1 = simd::InterleaveLo8(bbbbbbbbbbbbbbbb, rrrrrrrrrrrrrrrr);
      u8x16_t brbrbrbrbrbrbrbr2 = simd::InterleaveHi8(bbbbbbbbbbbbbbbb, rrrrrrrrrrrrrrrr);
      u8x16_t gagagagagagagaga1 = simd::InterleaveLo8(gggggggggggggggg, aaaaaaaaaaaaaaaa);
      u8x16_t gagagagagagagaga2 = simd::InterleaveHi8(gggggggggggggggg, aaaaaaaaaaaaaaaa);

      u8x16_t bgrabgrabgrabgra1 = simd::InterleaveLo8(brbrbrbrbrbrbrbr1, gagagagagagagaga1);
      u8x16_t bgrabgrabgrabgra2 = simd::InterleaveHi8(brbrbrbrbrbrbrbr1, gagagagagagagaga1);
      u8x16_t bgrabgrabgrabgra3 = simd::InterleaveLo8(brbrbrbrbrbrbrbr2, gagagagagagagaga2);
      u8x16_t bgrabgrabgrabgra4 = simd::InterleaveHi8(brbrbrbrbrbrbrbr2, gagagagagagagaga2);

      simd::Store8(&resultData[resultIndex], bgrabgrabgrabgra1);
      if (4 * (x + 4) < resultStride) {
        simd::Store8(&resultData[resultIndex + 4 * 4], bgrabgrabgrabgra2);
      }
      if (4 * (x + 8) < resultStride) {
        simd::Store8(&resultData[resultIndex + 8 * 4], bgrabgrabgrabgra3);
      }
      if (4 * (x + 12) < resultStride) {
        simd::Store8(&resultData[resultIndex + 12 * 4], bgrabgrabgrabgra4);
      }
    }
  }
}


template<typename i32x4_t, typename u16x8_t, typename u8x16_t>
static void
DoPremultiplicationCalculation_SIMD(const IntSize& aSize,
                                    uint8_t* aTargetData, int32_t aTargetStride,
                                    uint8_t* aSourceData, int32_t aSourceStride)
{
  const u8x16_t alphaMask = simd::From8<u8x16_t>(0, 0, 0, 0xff, 0, 0, 0, 0xff, 0, 0, 0, 0xff, 0, 0, 0, 0xff);
  for (int32_t y = 0; y < aSize.height; y++) {
    for (int32_t x = 0; x < aSize.width; x += 4) {
      int32_t inputIndex = y * aSourceStride + 4 * x;
      int32_t targetIndex = y * aTargetStride + 4 * x;

      u8x16_t p1234 = simd::Load8<u8x16_t>(&aSourceData[inputIndex]);
      u16x8_t p12 = simd::UnpackLo8x8ToU16x8(p1234);
      u16x8_t p34 = simd::UnpackHi8x8ToU16x8(p1234);

      // Multiply all components with alpha.
      p12 = simd::Mul16(p12, simd::Splat16<3,3>(p12));
      p34 = simd::Mul16(p34, simd::Splat16<3,3>(p34));

      // Divide by 255 and pack.
      u8x16_t result = simd::PackAndSaturate16To8(simd::FastDivideBy255_16(p12),
                                                  simd::FastDivideBy255_16(p34));

      // Get the original alpha channel value back from p1234.
      result = simd::Pick(alphaMask, result, p1234);

      simd::Store8(&aTargetData[targetIndex], result);
    }
  }
}

// We use a table of precomputed factors for unpremultiplying.
// We want to compute round(r / (alpha / 255.0f)) for arbitrary values of
// r and alpha in constant time. This table of factors has the property that
// (r * sAlphaFactors[alpha] + 128) >> 8 roughly gives the result we want (with
// a maximum deviation of 1).
//
// sAlphaFactors[alpha] == round(255.0 * (1 << 8) / alpha)
//
// This table has been created using the python code
// ", ".join("%d" % (round(255.0 * 256 / alpha) if alpha > 0 else 0) for alpha in range(256))
static const uint16_t sAlphaFactors[256] = {
  0, 65280, 32640, 21760, 16320, 13056, 10880, 9326, 8160, 7253, 6528, 5935,
  5440, 5022, 4663, 4352, 4080, 3840, 3627, 3436, 3264, 3109, 2967, 2838, 2720,
  2611, 2511, 2418, 2331, 2251, 2176, 2106, 2040, 1978, 1920, 1865, 1813, 1764,
  1718, 1674, 1632, 1592, 1554, 1518, 1484, 1451, 1419, 1389, 1360, 1332, 1306,
  1280, 1255, 1232, 1209, 1187, 1166, 1145, 1126, 1106, 1088, 1070, 1053, 1036,
  1020, 1004, 989, 974, 960, 946, 933, 919, 907, 894, 882, 870, 859, 848, 837,
  826, 816, 806, 796, 787, 777, 768, 759, 750, 742, 733, 725, 717, 710, 702,
  694, 687, 680, 673, 666, 659, 653, 646, 640, 634, 628, 622, 616, 610, 604,
  599, 593, 588, 583, 578, 573, 568, 563, 558, 553, 549, 544, 540, 535, 531,
  526, 522, 518, 514, 510, 506, 502, 498, 495, 491, 487, 484, 480, 476, 473,
  470, 466, 463, 460, 457, 453, 450, 447, 444, 441, 438, 435, 432, 429, 427,
  424, 421, 418, 416, 413, 411, 408, 405, 403, 400, 398, 396, 393, 391, 389,
  386, 384, 382, 380, 377, 375, 373, 371, 369, 367, 365, 363, 361, 359, 357,
  355, 353, 351, 349, 347, 345, 344, 342, 340, 338, 336, 335, 333, 331, 330,
  328, 326, 325, 323, 322, 320, 318, 317, 315, 314, 312, 311, 309, 308, 306,
  305, 304, 302, 301, 299, 298, 297, 295, 294, 293, 291, 290, 289, 288, 286,
  285, 284, 283, 281, 280, 279, 278, 277, 275, 274, 273, 272, 271, 270, 269,
  268, 266, 265, 264, 263, 262, 261, 260, 259, 258, 257, 256
};

template<typename u16x8_t, typename u8x16_t>
static void
DoUnpremultiplicationCalculation_SIMD(const IntSize& aSize,
                                 uint8_t* aTargetData, int32_t aTargetStride,
                                 uint8_t* aSourceData, int32_t aSourceStride)
{
  for (int32_t y = 0; y < aSize.height; y++) {
    for (int32_t x = 0; x < aSize.width; x += 4) {
      int32_t inputIndex = y * aSourceStride + 4 * x;
      int32_t targetIndex = y * aTargetStride + 4 * x;
      union {
        u8x16_t p1234;
        uint8_t u8[4][4];
      };
      p1234 = simd::Load8<u8x16_t>(&aSourceData[inputIndex]);

      // Prepare the alpha factors.
      uint16_t aF1 = sAlphaFactors[u8[0][B8G8R8A8_COMPONENT_BYTEOFFSET_A]];
      uint16_t aF2 = sAlphaFactors[u8[1][B8G8R8A8_COMPONENT_BYTEOFFSET_A]];
      uint16_t aF3 = sAlphaFactors[u8[2][B8G8R8A8_COMPONENT_BYTEOFFSET_A]];
      uint16_t aF4 = sAlphaFactors[u8[3][B8G8R8A8_COMPONENT_BYTEOFFSET_A]];
      u16x8_t aF12 = simd::FromU16<u16x8_t>(aF1, aF1, aF1, 1 << 8, aF2, aF2, aF2, 1 << 8);
      u16x8_t aF34 = simd::FromU16<u16x8_t>(aF3, aF3, aF3, 1 << 8, aF4, aF4, aF4, 1 << 8);

      u16x8_t p12 = simd::UnpackLo8x8ToU16x8(p1234);
      u16x8_t p34 = simd::UnpackHi8x8ToU16x8(p1234);

      // Multiply with the alpha factors, add 128 for rounding, and shift right by 8 bits.
      p12 = simd::ShiftRight16<8>(simd::Add16(simd::Mul16(p12, aF12), simd::FromU16<u16x8_t>(128)));
      p34 = simd::ShiftRight16<8>(simd::Add16(simd::Mul16(p34, aF34), simd::FromU16<u16x8_t>(128)));

      u8x16_t result = simd::PackAndSaturate16To8(p12, p34);
      simd::Store8(&aTargetData[targetIndex], result);
    }
  }
}

template<typename f32x4_t, typename i32x4_t, typename u8x16_t>
static TemporaryRef<DataSourceSurface>
RenderTurbulence_SIMD(const IntSize &aSize, const Point &aOffset, const Size &aBaseFrequency,
                      int32_t aSeed, int aNumOctaves, TurbulenceType aType, bool aStitch, const Rect &aTileRect)
{
#define RETURN_TURBULENCE(Type, Stitch) \
  SVGTurbulenceRenderer<Type,Stitch,f32x4_t,i32x4_t,u8x16_t> \
    renderer(aBaseFrequency, aSeed, aNumOctaves, aTileRect); \
  return renderer.Render(aSize, aOffset);

  switch (aType) {
    case TURBULENCE_TYPE_TURBULENCE:
    {
      if (aStitch) {
        RETURN_TURBULENCE(TURBULENCE_TYPE_TURBULENCE, true);
      }
      RETURN_TURBULENCE(TURBULENCE_TYPE_TURBULENCE, false);
    }
    case TURBULENCE_TYPE_FRACTAL_NOISE:
    {
      if (aStitch) {
        RETURN_TURBULENCE(TURBULENCE_TYPE_FRACTAL_NOISE, true);
      }
      RETURN_TURBULENCE(TURBULENCE_TYPE_FRACTAL_NOISE, false);
    }
  }
  return nullptr;
#undef RETURN_TURBULENCE
}

// k1 * in1 * in2 + k2 * in1 + k3 * in2 + k4
template<typename i32x4_t, typename i16x8_t>
static MOZ_ALWAYS_INLINE i16x8_t
ArithmeticCombineTwoPixels(i16x8_t in1, i16x8_t in2,
                           const i16x8_t &k1And4, const i16x8_t &k2And3)
{
  // Calculate input product: inProd = (in1 * in2) / 255.
  i32x4_t inProd_1, inProd_2;
  simd::Mul16x4x2x2To32x4x2(in1, in2, inProd_1, inProd_2);
  i16x8_t inProd = simd::PackAndSaturate32To16(simd::FastDivideBy255(inProd_1), simd::FastDivideBy255(inProd_2));

  // Calculate k1 * ((in1 * in2) / 255) + (k4/128) * 128
  i16x8_t oneTwentyEight = simd::FromI16<i16x8_t>(128);
  i16x8_t inProd1AndOneTwentyEight = simd::InterleaveLo16(inProd, oneTwentyEight);
  i16x8_t inProd2AndOneTwentyEight = simd::InterleaveHi16(inProd, oneTwentyEight);
  i32x4_t inProdTimesK1PlusK4_1 = simd::MulAdd16x8x2To32x4(k1And4, inProd1AndOneTwentyEight);
  i32x4_t inProdTimesK1PlusK4_2 = simd::MulAdd16x8x2To32x4(k1And4, inProd2AndOneTwentyEight);

  // Calculate k2 * in1 + k3 * in2
  i16x8_t in12_1 = simd::InterleaveLo16(in1, in2);
  i16x8_t in12_2 = simd::InterleaveHi16(in1, in2);
  i32x4_t inTimesK2K3_1 = simd::MulAdd16x8x2To32x4(k2And3, in12_1);
  i32x4_t inTimesK2K3_2 = simd::MulAdd16x8x2To32x4(k2And3, in12_2);

  // Sum everything up and truncate the fractional part.
  i32x4_t result_1 = simd::ShiftRight32<7>(simd::Add32(inProdTimesK1PlusK4_1, inTimesK2K3_1));
  i32x4_t result_2 = simd::ShiftRight32<7>(simd::Add32(inProdTimesK1PlusK4_2, inTimesK2K3_2));
  return simd::PackAndSaturate32To16(result_1, result_2);
}

template<typename i32x4_t, typename i16x8_t, typename u8x16_t>
static TemporaryRef<DataSourceSurface>
ApplyArithmeticCombine_SIMD(DataSourceSurface* aInput1, DataSourceSurface* aInput2,
                            Float aK1, Float aK2, Float aK3, Float aK4)
{
  IntSize size = aInput1->GetSize();
  RefPtr<DataSourceSurface> target =
  Factory::CreateDataSourceSurface(size, SurfaceFormat::B8G8R8A8);
  if (!target) {
    return nullptr;
  }

  uint8_t* source1Data = aInput1->GetData();
  uint8_t* source2Data = aInput2->GetData();
  uint8_t* targetData = target->GetData();
  uint32_t source1Stride = aInput1->Stride();
  uint32_t source2Stride = aInput2->Stride();
  uint32_t targetStride = target->Stride();

  // The arithmetic combine filter does the following calculation:
  // result = k1 * in1 * in2 + k2 * in1 + k3 * in2 + k4
  //
  // Or, with in1/2 integers between 0 and 255:
  // result = (k1 * in1 * in2) / 255 + k2 * in1 + k3 * in2 + k4 * 255
  //
  // We want the whole calculation to happen in integer, with 16-bit factors.
  // So we convert our factors to fixed-point with precision 1.8.7.
  // K4 is premultiplied with 255, and it will be multiplied with 128 later
  // during the actual calculation, because premultiplying it with 255 * 128
  // would overflow int16.

  i16x8_t k1 = simd::FromI16<i16x8_t>(int16_t(floorf(std::min(std::max(aK1, -255.0f), 255.0f) * 128 + 0.5f)));
  i16x8_t k2 = simd::FromI16<i16x8_t>(int16_t(floorf(std::min(std::max(aK2, -255.0f), 255.0f) * 128 + 0.5f)));
  i16x8_t k3 = simd::FromI16<i16x8_t>(int16_t(floorf(std::min(std::max(aK3, -255.0f), 255.0f) * 128 + 0.5f)));
  i16x8_t k4 = simd::FromI16<i16x8_t>(int16_t(floorf(std::min(std::max(aK4, -128.0f), 128.0f) * 255 + 0.5f)));

  i16x8_t k1And4 = simd::InterleaveLo16(k1, k4);
  i16x8_t k2And3 = simd::InterleaveLo16(k2, k3);

  for (int32_t y = 0; y < size.height; y++) {
    for (int32_t x = 0; x < size.width; x += 4) {
      uint32_t source1Index = y * source1Stride + 4 * x;
      uint32_t source2Index = y * source2Stride + 4 * x;
      uint32_t targetIndex = y * targetStride + 4 * x;

      // Load and unpack.
      u8x16_t in1 = simd::Load8<u8x16_t>(&source1Data[source1Index]);
      u8x16_t in2 = simd::Load8<u8x16_t>(&source2Data[source2Index]);
      i16x8_t in1_12 = simd::UnpackLo8x8ToI16x8(in1);
      i16x8_t in1_34 = simd::UnpackHi8x8ToI16x8(in1);
      i16x8_t in2_12 = simd::UnpackLo8x8ToI16x8(in2);
      i16x8_t in2_34 = simd::UnpackHi8x8ToI16x8(in2);

      // Multiply and add.
      i16x8_t result_12 = ArithmeticCombineTwoPixels<i32x4_t,i16x8_t>(in1_12, in2_12, k1And4, k2And3);
      i16x8_t result_34 = ArithmeticCombineTwoPixels<i32x4_t,i16x8_t>(in1_34, in2_34, k1And4, k2And3);

      // Pack and store.
      simd::Store8(&targetData[targetIndex], simd::PackAndSaturate16To8(result_12, result_34));
    }
  }

  return target;
}

} // namespace mozilla
} // namespace gfx