DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Implementation

Mercurial (d1ed7de67f5a)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef _MOZILLA_GFX_FILTERPROCESSING_H_
#define _MOZILLA_GFX_FILTERPROCESSING_H_

#include "2D.h"
#include "Filters.h"

namespace mozilla {
namespace gfx {

const ptrdiff_t B8G8R8A8_COMPONENT_BYTEOFFSET_B = 0;
const ptrdiff_t B8G8R8A8_COMPONENT_BYTEOFFSET_G = 1;
const ptrdiff_t B8G8R8A8_COMPONENT_BYTEOFFSET_R = 2;
const ptrdiff_t B8G8R8A8_COMPONENT_BYTEOFFSET_A = 3;

class FilterProcessing
{
public:

  // Fast approximate division by 255. It has the property that
  // for all 0 <= v <= 255*255, FastDivideBy255(v) == v/255.
  // But it only uses two adds and two shifts instead of an
  // integer division (which is expensive on many processors).
  template<class B, class A>
  static B FastDivideBy255(A v)
  {
    return ((v << 8) + v + 255) >> 16;
  }

  static TemporaryRef<DataSourceSurface> ExtractAlpha(DataSourceSurface* aSource);
  static TemporaryRef<DataSourceSurface> ConvertToB8G8R8A8(SourceSurface* aSurface);
  static TemporaryRef<DataSourceSurface> ApplyBlending(DataSourceSurface* aInput1, DataSourceSurface* aInput2, BlendMode aBlendMode);
  static void ApplyMorphologyHorizontal(uint8_t* aSourceData, int32_t aSourceStride,
                                          uint8_t* aDestData, int32_t aDestStride,
                                          const IntRect& aDestRect, int32_t aRadius,
                                          MorphologyOperator aOperator);
  static void ApplyMorphologyVertical(uint8_t* aSourceData, int32_t aSourceStride,
                                          uint8_t* aDestData, int32_t aDestStride,
                                          const IntRect& aDestRect, int32_t aRadius,
                                          MorphologyOperator aOperator);
  static TemporaryRef<DataSourceSurface> ApplyColorMatrix(DataSourceSurface* aInput, const Matrix5x4 &aMatrix);
  static void ApplyComposition(DataSourceSurface* aSource, DataSourceSurface* aDest, CompositeOperator aOperator);
  static void SeparateColorChannels(DataSourceSurface* aSource,
                                    RefPtr<DataSourceSurface>& aChannel0,
                                    RefPtr<DataSourceSurface>& aChannel1,
                                    RefPtr<DataSourceSurface>& aChannel2,
                                    RefPtr<DataSourceSurface>& aChannel3);
  static TemporaryRef<DataSourceSurface>
    CombineColorChannels(DataSourceSurface* aChannel0, DataSourceSurface* aChannel1,
                         DataSourceSurface* aChannel2, DataSourceSurface* aChannel3);
  static void DoPremultiplicationCalculation(const IntSize& aSize,
                                        uint8_t* aTargetData, int32_t aTargetStride,
                                        uint8_t* aSourceData, int32_t aSourceStride);
  static void DoUnpremultiplicationCalculation(const IntSize& aSize,
                                               uint8_t* aTargetData, int32_t aTargetStride,
                                               uint8_t* aSourceData, int32_t aSourceStride);
  static TemporaryRef<DataSourceSurface>
    RenderTurbulence(const IntSize &aSize, const Point &aOffset, const Size &aBaseFrequency,
                     int32_t aSeed, int aNumOctaves, TurbulenceType aType, bool aStitch, const Rect &aTileRect);
  static TemporaryRef<DataSourceSurface>
    ApplyArithmeticCombine(DataSourceSurface* aInput1, DataSourceSurface* aInput2, Float aK1, Float aK2, Float aK3, Float aK4);

protected:
  static void ExtractAlpha_Scalar(const IntSize& size, uint8_t* sourceData, int32_t sourceStride, uint8_t* alphaData, int32_t alphaStride);
  static TemporaryRef<DataSourceSurface> ConvertToB8G8R8A8_Scalar(SourceSurface* aSurface);
  static TemporaryRef<DataSourceSurface> ApplyBlending_Scalar(DataSourceSurface* aInput1, DataSourceSurface* aInput2, BlendMode aBlendMode);
  static void ApplyMorphologyHorizontal_Scalar(uint8_t* aSourceData, int32_t aSourceStride,
                                               uint8_t* aDestData, int32_t aDestStride,
                                               const IntRect& aDestRect, int32_t aRadius,
                                               MorphologyOperator aOperator);
  static void ApplyMorphologyVertical_Scalar(uint8_t* aSourceData, int32_t aSourceStride,
                                               uint8_t* aDestData, int32_t aDestStride,
                                               const IntRect& aDestRect, int32_t aRadius,
                                               MorphologyOperator aOperator);
  static TemporaryRef<DataSourceSurface> ApplyColorMatrix_Scalar(DataSourceSurface* aInput, const Matrix5x4 &aMatrix);
  static void ApplyComposition_Scalar(DataSourceSurface* aSource, DataSourceSurface* aDest, CompositeOperator aOperator);

  static void SeparateColorChannels_Scalar(const IntSize &size, uint8_t* sourceData, int32_t sourceStride, uint8_t* channel0Data, uint8_t* channel1Data, uint8_t* channel2Data, uint8_t* channel3Data, int32_t channelStride);
  static void CombineColorChannels_Scalar(const IntSize &size, int32_t resultStride, uint8_t* resultData, int32_t channelStride, uint8_t* channel0Data, uint8_t* channel1Data, uint8_t* channel2Data, uint8_t* channel3Data);
  static void DoPremultiplicationCalculation_Scalar(const IntSize& aSize,
                                        uint8_t* aTargetData, int32_t aTargetStride,
                                        uint8_t* aSourceData, int32_t aSourceStride);
  static void DoUnpremultiplicationCalculation_Scalar(const IntSize& aSize,
                                               uint8_t* aTargetData, int32_t aTargetStride,
                                               uint8_t* aSourceData, int32_t aSourceStride);
  static TemporaryRef<DataSourceSurface>
    RenderTurbulence_Scalar(const IntSize &aSize, const Point &aOffset, const Size &aBaseFrequency,
                            int32_t aSeed, int aNumOctaves, TurbulenceType aType, bool aStitch, const Rect &aTileRect);
  static TemporaryRef<DataSourceSurface>
    ApplyArithmeticCombine_Scalar(DataSourceSurface* aInput1, DataSourceSurface* aInput2, Float aK1, Float aK2, Float aK3, Float aK4);

#ifdef USE_SSE2
  static void ExtractAlpha_SSE2(const IntSize& size, uint8_t* sourceData, int32_t sourceStride, uint8_t* alphaData, int32_t alphaStride);
  static TemporaryRef<DataSourceSurface> ConvertToB8G8R8A8_SSE2(SourceSurface* aSurface);
  static TemporaryRef<DataSourceSurface> ApplyBlending_SSE2(DataSourceSurface* aInput1, DataSourceSurface* aInput2, BlendMode aBlendMode);
  static void ApplyMorphologyHorizontal_SSE2(uint8_t* aSourceData, int32_t aSourceStride,
                                             uint8_t* aDestData, int32_t aDestStride,
                                             const IntRect& aDestRect, int32_t aRadius,
                                             MorphologyOperator aOperator);
  static void ApplyMorphologyVertical_SSE2(uint8_t* aSourceData, int32_t aSourceStride,
                                             uint8_t* aDestData, int32_t aDestStride,
                                             const IntRect& aDestRect, int32_t aRadius,
                                             MorphologyOperator aOperator);
  static TemporaryRef<DataSourceSurface> ApplyColorMatrix_SSE2(DataSourceSurface* aInput, const Matrix5x4 &aMatrix);
  static void ApplyComposition_SSE2(DataSourceSurface* aSource, DataSourceSurface* aDest, CompositeOperator aOperator);
  static void SeparateColorChannels_SSE2(const IntSize &size, uint8_t* sourceData, int32_t sourceStride, uint8_t* channel0Data, uint8_t* channel1Data, uint8_t* channel2Data, uint8_t* channel3Data, int32_t channelStride);
  static void CombineColorChannels_SSE2(const IntSize &size, int32_t resultStride, uint8_t* resultData, int32_t channelStride, uint8_t* channel0Data, uint8_t* channel1Data, uint8_t* channel2Data, uint8_t* channel3Data);
  static void DoPremultiplicationCalculation_SSE2(const IntSize& aSize,
                                        uint8_t* aTargetData, int32_t aTargetStride,
                                        uint8_t* aSourceData, int32_t aSourceStride);
  static void DoUnpremultiplicationCalculation_SSE2(const IntSize& aSize,
                                               uint8_t* aTargetData, int32_t aTargetStride,
                                               uint8_t* aSourceData, int32_t aSourceStride);
  static TemporaryRef<DataSourceSurface>
    RenderTurbulence_SSE2(const IntSize &aSize, const Point &aOffset, const Size &aBaseFrequency,
                          int32_t aSeed, int aNumOctaves, TurbulenceType aType, bool aStitch, const Rect &aTileRect);
  static TemporaryRef<DataSourceSurface>
    ApplyArithmeticCombine_SSE2(DataSourceSurface* aInput1, DataSourceSurface* aInput2, Float aK1, Float aK2, Float aK3, Float aK4);
#endif
};

// Constant-time max and min functions for unsigned arguments
static inline unsigned
umax(unsigned a, unsigned b)
{
  return a - ((a - b) & -(a < b));
}

static inline unsigned
umin(unsigned a, unsigned b)
{
  return a - ((a - b) & -(a > b));
}

} // namespace gfx
} // namespace mozilla

#endif // _MOZILLA_GFX_FILTERPROCESSING_H_