DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (b6057e17f856)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifdef FREEBL_NO_DEPEND
#include "stubs.h"
#endif

#include "prinit.h"
#include "prerr.h"
#include "secerr.h"

#include "prtypes.h"
#include "blapi.h"
#include "rijndael.h"

#include "cts.h"
#include "ctr.h"
#include "gcm.h"

#ifdef USE_HW_AES
#include "intel-aes.h"
#include "mpi.h"

static int has_intel_aes = 0;
static PRBool use_hw_aes = PR_FALSE;

#ifdef INTEL_GCM
#include "intel-gcm.h"
static int has_intel_avx = 0;
static int has_intel_clmul = 0;
static PRBool use_hw_gcm = PR_FALSE;
#endif
#endif  /* USE_HW_AES */

/*
 * There are currently five ways to build this code, varying in performance
 * and code size.
 *
 * RIJNDAEL_INCLUDE_TABLES         Include all tables from rijndael32.tab
 * RIJNDAEL_GENERATE_TABLES        Generate tables on first 
 *                                 encryption/decryption, then store them;
 *                                 use the function gfm
 * RIJNDAEL_GENERATE_TABLES_MACRO  Same as above, but use macros to do
 *                                 the generation
 * RIJNDAEL_GENERATE_VALUES        Do not store tables, generate the table
 *                                 values "on-the-fly", using gfm
 * RIJNDAEL_GENERATE_VALUES_MACRO  Same as above, but use macros
 *
 * The default is RIJNDAEL_INCLUDE_TABLES.
 */

/*
 * When building RIJNDAEL_INCLUDE_TABLES, includes S**-1, Rcon, T[0..4], 
 *                                                 T**-1[0..4], IMXC[0..4]
 * When building anything else, includes S, S**-1, Rcon
 */
#include "rijndael32.tab"

#if defined(RIJNDAEL_INCLUDE_TABLES)
/*
 * RIJNDAEL_INCLUDE_TABLES
 */
#define T0(i)    _T0[i]
#define T1(i)    _T1[i]
#define T2(i)    _T2[i]
#define T3(i)    _T3[i]
#define TInv0(i) _TInv0[i]
#define TInv1(i) _TInv1[i]
#define TInv2(i) _TInv2[i]
#define TInv3(i) _TInv3[i]
#define IMXC0(b) _IMXC0[b]
#define IMXC1(b) _IMXC1[b]
#define IMXC2(b) _IMXC2[b]
#define IMXC3(b) _IMXC3[b]
/* The S-box can be recovered from the T-tables */
#ifdef IS_LITTLE_ENDIAN
#define SBOX(b)    ((PRUint8)_T3[b])
#else
#define SBOX(b)    ((PRUint8)_T1[b])
#endif
#define SINV(b) (_SInv[b])

#else /* not RIJNDAEL_INCLUDE_TABLES */

/*
 * Code for generating T-table values.
 */

#ifdef IS_LITTLE_ENDIAN
#define WORD4(b0, b1, b2, b3) \
    (((b3) << 24) | ((b2) << 16) | ((b1) << 8) | (b0))
#else
#define WORD4(b0, b1, b2, b3) \
    (((b0) << 24) | ((b1) << 16) | ((b2) << 8) | (b3))
#endif

/*
 * Define the S and S**-1 tables (both have been stored)
 */
#define SBOX(b)    (_S[b])
#define SINV(b) (_SInv[b])

/*
 * The function xtime, used for Galois field multiplication
 */
#define XTIME(a) \
    ((a & 0x80) ? ((a << 1) ^ 0x1b) : (a << 1))

/* Choose GFM method (macros or function) */
#if defined(RIJNDAEL_GENERATE_TABLES_MACRO) ||  \
    defined(RIJNDAEL_GENERATE_VALUES_MACRO)

/*
 * Galois field GF(2**8) multipliers, in macro form
 */
#define GFM01(a) \
    (a)                                 /* a * 01 = a, the identity */
#define GFM02(a) \
    (XTIME(a) & 0xff)                   /* a * 02 = xtime(a) */
#define GFM04(a) \
    (GFM02(GFM02(a)))                   /* a * 04 = xtime**2(a) */
#define GFM08(a) \
    (GFM02(GFM04(a)))                   /* a * 08 = xtime**3(a) */
#define GFM03(a) \
    (GFM01(a) ^ GFM02(a))               /* a * 03 = a * (01 + 02) */
#define GFM09(a) \
    (GFM01(a) ^ GFM08(a))               /* a * 09 = a * (01 + 08) */
#define GFM0B(a) \
    (GFM01(a) ^ GFM02(a) ^ GFM08(a))    /* a * 0B = a * (01 + 02 + 08) */
#define GFM0D(a) \
    (GFM01(a) ^ GFM04(a) ^ GFM08(a))    /* a * 0D = a * (01 + 04 + 08) */
#define GFM0E(a) \
    (GFM02(a) ^ GFM04(a) ^ GFM08(a))    /* a * 0E = a * (02 + 04 + 08) */

#else  /* RIJNDAEL_GENERATE_TABLES or RIJNDAEL_GENERATE_VALUES */

/* GF_MULTIPLY
 *
 * multiply two bytes represented in GF(2**8), mod (x**4 + 1)
 */
PRUint8 gfm(PRUint8 a, PRUint8 b)
{
    PRUint8 res = 0;
    while (b > 0) {
	res = (b & 0x01) ? res ^ a : res;
	a = XTIME(a);
	b >>= 1;
    }
    return res;
}

#define GFM01(a) \
    (a)                                 /* a * 01 = a, the identity */
#define GFM02(a) \
    (XTIME(a) & 0xff)                   /* a * 02 = xtime(a) */
#define GFM03(a) \
    (gfm(a, 0x03))                      /* a * 03 */
#define GFM09(a) \
    (gfm(a, 0x09))                      /* a * 09 */
#define GFM0B(a) \
    (gfm(a, 0x0B))                      /* a * 0B */
#define GFM0D(a) \
    (gfm(a, 0x0D))                      /* a * 0D */
#define GFM0E(a) \
    (gfm(a, 0x0E))                      /* a * 0E */

#endif /* choosing GFM function */

/*
 * The T-tables
 */
#define G_T0(i) \
    ( WORD4( GFM02(SBOX(i)), GFM01(SBOX(i)), GFM01(SBOX(i)), GFM03(SBOX(i)) ) )
#define G_T1(i) \
    ( WORD4( GFM03(SBOX(i)), GFM02(SBOX(i)), GFM01(SBOX(i)), GFM01(SBOX(i)) ) )
#define G_T2(i) \
    ( WORD4( GFM01(SBOX(i)), GFM03(SBOX(i)), GFM02(SBOX(i)), GFM01(SBOX(i)) ) )
#define G_T3(i) \
    ( WORD4( GFM01(SBOX(i)), GFM01(SBOX(i)), GFM03(SBOX(i)), GFM02(SBOX(i)) ) )

/*
 * The inverse T-tables
 */
#define G_TInv0(i) \
    ( WORD4( GFM0E(SINV(i)), GFM09(SINV(i)), GFM0D(SINV(i)), GFM0B(SINV(i)) ) )
#define G_TInv1(i) \
    ( WORD4( GFM0B(SINV(i)), GFM0E(SINV(i)), GFM09(SINV(i)), GFM0D(SINV(i)) ) )
#define G_TInv2(i) \
    ( WORD4( GFM0D(SINV(i)), GFM0B(SINV(i)), GFM0E(SINV(i)), GFM09(SINV(i)) ) )
#define G_TInv3(i) \
    ( WORD4( GFM09(SINV(i)), GFM0D(SINV(i)), GFM0B(SINV(i)), GFM0E(SINV(i)) ) )

/*
 * The inverse mix column tables
 */
#define G_IMXC0(i) \
    ( WORD4( GFM0E(i), GFM09(i), GFM0D(i), GFM0B(i) ) )
#define G_IMXC1(i) \
    ( WORD4( GFM0B(i), GFM0E(i), GFM09(i), GFM0D(i) ) )
#define G_IMXC2(i) \
    ( WORD4( GFM0D(i), GFM0B(i), GFM0E(i), GFM09(i) ) )
#define G_IMXC3(i) \
    ( WORD4( GFM09(i), GFM0D(i), GFM0B(i), GFM0E(i) ) )

/* Now choose the T-table indexing method */
#if defined(RIJNDAEL_GENERATE_VALUES)
/* generate values for the tables with a function*/
static PRUint32 gen_TInvXi(PRUint8 tx, PRUint8 i)
{
    PRUint8 si01, si02, si03, si04, si08, si09, si0B, si0D, si0E;
    si01 = SINV(i);
    si02 = XTIME(si01);
    si04 = XTIME(si02);
    si08 = XTIME(si04);
    si03 = si02 ^ si01;
    si09 = si08 ^ si01;
    si0B = si08 ^ si03;
    si0D = si09 ^ si04;
    si0E = si08 ^ si04 ^ si02;
    switch (tx) {
    case 0:
	return WORD4(si0E, si09, si0D, si0B);
    case 1:
	return WORD4(si0B, si0E, si09, si0D);
    case 2:
	return WORD4(si0D, si0B, si0E, si09);
    case 3:
	return WORD4(si09, si0D, si0B, si0E);
    }
    return -1;
}
#define T0(i)    G_T0(i)
#define T1(i)    G_T1(i)
#define T2(i)    G_T2(i)
#define T3(i)    G_T3(i)
#define TInv0(i) gen_TInvXi(0, i)
#define TInv1(i) gen_TInvXi(1, i)
#define TInv2(i) gen_TInvXi(2, i)
#define TInv3(i) gen_TInvXi(3, i)
#define IMXC0(b) G_IMXC0(b)
#define IMXC1(b) G_IMXC1(b)
#define IMXC2(b) G_IMXC2(b)
#define IMXC3(b) G_IMXC3(b)
#elif defined(RIJNDAEL_GENERATE_VALUES_MACRO)
/* generate values for the tables with macros */
#define T0(i)    G_T0(i)
#define T1(i)    G_T1(i)
#define T2(i)    G_T2(i)
#define T3(i)    G_T3(i)
#define TInv0(i) G_TInv0(i)
#define TInv1(i) G_TInv1(i)
#define TInv2(i) G_TInv2(i)
#define TInv3(i) G_TInv3(i)
#define IMXC0(b) G_IMXC0(b)
#define IMXC1(b) G_IMXC1(b)
#define IMXC2(b) G_IMXC2(b)
#define IMXC3(b) G_IMXC3(b)
#else  /* RIJNDAEL_GENERATE_TABLES or RIJNDAEL_GENERATE_TABLES_MACRO */
/* Generate T and T**-1 table values and store, then index */
/* The inverse mix column tables are still generated */
#define T0(i)    rijndaelTables->T0[i]
#define T1(i)    rijndaelTables->T1[i]
#define T2(i)    rijndaelTables->T2[i]
#define T3(i)    rijndaelTables->T3[i]
#define TInv0(i) rijndaelTables->TInv0[i]
#define TInv1(i) rijndaelTables->TInv1[i]
#define TInv2(i) rijndaelTables->TInv2[i]
#define TInv3(i) rijndaelTables->TInv3[i]
#define IMXC0(b) G_IMXC0(b)
#define IMXC1(b) G_IMXC1(b)
#define IMXC2(b) G_IMXC2(b)
#define IMXC3(b) G_IMXC3(b)
#endif /* choose T-table indexing method */

#endif /* not RIJNDAEL_INCLUDE_TABLES */

#if defined(RIJNDAEL_GENERATE_TABLES) ||  \
    defined(RIJNDAEL_GENERATE_TABLES_MACRO)

/* Code to generate and store the tables */

struct rijndael_tables_str {
    PRUint32 T0[256];
    PRUint32 T1[256];
    PRUint32 T2[256];
    PRUint32 T3[256];
    PRUint32 TInv0[256];
    PRUint32 TInv1[256];
    PRUint32 TInv2[256];
    PRUint32 TInv3[256];
};

static struct rijndael_tables_str *rijndaelTables = NULL;
static PRCallOnceType coRTInit = { 0, 0, 0 };
static PRStatus 
init_rijndael_tables(void)
{
    PRUint32 i;
    PRUint8 si01, si02, si03, si04, si08, si09, si0B, si0D, si0E;
    struct rijndael_tables_str *rts;
    rts = (struct rijndael_tables_str *)
                   PORT_Alloc(sizeof(struct rijndael_tables_str));
    if (!rts) return PR_FAILURE;
    for (i=0; i<256; i++) {
	/* The forward values */
	si01 = SBOX(i);
	si02 = XTIME(si01);
	si03 = si02 ^ si01;
	rts->T0[i] = WORD4(si02, si01, si01, si03);
	rts->T1[i] = WORD4(si03, si02, si01, si01);
	rts->T2[i] = WORD4(si01, si03, si02, si01);
	rts->T3[i] = WORD4(si01, si01, si03, si02);
	/* The inverse values */
	si01 = SINV(i);
	si02 = XTIME(si01);
	si04 = XTIME(si02);
	si08 = XTIME(si04);
	si03 = si02 ^ si01;
	si09 = si08 ^ si01;
	si0B = si08 ^ si03;
	si0D = si09 ^ si04;
	si0E = si08 ^ si04 ^ si02;
	rts->TInv0[i] = WORD4(si0E, si09, si0D, si0B);
	rts->TInv1[i] = WORD4(si0B, si0E, si09, si0D);
	rts->TInv2[i] = WORD4(si0D, si0B, si0E, si09);
	rts->TInv3[i] = WORD4(si09, si0D, si0B, si0E);
    }
    /* wait until all the values are in to set */
    rijndaelTables = rts;
    return PR_SUCCESS;
}

#endif /* code to generate tables */

/**************************************************************************
 *
 * Stuff related to the Rijndael key schedule
 *
 *************************************************************************/

#define SUBBYTE(w) \
    ((SBOX((w >> 24) & 0xff) << 24) | \
     (SBOX((w >> 16) & 0xff) << 16) | \
     (SBOX((w >>  8) & 0xff) <<  8) | \
     (SBOX((w      ) & 0xff)         ))

#ifdef IS_LITTLE_ENDIAN
#define ROTBYTE(b) \
    ((b >> 8) | (b << 24))
#else
#define ROTBYTE(b) \
    ((b << 8) | (b >> 24))
#endif

/* rijndael_key_expansion7
 *
 * Generate the expanded key from the key input by the user.
 * XXX
 * Nk == 7 (224 key bits) is a weird case.  Since Nk > 6, an added SubByte
 * transformation is done periodically.  The period is every 4 bytes, and
 * since 7%4 != 0 this happens at different times for each key word (unlike
 * Nk == 8 where it happens twice in every key word, in the same positions).
 * For now, I'm implementing this case "dumbly", w/o any unrolling.
 */
static SECStatus
rijndael_key_expansion7(AESContext *cx, const unsigned char *key, unsigned int Nk)
{
    unsigned int i;
    PRUint32 *W;
    PRUint32 *pW;
    PRUint32 tmp;
    W = cx->expandedKey;
    /* 1.  the first Nk words contain the cipher key */
    memcpy(W, key, Nk * 4);
    i = Nk;
    /* 2.  loop until full expanded key is obtained */
    pW = W + i - 1;
    for (; i < cx->Nb * (cx->Nr + 1); ++i) {
	tmp = *pW++;
	if (i % Nk == 0)
	    tmp = SUBBYTE(ROTBYTE(tmp)) ^ Rcon[i / Nk - 1];
	else if (i % Nk == 4)
	    tmp = SUBBYTE(tmp);
	*pW = W[i - Nk] ^ tmp;
    }
    return SECSuccess;
}

/* rijndael_key_expansion
 *
 * Generate the expanded key from the key input by the user.
 */
static SECStatus
rijndael_key_expansion(AESContext *cx, const unsigned char *key, unsigned int Nk)
{
    unsigned int i;
    PRUint32 *W;
    PRUint32 *pW;
    PRUint32 tmp;
    unsigned int round_key_words = cx->Nb * (cx->Nr + 1);
    if (Nk == 7)
	return rijndael_key_expansion7(cx, key, Nk);
    W = cx->expandedKey;
    /* The first Nk words contain the input cipher key */
    memcpy(W, key, Nk * 4);
    i = Nk;
    pW = W + i - 1;
    /* Loop over all sets of Nk words, except the last */
    while (i < round_key_words - Nk) {
	tmp = *pW++;
	tmp = SUBBYTE(ROTBYTE(tmp)) ^ Rcon[i / Nk - 1];
	*pW = W[i++ - Nk] ^ tmp;
	tmp = *pW++; *pW = W[i++ - Nk] ^ tmp;
	tmp = *pW++; *pW = W[i++ - Nk] ^ tmp;
	tmp = *pW++; *pW = W[i++ - Nk] ^ tmp;
	if (Nk == 4)
	    continue;
	switch (Nk) {
	case 8: tmp = *pW++; tmp = SUBBYTE(tmp); *pW = W[i++ - Nk] ^ tmp;
	case 7: tmp = *pW++; *pW = W[i++ - Nk] ^ tmp;
	case 6: tmp = *pW++; *pW = W[i++ - Nk] ^ tmp;
	case 5: tmp = *pW++; *pW = W[i++ - Nk] ^ tmp;
	}
    }
    /* Generate the last word */
    tmp = *pW++;
    tmp = SUBBYTE(ROTBYTE(tmp)) ^ Rcon[i / Nk - 1];
    *pW = W[i++ - Nk] ^ tmp;
    /* There may be overflow here, if Nk % (Nb * (Nr + 1)) > 0.  However,
     * since the above loop generated all but the last Nk key words, there
     * is no more need for the SubByte transformation.
     */
    if (Nk < 8) {
	for (; i < round_key_words; ++i) {
	    tmp = *pW++; 
	    *pW = W[i - Nk] ^ tmp;
	}
    } else {
	/* except in the case when Nk == 8.  Then one more SubByte may have
	 * to be performed, at i % Nk == 4.
	 */
	for (; i < round_key_words; ++i) {
	    tmp = *pW++;
	    if (i % Nk == 4)
		tmp = SUBBYTE(tmp);
	    *pW = W[i - Nk] ^ tmp;
	}
    }
    return SECSuccess;
}

/* rijndael_invkey_expansion
 *
 * Generate the expanded key for the inverse cipher from the key input by 
 * the user.
 */
static SECStatus
rijndael_invkey_expansion(AESContext *cx, const unsigned char *key, unsigned int Nk)
{
    unsigned int r;
    PRUint32 *roundkeyw;
    PRUint8 *b;
    int Nb = cx->Nb;
    /* begins like usual key expansion ... */
    if (rijndael_key_expansion(cx, key, Nk) != SECSuccess)
	return SECFailure;
    /* ... but has the additional step of InvMixColumn,
     * excepting the first and last round keys.
     */
    roundkeyw = cx->expandedKey + cx->Nb;
    for (r=1; r<cx->Nr; ++r) {
	/* each key word, roundkeyw, represents a column in the key
	 * matrix.  Each column is multiplied by the InvMixColumn matrix.
	 *   [ 0E 0B 0D 09 ]   [ b0 ]
	 *   [ 09 0E 0B 0D ] * [ b1 ]
	 *   [ 0D 09 0E 0B ]   [ b2 ]
	 *   [ 0B 0D 09 0E ]   [ b3 ]
	 */
	b = (PRUint8 *)roundkeyw;
	*roundkeyw++ = IMXC0(b[0]) ^ IMXC1(b[1]) ^ IMXC2(b[2]) ^ IMXC3(b[3]);
	b = (PRUint8 *)roundkeyw;
	*roundkeyw++ = IMXC0(b[0]) ^ IMXC1(b[1]) ^ IMXC2(b[2]) ^ IMXC3(b[3]);
	b = (PRUint8 *)roundkeyw;
	*roundkeyw++ = IMXC0(b[0]) ^ IMXC1(b[1]) ^ IMXC2(b[2]) ^ IMXC3(b[3]);
	b = (PRUint8 *)roundkeyw;
	*roundkeyw++ = IMXC0(b[0]) ^ IMXC1(b[1]) ^ IMXC2(b[2]) ^ IMXC3(b[3]);
	if (Nb <= 4)
	    continue;
	switch (Nb) {
	case 8: b = (PRUint8 *)roundkeyw;
	        *roundkeyw++ = IMXC0(b[0]) ^ IMXC1(b[1]) ^ 
	                       IMXC2(b[2]) ^ IMXC3(b[3]);
	case 7: b = (PRUint8 *)roundkeyw;
	        *roundkeyw++ = IMXC0(b[0]) ^ IMXC1(b[1]) ^ 
	                       IMXC2(b[2]) ^ IMXC3(b[3]);
	case 6: b = (PRUint8 *)roundkeyw;
	        *roundkeyw++ = IMXC0(b[0]) ^ IMXC1(b[1]) ^ 
	                       IMXC2(b[2]) ^ IMXC3(b[3]);
	case 5: b = (PRUint8 *)roundkeyw;
	        *roundkeyw++ = IMXC0(b[0]) ^ IMXC1(b[1]) ^ 
	                       IMXC2(b[2]) ^ IMXC3(b[3]);
	}
    }
    return SECSuccess;
}
/**************************************************************************
 *
 * Stuff related to Rijndael encryption/decryption, optimized for
 * a 128-bit blocksize.
 *
 *************************************************************************/

#ifdef IS_LITTLE_ENDIAN
#define BYTE0WORD(w) ((w) & 0x000000ff)
#define BYTE1WORD(w) ((w) & 0x0000ff00)
#define BYTE2WORD(w) ((w) & 0x00ff0000)
#define BYTE3WORD(w) ((w) & 0xff000000)
#else
#define BYTE0WORD(w) ((w) & 0xff000000)
#define BYTE1WORD(w) ((w) & 0x00ff0000)
#define BYTE2WORD(w) ((w) & 0x0000ff00)
#define BYTE3WORD(w) ((w) & 0x000000ff)
#endif

typedef union {
    PRUint32 w[4];
    PRUint8  b[16];
} rijndael_state;

#define COLUMN_0(state) state.w[0]
#define COLUMN_1(state) state.w[1]
#define COLUMN_2(state) state.w[2]
#define COLUMN_3(state) state.w[3]

#define STATE_BYTE(i) state.b[i]

static SECStatus 
rijndael_encryptBlock128(AESContext *cx, 
                         unsigned char *output,
                         const unsigned char *input)
{
    unsigned int r;
    PRUint32 *roundkeyw;
    rijndael_state state;
    PRUint32 C0, C1, C2, C3;
#if defined(NSS_X86_OR_X64)
#define pIn input
#define pOut output
#else
    unsigned char *pIn, *pOut;
    PRUint32 inBuf[4], outBuf[4];

    if ((ptrdiff_t)input & 0x3) {
	memcpy(inBuf, input, sizeof inBuf);
	pIn = (unsigned char *)inBuf;
    } else {
	pIn = (unsigned char *)input;
    }
    if ((ptrdiff_t)output & 0x3) {
	pOut = (unsigned char *)outBuf;
    } else {
	pOut = (unsigned char *)output;
    }
#endif
    roundkeyw = cx->expandedKey;
    /* Step 1: Add Round Key 0 to initial state */
    COLUMN_0(state) = *((PRUint32 *)(pIn     )) ^ *roundkeyw++;
    COLUMN_1(state) = *((PRUint32 *)(pIn + 4 )) ^ *roundkeyw++;
    COLUMN_2(state) = *((PRUint32 *)(pIn + 8 )) ^ *roundkeyw++;
    COLUMN_3(state) = *((PRUint32 *)(pIn + 12)) ^ *roundkeyw++;
    /* Step 2: Loop over rounds [1..NR-1] */
    for (r=1; r<cx->Nr; ++r) {
        /* Do ShiftRow, ByteSub, and MixColumn all at once */
	C0 = T0(STATE_BYTE(0))  ^
	     T1(STATE_BYTE(5))  ^
	     T2(STATE_BYTE(10)) ^
	     T3(STATE_BYTE(15));
	C1 = T0(STATE_BYTE(4))  ^
	     T1(STATE_BYTE(9))  ^
	     T2(STATE_BYTE(14)) ^
	     T3(STATE_BYTE(3));
	C2 = T0(STATE_BYTE(8))  ^
	     T1(STATE_BYTE(13)) ^
	     T2(STATE_BYTE(2))  ^
	     T3(STATE_BYTE(7));
	C3 = T0(STATE_BYTE(12)) ^
	     T1(STATE_BYTE(1))  ^
	     T2(STATE_BYTE(6))  ^
	     T3(STATE_BYTE(11));
	/* Round key addition */
	COLUMN_0(state) = C0 ^ *roundkeyw++;
	COLUMN_1(state) = C1 ^ *roundkeyw++;
	COLUMN_2(state) = C2 ^ *roundkeyw++;
	COLUMN_3(state) = C3 ^ *roundkeyw++;
    }
    /* Step 3: Do the last round */
    /* Final round does not employ MixColumn */
    C0 = ((BYTE0WORD(T2(STATE_BYTE(0))))   |
          (BYTE1WORD(T3(STATE_BYTE(5))))   |
          (BYTE2WORD(T0(STATE_BYTE(10))))  |
          (BYTE3WORD(T1(STATE_BYTE(15)))))  ^
          *roundkeyw++;
    C1 = ((BYTE0WORD(T2(STATE_BYTE(4))))   |
          (BYTE1WORD(T3(STATE_BYTE(9))))   |
          (BYTE2WORD(T0(STATE_BYTE(14))))  |
          (BYTE3WORD(T1(STATE_BYTE(3)))))   ^
          *roundkeyw++;
    C2 = ((BYTE0WORD(T2(STATE_BYTE(8))))   |
          (BYTE1WORD(T3(STATE_BYTE(13))))  |
          (BYTE2WORD(T0(STATE_BYTE(2))))   |
          (BYTE3WORD(T1(STATE_BYTE(7)))))   ^
          *roundkeyw++;
    C3 = ((BYTE0WORD(T2(STATE_BYTE(12))))  |
          (BYTE1WORD(T3(STATE_BYTE(1))))   |
          (BYTE2WORD(T0(STATE_BYTE(6))))   |
          (BYTE3WORD(T1(STATE_BYTE(11)))))  ^
          *roundkeyw++;
    *((PRUint32 *) pOut     )  = C0;
    *((PRUint32 *)(pOut + 4))  = C1;
    *((PRUint32 *)(pOut + 8))  = C2;
    *((PRUint32 *)(pOut + 12)) = C3;
#if defined(NSS_X86_OR_X64)
#undef pIn
#undef pOut
#else
    if ((ptrdiff_t)output & 0x3) {
	memcpy(output, outBuf, sizeof outBuf);
    }
#endif
    return SECSuccess;
}

static SECStatus 
rijndael_decryptBlock128(AESContext *cx, 
                         unsigned char *output,
                         const unsigned char *input)
{
    int r;
    PRUint32 *roundkeyw;
    rijndael_state state;
    PRUint32 C0, C1, C2, C3;
#if defined(NSS_X86_OR_X64)
#define pIn input
#define pOut output
#else
    unsigned char *pIn, *pOut;
    PRUint32 inBuf[4], outBuf[4];

    if ((ptrdiff_t)input & 0x3) {
	memcpy(inBuf, input, sizeof inBuf);
	pIn = (unsigned char *)inBuf;
    } else {
	pIn = (unsigned char *)input;
    }
    if ((ptrdiff_t)output & 0x3) {
	pOut = (unsigned char *)outBuf;
    } else {
	pOut = (unsigned char *)output;
    }
#endif
    roundkeyw = cx->expandedKey + cx->Nb * cx->Nr + 3;
    /* reverse the final key addition */
    COLUMN_3(state) = *((PRUint32 *)(pIn + 12)) ^ *roundkeyw--;
    COLUMN_2(state) = *((PRUint32 *)(pIn +  8)) ^ *roundkeyw--;
    COLUMN_1(state) = *((PRUint32 *)(pIn +  4)) ^ *roundkeyw--;
    COLUMN_0(state) = *((PRUint32 *)(pIn     )) ^ *roundkeyw--;
    /* Loop over rounds in reverse [NR..1] */
    for (r=cx->Nr; r>1; --r) {
	/* Invert the (InvByteSub*InvMixColumn)(InvShiftRow(state)) */
	C0 = TInv0(STATE_BYTE(0))  ^
	     TInv1(STATE_BYTE(13)) ^
	     TInv2(STATE_BYTE(10)) ^
	     TInv3(STATE_BYTE(7));
	C1 = TInv0(STATE_BYTE(4))  ^
	     TInv1(STATE_BYTE(1))  ^
	     TInv2(STATE_BYTE(14)) ^
	     TInv3(STATE_BYTE(11));
	C2 = TInv0(STATE_BYTE(8))  ^
	     TInv1(STATE_BYTE(5))  ^
	     TInv2(STATE_BYTE(2))  ^
	     TInv3(STATE_BYTE(15));
	C3 = TInv0(STATE_BYTE(12)) ^
	     TInv1(STATE_BYTE(9))  ^
	     TInv2(STATE_BYTE(6))  ^
	     TInv3(STATE_BYTE(3));
	/* Invert the key addition step */
	COLUMN_3(state) = C3 ^ *roundkeyw--;
	COLUMN_2(state) = C2 ^ *roundkeyw--;
	COLUMN_1(state) = C1 ^ *roundkeyw--;
	COLUMN_0(state) = C0 ^ *roundkeyw--;
    }
    /* inverse sub */
    pOut[ 0] = SINV(STATE_BYTE( 0));
    pOut[ 1] = SINV(STATE_BYTE(13));
    pOut[ 2] = SINV(STATE_BYTE(10));
    pOut[ 3] = SINV(STATE_BYTE( 7));
    pOut[ 4] = SINV(STATE_BYTE( 4));
    pOut[ 5] = SINV(STATE_BYTE( 1));
    pOut[ 6] = SINV(STATE_BYTE(14));
    pOut[ 7] = SINV(STATE_BYTE(11));
    pOut[ 8] = SINV(STATE_BYTE( 8));
    pOut[ 9] = SINV(STATE_BYTE( 5));
    pOut[10] = SINV(STATE_BYTE( 2));
    pOut[11] = SINV(STATE_BYTE(15));
    pOut[12] = SINV(STATE_BYTE(12));
    pOut[13] = SINV(STATE_BYTE( 9));
    pOut[14] = SINV(STATE_BYTE( 6));
    pOut[15] = SINV(STATE_BYTE( 3));
    /* final key addition */
    *((PRUint32 *)(pOut + 12)) ^= *roundkeyw--;
    *((PRUint32 *)(pOut +  8)) ^= *roundkeyw--;
    *((PRUint32 *)(pOut +  4)) ^= *roundkeyw--;
    *((PRUint32 *) pOut      ) ^= *roundkeyw--;
#if defined(NSS_X86_OR_X64)
#undef pIn
#undef pOut
#else
    if ((ptrdiff_t)output & 0x3) {
	memcpy(output, outBuf, sizeof outBuf);
    }
#endif
    return SECSuccess;
}

/**************************************************************************
 *
 * Stuff related to general Rijndael encryption/decryption, for blocksizes
 * greater than 128 bits.
 *
 * XXX This code is currently untested!  So far, AES specs have only been
 *     released for 128 bit blocksizes.  This will be tested, but for now
 *     only the code above has been tested using known values.
 *
 *************************************************************************/

#define COLUMN(array, j) *((PRUint32 *)(array + j))

SECStatus 
rijndael_encryptBlock(AESContext *cx, 
                      unsigned char *output,
                      const unsigned char *input)
{
    return SECFailure;
#ifdef rijndael_large_blocks_fixed
    unsigned int j, r, Nb;
    unsigned int c2=0, c3=0;
    PRUint32 *roundkeyw;
    PRUint8 clone[RIJNDAEL_MAX_STATE_SIZE];
    Nb = cx->Nb;
    roundkeyw = cx->expandedKey;
    /* Step 1: Add Round Key 0 to initial state */
    for (j=0; j<4*Nb; j+=4) {
	COLUMN(clone, j) = COLUMN(input, j) ^ *roundkeyw++;
    }
    /* Step 2: Loop over rounds [1..NR-1] */
    for (r=1; r<cx->Nr; ++r) {
	for (j=0; j<Nb; ++j) {
	    COLUMN(output, j) = T0(STATE_BYTE(4*  j          )) ^
	                        T1(STATE_BYTE(4*((j+ 1)%Nb)+1)) ^
	                        T2(STATE_BYTE(4*((j+c2)%Nb)+2)) ^
	                        T3(STATE_BYTE(4*((j+c3)%Nb)+3));
	}
	for (j=0; j<4*Nb; j+=4) {
	    COLUMN(clone, j) = COLUMN(output, j) ^ *roundkeyw++;
	}
    }
    /* Step 3: Do the last round */
    /* Final round does not employ MixColumn */
    for (j=0; j<Nb; ++j) {
	COLUMN(output, j) = ((BYTE0WORD(T2(STATE_BYTE(4* j         ))))  |
                             (BYTE1WORD(T3(STATE_BYTE(4*(j+ 1)%Nb)+1)))  |
                             (BYTE2WORD(T0(STATE_BYTE(4*(j+c2)%Nb)+2)))  |
                             (BYTE3WORD(T1(STATE_BYTE(4*(j+c3)%Nb)+3)))) ^
	                     *roundkeyw++;
    }
    return SECSuccess;
#endif
}

SECStatus 
rijndael_decryptBlock(AESContext *cx, 
                      unsigned char *output,
                      const unsigned char *input)
{
    return SECFailure;
#ifdef rijndael_large_blocks_fixed
    int j, r, Nb;
    int c2=0, c3=0;
    PRUint32 *roundkeyw;
    PRUint8 clone[RIJNDAEL_MAX_STATE_SIZE];
    Nb = cx->Nb;
    roundkeyw = cx->expandedKey + cx->Nb * cx->Nr + 3;
    /* reverse key addition */
    for (j=4*Nb; j>=0; j-=4) {
	COLUMN(clone, j) = COLUMN(input, j) ^ *roundkeyw--;
    }
    /* Loop over rounds in reverse [NR..1] */
    for (r=cx->Nr; r>1; --r) {
	/* Invert the (InvByteSub*InvMixColumn)(InvShiftRow(state)) */
	for (j=0; j<Nb; ++j) {
	    COLUMN(output, 4*j) = TInv0(STATE_BYTE(4* j            )) ^
	                          TInv1(STATE_BYTE(4*(j+Nb- 1)%Nb)+1) ^
	                          TInv2(STATE_BYTE(4*(j+Nb-c2)%Nb)+2) ^
	                          TInv3(STATE_BYTE(4*(j+Nb-c3)%Nb)+3);
	}
	/* Invert the key addition step */
	for (j=4*Nb; j>=0; j-=4) {
	    COLUMN(clone, j) = COLUMN(output, j) ^ *roundkeyw--;
	}
    }
    /* inverse sub */
    for (j=0; j<4*Nb; ++j) {
	output[j] = SINV(clone[j]);
    }
    /* final key addition */
    for (j=4*Nb; j>=0; j-=4) {
	COLUMN(output, j) ^= *roundkeyw--;
    }
    return SECSuccess;
#endif
}

/**************************************************************************
 *
 *  Rijndael modes of operation (ECB and CBC)
 *
 *************************************************************************/

static SECStatus 
rijndael_encryptECB(AESContext *cx, unsigned char *output,
                    unsigned int *outputLen, unsigned int maxOutputLen,
                    const unsigned char *input, unsigned int inputLen, 
                    unsigned int blocksize)
{
    SECStatus rv;
    AESBlockFunc *encryptor;

    encryptor = (blocksize == RIJNDAEL_MIN_BLOCKSIZE) 
				  ? &rijndael_encryptBlock128 
				  : &rijndael_encryptBlock;
    while (inputLen > 0) {
        rv = (*encryptor)(cx, output, input);
	if (rv != SECSuccess)
	    return rv;
	output += blocksize;
	input += blocksize;
	inputLen -= blocksize;
    }
    return SECSuccess;
}

static SECStatus 
rijndael_encryptCBC(AESContext *cx, unsigned char *output,
                    unsigned int *outputLen, unsigned int maxOutputLen,
                    const unsigned char *input, unsigned int inputLen, 
                    unsigned int blocksize)
{
    unsigned int j;
    SECStatus rv;
    AESBlockFunc *encryptor;
    unsigned char *lastblock;
    unsigned char inblock[RIJNDAEL_MAX_STATE_SIZE * 8];

    if (!inputLen)
	return SECSuccess;
    lastblock = cx->iv;
    encryptor = (blocksize == RIJNDAEL_MIN_BLOCKSIZE) 
				  ? &rijndael_encryptBlock128 
				  : &rijndael_encryptBlock;
    while (inputLen > 0) {
	/* XOR with the last block (IV if first block) */
	for (j=0; j<blocksize; ++j)
	    inblock[j] = input[j] ^ lastblock[j];
	/* encrypt */
        rv = (*encryptor)(cx, output, inblock);
	if (rv != SECSuccess)
	    return rv;
	/* move to the next block */
	lastblock = output;
	output += blocksize;
	input += blocksize;
	inputLen -= blocksize;
    }
    memcpy(cx->iv, lastblock, blocksize);
    return SECSuccess;
}

static SECStatus 
rijndael_decryptECB(AESContext *cx, unsigned char *output,
                    unsigned int *outputLen, unsigned int maxOutputLen,
                    const unsigned char *input, unsigned int inputLen, 
                    unsigned int blocksize)
{
    SECStatus rv;
    AESBlockFunc *decryptor;

    decryptor = (blocksize == RIJNDAEL_MIN_BLOCKSIZE) 
				  ? &rijndael_decryptBlock128 
				  : &rijndael_decryptBlock;
    while (inputLen > 0) {
        rv = (*decryptor)(cx, output, input);
	if (rv != SECSuccess)
	    return rv;
	output += blocksize;
	input += blocksize;
	inputLen -= blocksize;
    }
    return SECSuccess;
}

static SECStatus 
rijndael_decryptCBC(AESContext *cx, unsigned char *output,
                    unsigned int *outputLen, unsigned int maxOutputLen,
                    const unsigned char *input, unsigned int inputLen, 
                    unsigned int blocksize)
{
    SECStatus rv;
    AESBlockFunc *decryptor;
    const unsigned char *in;
    unsigned char *out;
    unsigned int j;
    unsigned char newIV[RIJNDAEL_MAX_BLOCKSIZE];


    if (!inputLen) 
	return SECSuccess;
    PORT_Assert(output - input >= 0 || input - output >= (int)inputLen );
    decryptor = (blocksize == RIJNDAEL_MIN_BLOCKSIZE) 
                                  ? &rijndael_decryptBlock128 
				  : &rijndael_decryptBlock;
    in  = input  + (inputLen - blocksize);
    memcpy(newIV, in, blocksize);
    out = output + (inputLen - blocksize);
    while (inputLen > blocksize) {
        rv = (*decryptor)(cx, out, in);
	if (rv != SECSuccess)
	    return rv;
	for (j=0; j<blocksize; ++j)
	    out[j] ^= in[(int)(j - blocksize)];
	out -= blocksize;
	in -= blocksize;
	inputLen -= blocksize;
    }
    if (in == input) {
        rv = (*decryptor)(cx, out, in);
	if (rv != SECSuccess)
	    return rv;
	for (j=0; j<blocksize; ++j)
	    out[j] ^= cx->iv[j];
    }
    memcpy(cx->iv, newIV, blocksize);
    return SECSuccess;
}

/************************************************************************
 *
 * BLAPI Interface functions
 *
 * The following functions implement the encryption routines defined in
 * BLAPI for the AES cipher, Rijndael.
 *
 ***********************************************************************/

AESContext * AES_AllocateContext(void)
{
    return PORT_ZNew(AESContext);
}


#ifdef INTEL_GCM
/*
 * Adapted from the example code in "How to detect New Instruction support in
 * the 4th generation Intel Core processor family" by Max Locktyukhin.
 *
 * XGETBV:
 *   Reads an extended control register (XCR) specified by ECX into EDX:EAX.
 */
static PRBool
check_xcr0_ymm()
{
    PRUint32 xcr0;
#if defined(_MSC_VER)
#if defined(_M_IX86)
    __asm {
        mov ecx, 0
        xgetbv
        mov xcr0, eax
    }
#else
    xcr0 = (PRUint32)_xgetbv(0);  /* Requires VS2010 SP1 or later. */
#endif
#else
    __asm__ ("xgetbv" : "=a" (xcr0) : "c" (0) : "%edx");
#endif
    /* Check if xmm and ymm state are enabled in XCR0. */
    return (xcr0 & 6) == 6;
}
#endif

/*
** Initialize a new AES context suitable for AES encryption/decryption in
** the ECB or CBC mode.
** 	"mode" the mode of operation, which must be NSS_AES or NSS_AES_CBC
*/
static SECStatus   
aes_InitContext(AESContext *cx, const unsigned char *key, unsigned int keysize, 
	        const unsigned char *iv, int mode, unsigned int encrypt,
	        unsigned int blocksize)
{
    unsigned int Nk;
    /* According to Rijndael AES Proposal, section 12.1, block and key
     * lengths between 128 and 256 bits are supported, as long as the
     * length in bytes is divisible by 4.
     */
    if (key == NULL || 
        keysize < RIJNDAEL_MIN_BLOCKSIZE   || 
	keysize > RIJNDAEL_MAX_BLOCKSIZE   || 
	keysize % 4 != 0 ||
        blocksize < RIJNDAEL_MIN_BLOCKSIZE || 
	blocksize > RIJNDAEL_MAX_BLOCKSIZE || 
	blocksize % 4 != 0) {
	PORT_SetError(SEC_ERROR_INVALID_ARGS);
	return SECFailure;
    }
    if (mode != NSS_AES && mode != NSS_AES_CBC) {
	PORT_SetError(SEC_ERROR_INVALID_ARGS);
	return SECFailure;
    }
    if (mode == NSS_AES_CBC && iv == NULL) {
	PORT_SetError(SEC_ERROR_INVALID_ARGS);
	return SECFailure;
    }
    if (!cx) {
	PORT_SetError(SEC_ERROR_INVALID_ARGS);
    	return SECFailure;
    }
#ifdef USE_HW_AES
    if (has_intel_aes == 0) {
	unsigned long eax, ebx, ecx, edx;
	char *disable_hw_aes = getenv("NSS_DISABLE_HW_AES");

	if (disable_hw_aes == NULL) {
	    freebl_cpuid(1, &eax, &ebx, &ecx, &edx);
	    has_intel_aes = (ecx & (1 << 25)) != 0 ? 1 : -1;
#ifdef INTEL_GCM
	    has_intel_clmul = (ecx & (1 << 1)) != 0 ? 1 : -1;
	    if ((ecx & (1 << 27)) != 0 && (ecx & (1 << 28)) != 0 &&
		check_xcr0_ymm()) {
		has_intel_avx = 1;
	    } else {
		has_intel_avx = -1;
	    }
#endif
	} else {
	    has_intel_aes = -1;
#ifdef INTEL_GCM
	    has_intel_avx = -1;
	    has_intel_clmul = -1;
#endif
	}
    }
    use_hw_aes = (PRBool)
		(has_intel_aes > 0 && (keysize % 8) == 0 && blocksize == 16);
#ifdef INTEL_GCM
    use_hw_gcm = (PRBool)
		(use_hw_aes && has_intel_avx>0 && has_intel_clmul>0);
#endif
#endif  /* USE_HW_AES */
    /* Nb = (block size in bits) / 32 */
    cx->Nb = blocksize / 4;
    /* Nk = (key size in bits) / 32 */
    Nk = keysize / 4;
    /* Obtain number of rounds from "table" */
    cx->Nr = RIJNDAEL_NUM_ROUNDS(Nk, cx->Nb);
    /* copy in the iv, if neccessary */
    if (mode == NSS_AES_CBC) {
	memcpy(cx->iv, iv, blocksize);
#ifdef USE_HW_AES
	if (use_hw_aes) {
	    cx->worker = (freeblCipherFunc)
				intel_aes_cbc_worker(encrypt, keysize);
	} else
#endif
	{
	    cx->worker = (freeblCipherFunc) (encrypt
			  ? &rijndael_encryptCBC : &rijndael_decryptCBC);
	}
    } else {
#ifdef  USE_HW_AES
	if (use_hw_aes) {
	    cx->worker = (freeblCipherFunc) 
				intel_aes_ecb_worker(encrypt, keysize);
	} else
#endif
	{
	    cx->worker = (freeblCipherFunc) (encrypt
			  ? &rijndael_encryptECB : &rijndael_decryptECB);
	}
    }
    PORT_Assert((cx->Nb * (cx->Nr + 1)) <= RIJNDAEL_MAX_EXP_KEY_SIZE);
    if ((cx->Nb * (cx->Nr + 1)) > RIJNDAEL_MAX_EXP_KEY_SIZE) {
	PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
	goto cleanup;
    }
#ifdef USE_HW_AES
    if (use_hw_aes) {
	intel_aes_init(encrypt, keysize);
    } else
#endif
    {

#if defined(RIJNDAEL_GENERATE_TABLES) ||  \
	defined(RIJNDAEL_GENERATE_TABLES_MACRO)
	if (rijndaelTables == NULL) {
	    if (PR_CallOnce(&coRTInit, init_rijndael_tables)
	      != PR_SUCCESS) {
		return SecFailure;
	    }
	}
#endif
	/* Generate expanded key */
	if (encrypt) {
	    if (rijndael_key_expansion(cx, key, Nk) != SECSuccess)
		goto cleanup;
	} else {
	    if (rijndael_invkey_expansion(cx, key, Nk) != SECSuccess)
		goto cleanup;
	}
    }
    cx->worker_cx = cx;
    cx->destroy = NULL;
    cx->isBlock = PR_TRUE;
    return SECSuccess;
cleanup:
    return SECFailure;
}

SECStatus   
AES_InitContext(AESContext *cx, const unsigned char *key, unsigned int keysize, 
	        const unsigned char *iv, int mode, unsigned int encrypt,
	        unsigned int blocksize)
{
    int basemode = mode;
    PRBool baseencrypt = encrypt;
    SECStatus rv;

    switch (mode) {
    case NSS_AES_CTS:
	basemode = NSS_AES_CBC;
	break;
    case NSS_AES_GCM:
    case NSS_AES_CTR:
	basemode = NSS_AES;
	baseencrypt = PR_TRUE;
	break;
    }
    /* make sure enough is initializes so we can safely call Destroy */
    cx->worker_cx = NULL;
    cx->destroy = NULL;
    rv = aes_InitContext(cx, key, keysize, iv, basemode, 
					baseencrypt, blocksize);
    if (rv != SECSuccess) {
	AES_DestroyContext(cx, PR_FALSE);
	return rv;
    }

    /* finally, set up any mode specific contexts */
    switch (mode) {
    case NSS_AES_CTS:
	cx->worker_cx = CTS_CreateContext(cx, cx->worker, iv, blocksize);
	cx->worker = (freeblCipherFunc) 
			(encrypt ?  CTS_EncryptUpdate : CTS_DecryptUpdate);
	cx->destroy = (freeblDestroyFunc) CTS_DestroyContext;
	cx->isBlock = PR_FALSE;
	break;
    case NSS_AES_GCM:
#ifdef INTEL_GCM
	if(use_hw_gcm) {
        	cx->worker_cx = intel_AES_GCM_CreateContext(cx, cx->worker, iv, blocksize);
		cx->worker = (freeblCipherFunc)
			(encrypt ? intel_AES_GCM_EncryptUpdate : intel_AES_GCM_DecryptUpdate);
		cx->destroy = (freeblDestroyFunc) intel_AES_GCM_DestroyContext;
		cx->isBlock = PR_FALSE;
    	} else
#endif
	{
	cx->worker_cx = GCM_CreateContext(cx, cx->worker, iv, blocksize);
	cx->worker = (freeblCipherFunc)
			(encrypt ? GCM_EncryptUpdate : GCM_DecryptUpdate);
	cx->destroy = (freeblDestroyFunc) GCM_DestroyContext;
	cx->isBlock = PR_FALSE;
	}
	break;
    case NSS_AES_CTR:
	cx->worker_cx = CTR_CreateContext(cx, cx->worker, iv, blocksize);
#if defined(USE_HW_AES) && defined(_MSC_VER)
	if (use_hw_aes) {
	    cx->worker = (freeblCipherFunc) CTR_Update_HW_AES;
	} else
#endif
	{
	    cx->worker = (freeblCipherFunc) CTR_Update;
	}
	cx->destroy = (freeblDestroyFunc) CTR_DestroyContext;
	cx->isBlock = PR_FALSE;
	break;
    default:
	/* everything has already been set up by aes_InitContext, just
	 * return */
	return SECSuccess;
    }
    /* check to see if we succeeded in getting the worker context */
    if (cx->worker_cx == NULL) {
	/* no, just destroy the existing context */
	cx->destroy = NULL; /* paranoia, though you can see a dozen lines */
			    /* below that this isn't necessary */
	AES_DestroyContext(cx, PR_FALSE);
	return SECFailure;
    }
    return SECSuccess;
}

/* AES_CreateContext
 *
 * create a new context for Rijndael operations
 */
AESContext *
AES_CreateContext(const unsigned char *key, const unsigned char *iv, 
                  int mode, int encrypt,
                  unsigned int keysize, unsigned int blocksize)
{
    AESContext *cx = AES_AllocateContext();
    if (cx) {
	SECStatus rv = AES_InitContext(cx, key, keysize, iv, mode, encrypt,
				       blocksize);
	if (rv != SECSuccess) {
	    AES_DestroyContext(cx, PR_TRUE);
	    cx = NULL;
	}
    }
    return cx;
}

/*
 * AES_DestroyContext
 * 
 * Zero an AES cipher context.  If freeit is true, also free the pointer
 * to the context.
 */
void 
AES_DestroyContext(AESContext *cx, PRBool freeit)
{
    if (cx->worker_cx && cx->destroy) {
	(*cx->destroy)(cx->worker_cx, PR_TRUE);
	cx->worker_cx = NULL;
	cx->destroy = NULL;
    }
    if (freeit)
	PORT_Free(cx);
}

/*
 * AES_Encrypt
 *
 * Encrypt an arbitrary-length buffer.  The output buffer must already be
 * allocated to at least inputLen.
 */
SECStatus 
AES_Encrypt(AESContext *cx, unsigned char *output,
            unsigned int *outputLen, unsigned int maxOutputLen,
            const unsigned char *input, unsigned int inputLen)
{
    int blocksize;
    /* Check args */
    if (cx == NULL || output == NULL || (input == NULL && inputLen != 0)) {
	PORT_SetError(SEC_ERROR_INVALID_ARGS);
	return SECFailure;
    }
    blocksize = 4 * cx->Nb;
    if (cx->isBlock && (inputLen % blocksize != 0)) {
	PORT_SetError(SEC_ERROR_INPUT_LEN);
	return SECFailure;
    }
    if (maxOutputLen < inputLen) {
	PORT_SetError(SEC_ERROR_OUTPUT_LEN);
	return SECFailure;
    }
    *outputLen = inputLen;
    return (*cx->worker)(cx->worker_cx, output, outputLen, maxOutputLen,	
                             input, inputLen, blocksize);
}

/*
 * AES_Decrypt
 *
 * Decrypt and arbitrary-length buffer.  The output buffer must already be
 * allocated to at least inputLen.
 */
SECStatus 
AES_Decrypt(AESContext *cx, unsigned char *output,
            unsigned int *outputLen, unsigned int maxOutputLen,
            const unsigned char *input, unsigned int inputLen)
{
    int blocksize;
    /* Check args */
    if (cx == NULL || output == NULL || (input == NULL && inputLen != 0)) {
	PORT_SetError(SEC_ERROR_INVALID_ARGS);
	return SECFailure;
    }
    blocksize = 4 * cx->Nb;
    if (cx->isBlock && (inputLen % blocksize != 0)) {
	PORT_SetError(SEC_ERROR_INPUT_LEN);
	return SECFailure;
    }
    if (maxOutputLen < inputLen) {
	PORT_SetError(SEC_ERROR_OUTPUT_LEN);
	return SECFailure;
    }
    *outputLen = inputLen;
    return (*cx->worker)(cx->worker_cx, output, outputLen, maxOutputLen,	
                             input, inputLen, blocksize);
}