DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (d1ed7de67f5a)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "WebGLElementArrayCache.h"

#include "mozilla/Assertions.h"
#include "mozilla/MemoryReporting.h"
#include "mozilla/MathAlgorithms.h"

#include <cstdlib>
#include <cstring>
#include <limits>
#include <algorithm>

namespace mozilla {

static void
UpdateUpperBound(uint32_t* out_upperBound, uint32_t newBound)
{
  MOZ_ASSERT(out_upperBound);
  *out_upperBound = std::max(*out_upperBound, newBound);
}

/*
 * WebGLElementArrayCacheTree contains most of the implementation of WebGLElementArrayCache,
 * which performs WebGL element array buffer validation for drawElements.
 *
 * Attention: Here lie nontrivial data structures, bug-prone algorithms, and non-canonical tweaks!
 * Whence the explanatory comments, and compiled unit test.
 *
 * *** What problem are we solving here? ***
 *
 * WebGL::DrawElements has to validate that the elements are in range wrt the current vertex attribs.
 * This boils down to the problem, given an array of integers, of computing the maximum in an arbitrary
 * sub-array. The naive algorithm has linear complexity; this has been a major performance problem,
 * see bug 569431. In that bug, we took the approach of caching the max for the whole array, which
 * does cover most cases (DrawElements typically consumes the whole element array buffer) but doesn't
 * help in other use cases:
 *  - when doing "partial DrawElements" i.e. consuming only part of the element array buffer
 *  - when doing frequent "partial buffer updates" i.e. bufferSubData calls updating parts of the
 *    element array buffer
 *
 * *** The solution: a binary tree ***
 *
 * The solution implemented here is to use a binary tree as the cache data structure. Each tree node
 * contains the max of its two children nodes. In this way, finding the maximum in any contiguous sub-array
 * has log complexity instead of linear complexity.
 *
 * Simplistically, if the element array is
 *
 *     1   4   3   2
 *
 * then the corresponding tree is
 *
 *           4
 *         _/ \_
 *       4       3
 *      / \     / \
 *     1   4   3   2
 *
 * In practice, the bottom-most levels of the tree are both the largest to store (because they
 * have more nodes), and the least useful performance-wise (because each node in the bottom
 * levels concerns only few entries in the elements array buffer, it is cheap to compute).
 *
 * For this reason, we stop the tree a few levels above, so that each tree leaf actually corresponds
 * to more than one element array entry.
 *
 * The number of levels that we "drop" is |sSkippedBottomTreeLevels| and the number of element array entries
 * that each leaf corresponds to, is |sElementsPerLeaf|. This being a binary tree, we have
 *
 *   sElementsPerLeaf = 2 ^ sSkippedBottomTreeLevels.
 *
 * *** Storage layout of the binary tree ***
 *
 * We take advantage of the specifics of the situation to avoid generalist tree storage and instead
 * store the tree entries in a vector, mTreeData.
 *
 * TreeData is always a vector of length
 *
 *    2 * (number of leaves).
 *
 * Its data layout is as follows: mTreeData[0] is unused, mTreeData[1] is the root node,
 * then at offsets 2..3 is the tree level immediately below the root node, then at offsets 4..7
 * is the tree level below that, etc.
 *
 * The figure below illustrates this by writing at each tree node the offset into mTreeData at
 * which it is stored:
 *
 *           1
 *         _/ \_
 *       2       3
 *      / \     / \
 *     4   5   6   7
 *    ...
 *
 * Thus, under the convention that the root level is level 0, we see that level N is stored at offsets
 *
 *    [ 2^n .. 2^(n+1) - 1 ]
 *
 * in mTreeData. Likewise, all the usual tree operations have simple mathematical expressions in
 * terms of mTreeData offsets, see all the methods such as ParentNode, LeftChildNode, etc.
 *
 * *** Design constraint: element types aren't known at buffer-update time ***
 *
 * Note that a key constraint that we're operating under, is that we don't know the types of the elements
 * by the time WebGL bufferData/bufferSubData methods are called. The type of elements is only
 * specified in the drawElements call. This means that we may potentially have to store caches for
 * multiple element types, for the same element array buffer. Since we don't know yet how many
 * element types we'll eventually support (extensions add more), the concern about memory usage is serious.
 * This is addressed by sSkippedBottomTreeLevels as explained above. Of course, in the typical
 * case where each element array buffer is only ever used with one type, this is also addressed
 * by having WebGLElementArrayCache lazily create trees for each type only upon first use.
 *
 * Another consequence of this constraint is that when updating the trees, we have to update
 * all existing trees. So if trees for types uint8_t, uint16_t and uint32_t have ever been constructed for this buffer,
 * every subsequent update will have to update all trees even if one of the types is never
 * used again. That's inefficient, but content should not put indices of different types in the
 * same element array buffer anyways. Different index types can only be consumed in separate
 * drawElements calls, so nothing particular is to be achieved by lumping them in the same
 * buffer object.
 */
template<typename T>
struct WebGLElementArrayCacheTree
{
  // A too-high sSkippedBottomTreeLevels would harm the performance of small drawElements calls
  // A too-low sSkippedBottomTreeLevels would cause undue memory usage.
  // The current value has been validated by some benchmarking. See bug 732660.
  static const size_t sSkippedBottomTreeLevels = 3;
  static const size_t sElementsPerLeaf = 1 << sSkippedBottomTreeLevels;
  static const size_t sElementsPerLeafMask = sElementsPerLeaf - 1; // sElementsPerLeaf is POT

private:

  // The WebGLElementArrayCache that owns this tree
  WebGLElementArrayCache& mParent;

  // The tree's internal data storage. Its length is 2 * (number of leaves)
  // because of its data layout explained in the above class comment.
  FallibleTArray<T> mTreeData;

public:
  // Constructor. Takes a reference to the WebGLElementArrayCache that is to be
  // the parent. Does not initialize the tree. Should be followed by a call
  // to Update() to attempt initializing the tree.
  WebGLElementArrayCacheTree(WebGLElementArrayCache& p)
    : mParent(p)
  {
  }

  T GlobalMaximum() const {
    return mTreeData[1];
  }

  // returns the index of the parent node; if treeIndex=1 (the root node),
  // the return value is 0.
  static size_t ParentNode(size_t treeIndex) {
    MOZ_ASSERT(treeIndex > 1);
    return treeIndex >> 1;
  }

  static bool IsRightNode(size_t treeIndex) {
    MOZ_ASSERT(treeIndex > 1);
    return treeIndex & 1;
  }

  static bool IsLeftNode(size_t treeIndex) {
    MOZ_ASSERT(treeIndex > 1);
    return !IsRightNode(treeIndex);
  }

  static size_t SiblingNode(size_t treeIndex) {
    MOZ_ASSERT(treeIndex > 1);
    return treeIndex ^ 1;
  }

  static size_t LeftChildNode(size_t treeIndex) {
    MOZ_ASSERT(treeIndex);
    return treeIndex << 1;
  }

  static size_t RightChildNode(size_t treeIndex) {
    MOZ_ASSERT(treeIndex);
    return SiblingNode(LeftChildNode(treeIndex));
  }

  static size_t LeftNeighborNode(size_t treeIndex, size_t distance = 1) {
    MOZ_ASSERT(treeIndex > 1);
    return treeIndex - distance;
  }

  static size_t RightNeighborNode(size_t treeIndex, size_t distance = 1) {
    MOZ_ASSERT(treeIndex > 1);
    return treeIndex + distance;
  }

  size_t NumLeaves() const {
    // see class comment for why we the tree storage size is 2 * numLeaves
    return mTreeData.Length() >> 1;
  }

  size_t LeafForElement(size_t element) const {
    size_t leaf = element / sElementsPerLeaf;
    MOZ_ASSERT(leaf < NumLeaves());
    return leaf;
  }

  size_t LeafForByte(size_t byte) const {
    return LeafForElement(byte / sizeof(T));
  }

  // Returns the index, into the tree storage, where a given leaf is stored
  size_t TreeIndexForLeaf(size_t leaf) const {
    // See above class comment. The tree storage is an array of length 2 * numLeaves.
    // The leaves are stored in its second half.
    return leaf + NumLeaves();
  }

  static size_t LastElementUnderSameLeaf(size_t element) {
    return element | sElementsPerLeafMask;
  }

  static size_t FirstElementUnderSameLeaf(size_t element) {
    return element & ~sElementsPerLeafMask;
  }

  static size_t NextMultipleOfElementsPerLeaf(size_t numElements) {
    MOZ_ASSERT(numElements >= 1);
    return ((numElements - 1) | sElementsPerLeafMask) + 1;
  }

  bool Validate(T maxAllowed, size_t firstLeaf, size_t lastLeaf,
                uint32_t* out_upperBound)
  {
    size_t firstTreeIndex = TreeIndexForLeaf(firstLeaf);
    size_t lastTreeIndex  = TreeIndexForLeaf(lastLeaf);

    while (true) {
      // given that we tweak these values in nontrivial ways, it doesn't hurt to do
      // this sanity check
      MOZ_ASSERT(firstTreeIndex <= lastTreeIndex);

      // final case where there is only 1 node to validate at the current tree level
      if (lastTreeIndex == firstTreeIndex) {
        const T& curData = mTreeData[firstTreeIndex];
        UpdateUpperBound(out_upperBound, curData);
        return curData <= maxAllowed;
      }

      // if the first node at current tree level is a right node, handle it individually
      // and replace it with its right neighbor, which is a left node
      if (IsRightNode(firstTreeIndex)) {
        const T& curData = mTreeData[firstTreeIndex];
        UpdateUpperBound(out_upperBound, curData);
        if (curData > maxAllowed)
          return false;
        firstTreeIndex = RightNeighborNode(firstTreeIndex);
      }

      // if the last node at current tree level is a left node, handle it individually
      // and replace it with its left neighbor, which is a right node
      if (IsLeftNode(lastTreeIndex)) {
        const T& curData = mTreeData[lastTreeIndex];
        UpdateUpperBound(out_upperBound, curData);
        if (curData > maxAllowed)
          return false;
        lastTreeIndex = LeftNeighborNode(lastTreeIndex);
      }

      // at this point it can happen that firstTreeIndex and lastTreeIndex "crossed" each
      // other. That happens if firstTreeIndex was a right node and lastTreeIndex was its
      // right neighor: in that case, both above tweaks happened and as a result, they ended
      // up being swapped: lastTreeIndex is now the _left_ neighbor of firstTreeIndex.
      // When that happens, there is nothing left to validate.
      if (lastTreeIndex == LeftNeighborNode(firstTreeIndex)) {
        return true;
      }

      // walk up 1 level
      firstTreeIndex = ParentNode(firstTreeIndex);
      lastTreeIndex = ParentNode(lastTreeIndex);
    }
  }

  // Updates the tree from the parent's buffer contents. Fallible, as it
  // may have to resize the tree storage.
  bool Update(size_t firstByte, size_t lastByte);

  size_t SizeOfIncludingThis(mozilla::MallocSizeOf aMallocSizeOf) const
  {
    return aMallocSizeOf(this) + mTreeData.SizeOfExcludingThis(aMallocSizeOf);
  }
};

// TreeForType: just a template helper to select the right tree object for a given
// element type.
template<typename T>
struct TreeForType {};

template<>
struct TreeForType<uint8_t>
{
  static ScopedDeletePtr<WebGLElementArrayCacheTree<uint8_t>>&
  Value(WebGLElementArrayCache *b) {
    return b->mUint8Tree;
  }
};

template<>
struct TreeForType<uint16_t>
{
  static ScopedDeletePtr<WebGLElementArrayCacheTree<uint16_t>>&
  Value(WebGLElementArrayCache *b) {
    return b->mUint16Tree;
  }
};

template<>
struct TreeForType<uint32_t>
{
  static ScopedDeletePtr<WebGLElementArrayCacheTree<uint32_t>>&
  Value(WebGLElementArrayCache *b) {
    return b->mUint32Tree;
  }
};

// Calling this method will 1) update the leaves in this interval
// from the raw buffer data, and 2) propagate this update up the tree
template<typename T>
bool WebGLElementArrayCacheTree<T>::Update(size_t firstByte, size_t lastByte)
{
  MOZ_ASSERT(firstByte <= lastByte);
  MOZ_ASSERT(lastByte < mParent.mBytes.Length());

  size_t numberOfElements = mParent.mBytes.Length() / sizeof(T);
  size_t requiredNumLeaves = 0;
  if (numberOfElements > 0) {
    // If we didn't require the number of leaves to be a power of two, then
    // it would just be equal to
    //
    //    ceil(numberOfElements / sElementsPerLeaf)
    //
    // The way we implement this (division+ceil) operation in integer arithmetic
    // is as follows:
    size_t numLeavesNonPOT = (numberOfElements + sElementsPerLeaf - 1) / sElementsPerLeaf;
    // It only remains to round that up to the next power of two:
    requiredNumLeaves = RoundUpPow2(numLeavesNonPOT);
  }

  // Step #0: if needed, resize our tree data storage.
  if (requiredNumLeaves != NumLeaves()) {
    // see class comment for why we the tree storage size is 2 * numLeaves
    if (!mTreeData.SetLength(2 * requiredNumLeaves)) {
      mTreeData.SetLength(0);
      return false;
    }
    MOZ_ASSERT(NumLeaves() == requiredNumLeaves);

    if (NumLeaves()) {
      // when resizing, update the whole tree, not just the subset corresponding
      // to the part of the buffer being updated.
      memset(mTreeData.Elements(), 0, mTreeData.Length() * sizeof(T));
      firstByte = 0;
      lastByte = mParent.mBytes.Length() - 1;
    }
  }

  if (NumLeaves() == 0) {
    return true;
  }

  lastByte = std::min(lastByte, NumLeaves() * sElementsPerLeaf * sizeof(T) - 1);
  if (firstByte > lastByte) {
    return true;
  }

  size_t firstLeaf = LeafForByte(firstByte);
  size_t lastLeaf = LeafForByte(lastByte);

  MOZ_ASSERT(firstLeaf <= lastLeaf && lastLeaf < NumLeaves());

  size_t firstTreeIndex = TreeIndexForLeaf(firstLeaf);
  size_t lastTreeIndex = TreeIndexForLeaf(lastLeaf);

  // Step #1: initialize the tree leaves from plain buffer data.
  // That is, each tree leaf must be set to the max of the |sElementsPerLeaf| corresponding
  // buffer entries.
  // condition-less scope to prevent leaking this scope's variables into the code below
  {
    // treeIndex is the index of the tree leaf we're writing, i.e. the destination index
    size_t treeIndex = firstTreeIndex;
    // srcIndex is the index in the source buffer
    size_t srcIndex = firstLeaf * sElementsPerLeaf;
    while (treeIndex <= lastTreeIndex) {
      T m = 0;
      size_t a = srcIndex;
      size_t srcIndexNextLeaf = std::min(a + sElementsPerLeaf, numberOfElements);
      for (; srcIndex < srcIndexNextLeaf; srcIndex++) {
        m = std::max(m, mParent.Element<T>(srcIndex));
      }
      mTreeData[treeIndex] = m;
      treeIndex++;
    }
  }

  // Step #2: propagate the values up the tree. This is simply a matter of walking up
  // the tree and setting each node to the max of its two children.
  while (firstTreeIndex > 1) {
    // move up 1 level
    firstTreeIndex = ParentNode(firstTreeIndex);
    lastTreeIndex = ParentNode(lastTreeIndex);

    // fast-exit case where only one node is updated at the current level
    if (firstTreeIndex == lastTreeIndex) {
      mTreeData[firstTreeIndex] = std::max(mTreeData[LeftChildNode(firstTreeIndex)], mTreeData[RightChildNode(firstTreeIndex)]);
      continue;
    }

    size_t child = LeftChildNode(firstTreeIndex);
    size_t parent = firstTreeIndex;
    while (parent <= lastTreeIndex)
    {
      T a = mTreeData[child];
      child = RightNeighborNode(child);
      T b = mTreeData[child];
      child = RightNeighborNode(child);
      mTreeData[parent] = std::max(a, b);
      parent = RightNeighborNode(parent);
    }
  }

  return true;
}

WebGLElementArrayCache::WebGLElementArrayCache() {
}

WebGLElementArrayCache::~WebGLElementArrayCache() {
}

bool WebGLElementArrayCache::BufferData(const void* ptr, size_t byteLength) {
  if (mBytes.Length() != byteLength) {
    if (!mBytes.SetLength(byteLength)) {
      mBytes.SetLength(0);
      return false;
    }
  }
  MOZ_ASSERT(mBytes.Length() == byteLength);
  return BufferSubData(0, ptr, byteLength);
}

bool WebGLElementArrayCache::BufferSubData(size_t pos, const void* ptr, size_t updateByteLength) {
  MOZ_ASSERT(pos + updateByteLength <= mBytes.Length());
  if (!updateByteLength)
    return true;
  if (ptr)
    memcpy(mBytes.Elements() + pos, ptr, updateByteLength);
  else
    memset(mBytes.Elements() + pos, 0, updateByteLength);
  return UpdateTrees(pos, pos + updateByteLength - 1);
}

bool WebGLElementArrayCache::UpdateTrees(size_t firstByte, size_t lastByte)
{
  bool result = true;
  if (mUint8Tree)
    result &= mUint8Tree->Update(firstByte, lastByte);
  if (mUint16Tree)
    result &= mUint16Tree->Update(firstByte, lastByte);
  if (mUint32Tree)
    result &= mUint32Tree->Update(firstByte, lastByte);
  return result;
}

template<typename T>
bool
WebGLElementArrayCache::Validate(uint32_t maxAllowed, size_t firstElement,
                                 size_t countElements, uint32_t* out_upperBound)
{
  *out_upperBound = 0;

  // if maxAllowed is >= the max T value, then there is no way that a T index could be invalid
  uint32_t maxTSize = std::numeric_limits<T>::max();
  if (maxAllowed >= maxTSize) {
    UpdateUpperBound(out_upperBound, maxTSize);
    return true;
  }

  T maxAllowedT(maxAllowed);

  // integer overflow must have been handled earlier, so we assert that maxAllowedT
  // is exactly the max allowed value.
  MOZ_ASSERT(uint32_t(maxAllowedT) == maxAllowed);

  if (!mBytes.Length() || !countElements)
    return true;

  ScopedDeletePtr<WebGLElementArrayCacheTree<T>>& tree = TreeForType<T>::Value(this);
  if (!tree) {
    tree = new WebGLElementArrayCacheTree<T>(*this);
    if (mBytes.Length()) {
      bool valid = tree->Update(0, mBytes.Length() - 1);
      if (!valid) {
        // Do not assert here. This case would happen if an allocation failed.
        // We've already settled on fallible allocations around here.
        tree = nullptr;
        return false;
      }
    }
  }

  size_t lastElement = firstElement + countElements - 1;

  // fast exit path when the global maximum for the whole element array buffer
  // falls in the allowed range
  T globalMax = tree->GlobalMaximum();
  if (globalMax <= maxAllowedT)
  {
    UpdateUpperBound(out_upperBound, globalMax);
    return true;
  }

  const T* elements = Elements<T>();

  // before calling tree->Validate, we have to validate ourselves the boundaries of the elements span,
  // to round them to the nearest multiple of sElementsPerLeaf.
  size_t firstElementAdjustmentEnd = std::min(lastElement,
                                              tree->LastElementUnderSameLeaf(firstElement));
  while (firstElement <= firstElementAdjustmentEnd) {
    const T& curData = elements[firstElement];
    UpdateUpperBound(out_upperBound, curData);
    if (curData > maxAllowedT)
      return false;
    firstElement++;
  }
  size_t lastElementAdjustmentEnd = std::max(firstElement,
                                             tree->FirstElementUnderSameLeaf(lastElement));
  while (lastElement >= lastElementAdjustmentEnd) {
    const T& curData = elements[lastElement];
    UpdateUpperBound(out_upperBound, curData);
    if (curData > maxAllowedT)
      return false;
    lastElement--;
  }

  // at this point, for many tiny validations, we're already done.
  if (firstElement > lastElement)
    return true;

  // general case
  return tree->Validate(maxAllowedT,
                        tree->LeafForElement(firstElement),
                        tree->LeafForElement(lastElement),
                        out_upperBound);
}

bool
WebGLElementArrayCache::Validate(GLenum type, uint32_t maxAllowed,
                                 size_t firstElement, size_t countElements,
                                 uint32_t* out_upperBound)
{
  if (type == LOCAL_GL_UNSIGNED_BYTE)
    return Validate<uint8_t>(maxAllowed, firstElement, countElements, out_upperBound);
  if (type == LOCAL_GL_UNSIGNED_SHORT)
    return Validate<uint16_t>(maxAllowed, firstElement, countElements, out_upperBound);
  if (type == LOCAL_GL_UNSIGNED_INT)
    return Validate<uint32_t>(maxAllowed, firstElement, countElements, out_upperBound);

  MOZ_ASSERT(false, "Invalid type.");
  return false;
}

size_t
WebGLElementArrayCache::SizeOfIncludingThis(mozilla::MallocSizeOf aMallocSizeOf) const
{
  size_t uint8TreeSize  = mUint8Tree  ? mUint8Tree->SizeOfIncludingThis(aMallocSizeOf) : 0;
  size_t uint16TreeSize = mUint16Tree ? mUint16Tree->SizeOfIncludingThis(aMallocSizeOf) : 0;
  size_t uint32TreeSize = mUint32Tree ? mUint32Tree->SizeOfIncludingThis(aMallocSizeOf) : 0;
  return aMallocSizeOf(this) +
          mBytes.SizeOfExcludingThis(aMallocSizeOf) +
          uint8TreeSize +
          uint16TreeSize +
          uint32TreeSize;
}

bool
WebGLElementArrayCache::BeenUsedWithMultipleTypes() const
{
  // C++ Standard ($4.7)
  // "If the source type is bool, the value false is converted to zero and
  //  the value true is converted to one."
  const int num_types_used = (mUint8Tree  != nullptr) +
                             (mUint16Tree != nullptr) +
                             (mUint32Tree != nullptr);
  return num_types_used > 1;
}

} // end namespace mozilla