DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (b6057e17f856)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include <stdarg.h>
#include <limits.h>

#include "strtod.h"
#include "bignum.h"
#include "cached-powers.h"
#include "ieee.h"

namespace double_conversion {

// 2^53 = 9007199254740992.
// Any integer with at most 15 decimal digits will hence fit into a double
// (which has a 53bit significand) without loss of precision.
static const int kMaxExactDoubleIntegerDecimalDigits = 15;
// 2^64 = 18446744073709551616 > 10^19
static const int kMaxUint64DecimalDigits = 19;

// Max double: 1.7976931348623157 x 10^308
// Min non-zero double: 4.9406564584124654 x 10^-324
// Any x >= 10^309 is interpreted as +infinity.
// Any x <= 10^-324 is interpreted as 0.
// Note that 2.5e-324 (despite being smaller than the min double) will be read
// as non-zero (equal to the min non-zero double).
static const int kMaxDecimalPower = 309;
static const int kMinDecimalPower = -324;

// 2^64 = 18446744073709551616
static const uint64_t kMaxUint64 = UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF);


static const double exact_powers_of_ten[] = {
  1.0,  // 10^0
  10.0,
  100.0,
  1000.0,
  10000.0,
  100000.0,
  1000000.0,
  10000000.0,
  100000000.0,
  1000000000.0,
  10000000000.0,  // 10^10
  100000000000.0,
  1000000000000.0,
  10000000000000.0,
  100000000000000.0,
  1000000000000000.0,
  10000000000000000.0,
  100000000000000000.0,
  1000000000000000000.0,
  10000000000000000000.0,
  100000000000000000000.0,  // 10^20
  1000000000000000000000.0,
  // 10^22 = 0x21e19e0c9bab2400000 = 0x878678326eac9 * 2^22
  10000000000000000000000.0
};
static const int kExactPowersOfTenSize = ARRAY_SIZE(exact_powers_of_ten);

// Maximum number of significant digits in the decimal representation.
// In fact the value is 772 (see conversions.cc), but to give us some margin
// we round up to 780.
static const int kMaxSignificantDecimalDigits = 780;

static Vector<const char> TrimLeadingZeros(Vector<const char> buffer) {
  for (int i = 0; i < buffer.length(); i++) {
    if (buffer[i] != '0') {
      return buffer.SubVector(i, buffer.length());
    }
  }
  return Vector<const char>(buffer.start(), 0);
}


static Vector<const char> TrimTrailingZeros(Vector<const char> buffer) {
  for (int i = buffer.length() - 1; i >= 0; --i) {
    if (buffer[i] != '0') {
      return buffer.SubVector(0, i + 1);
    }
  }
  return Vector<const char>(buffer.start(), 0);
}


static void CutToMaxSignificantDigits(Vector<const char> buffer,
                                       int exponent,
                                       char* significant_buffer,
                                       int* significant_exponent) {
  for (int i = 0; i < kMaxSignificantDecimalDigits - 1; ++i) {
    significant_buffer[i] = buffer[i];
  }
  // The input buffer has been trimmed. Therefore the last digit must be
  // different from '0'.
  ASSERT(buffer[buffer.length() - 1] != '0');
  // Set the last digit to be non-zero. This is sufficient to guarantee
  // correct rounding.
  significant_buffer[kMaxSignificantDecimalDigits - 1] = '1';
  *significant_exponent =
      exponent + (buffer.length() - kMaxSignificantDecimalDigits);
}


// Trims the buffer and cuts it to at most kMaxSignificantDecimalDigits.
// If possible the input-buffer is reused, but if the buffer needs to be
// modified (due to cutting), then the input needs to be copied into the
// buffer_copy_space.
static void TrimAndCut(Vector<const char> buffer, int exponent,
                       char* buffer_copy_space, int space_size,
                       Vector<const char>* trimmed, int* updated_exponent) {
  Vector<const char> left_trimmed = TrimLeadingZeros(buffer);
  Vector<const char> right_trimmed = TrimTrailingZeros(left_trimmed);
  exponent += left_trimmed.length() - right_trimmed.length();
  if (right_trimmed.length() > kMaxSignificantDecimalDigits) {
    ASSERT(space_size >= kMaxSignificantDecimalDigits);
    CutToMaxSignificantDigits(right_trimmed, exponent,
                              buffer_copy_space, updated_exponent);
    *trimmed = Vector<const char>(buffer_copy_space,
                                 kMaxSignificantDecimalDigits);
  } else {
    *trimmed = right_trimmed;
    *updated_exponent = exponent;
  }
}


// Reads digits from the buffer and converts them to a uint64.
// Reads in as many digits as fit into a uint64.
// When the string starts with "1844674407370955161" no further digit is read.
// Since 2^64 = 18446744073709551616 it would still be possible read another
// digit if it was less or equal than 6, but this would complicate the code.
static uint64_t ReadUint64(Vector<const char> buffer,
                           int* number_of_read_digits) {
  uint64_t result = 0;
  int i = 0;
  while (i < buffer.length() && result <= (kMaxUint64 / 10 - 1)) {
    int digit = buffer[i++] - '0';
    ASSERT(0 <= digit && digit <= 9);
    result = 10 * result + digit;
  }
  *number_of_read_digits = i;
  return result;
}


// Reads a DiyFp from the buffer.
// The returned DiyFp is not necessarily normalized.
// If remaining_decimals is zero then the returned DiyFp is accurate.
// Otherwise it has been rounded and has error of at most 1/2 ulp.
static void ReadDiyFp(Vector<const char> buffer,
                      DiyFp* result,
                      int* remaining_decimals) {
  int read_digits;
  uint64_t significand = ReadUint64(buffer, &read_digits);
  if (buffer.length() == read_digits) {
    *result = DiyFp(significand, 0);
    *remaining_decimals = 0;
  } else {
    // Round the significand.
    if (buffer[read_digits] >= '5') {
      significand++;
    }
    // Compute the binary exponent.
    int exponent = 0;
    *result = DiyFp(significand, exponent);
    *remaining_decimals = buffer.length() - read_digits;
  }
}


static bool DoubleStrtod(Vector<const char> trimmed,
                         int exponent,
                         double* result) {
#if !defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS)
  // On x86 the floating-point stack can be 64 or 80 bits wide. If it is
  // 80 bits wide (as is the case on Linux) then double-rounding occurs and the
  // result is not accurate.
  // We know that Windows32 uses 64 bits and is therefore accurate.
  // Note that the ARM simulator is compiled for 32bits. It therefore exhibits
  // the same problem.
  return false;
#endif
  if (trimmed.length() <= kMaxExactDoubleIntegerDecimalDigits) {
    int read_digits;
    // The trimmed input fits into a double.
    // If the 10^exponent (resp. 10^-exponent) fits into a double too then we
    // can compute the result-double simply by multiplying (resp. dividing) the
    // two numbers.
    // This is possible because IEEE guarantees that floating-point operations
    // return the best possible approximation.
    if (exponent < 0 && -exponent < kExactPowersOfTenSize) {
      // 10^-exponent fits into a double.
      *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
      ASSERT(read_digits == trimmed.length());
      *result /= exact_powers_of_ten[-exponent];
      return true;
    }
    if (0 <= exponent && exponent < kExactPowersOfTenSize) {
      // 10^exponent fits into a double.
      *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
      ASSERT(read_digits == trimmed.length());
      *result *= exact_powers_of_ten[exponent];
      return true;
    }
    int remaining_digits =
        kMaxExactDoubleIntegerDecimalDigits - trimmed.length();
    if ((0 <= exponent) &&
        (exponent - remaining_digits < kExactPowersOfTenSize)) {
      // The trimmed string was short and we can multiply it with
      // 10^remaining_digits. As a result the remaining exponent now fits
      // into a double too.
      *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
      ASSERT(read_digits == trimmed.length());
      *result *= exact_powers_of_ten[remaining_digits];
      *result *= exact_powers_of_ten[exponent - remaining_digits];
      return true;
    }
  }
  return false;
}


// Returns 10^exponent as an exact DiyFp.
// The given exponent must be in the range [1; kDecimalExponentDistance[.
static DiyFp AdjustmentPowerOfTen(int exponent) {
  ASSERT(0 < exponent);
  ASSERT(exponent < PowersOfTenCache::kDecimalExponentDistance);
  // Simply hardcode the remaining powers for the given decimal exponent
  // distance.
  ASSERT(PowersOfTenCache::kDecimalExponentDistance == 8);
  switch (exponent) {
    case 1: return DiyFp(UINT64_2PART_C(0xa0000000, 00000000), -60);
    case 2: return DiyFp(UINT64_2PART_C(0xc8000000, 00000000), -57);
    case 3: return DiyFp(UINT64_2PART_C(0xfa000000, 00000000), -54);
    case 4: return DiyFp(UINT64_2PART_C(0x9c400000, 00000000), -50);
    case 5: return DiyFp(UINT64_2PART_C(0xc3500000, 00000000), -47);
    case 6: return DiyFp(UINT64_2PART_C(0xf4240000, 00000000), -44);
    case 7: return DiyFp(UINT64_2PART_C(0x98968000, 00000000), -40);
    default:
      UNREACHABLE();
      return DiyFp(0, 0);
  }
}


// If the function returns true then the result is the correct double.
// Otherwise it is either the correct double or the double that is just below
// the correct double.
static bool DiyFpStrtod(Vector<const char> buffer,
                        int exponent,
                        double* result) {
  DiyFp input;
  int remaining_decimals;
  ReadDiyFp(buffer, &input, &remaining_decimals);
  // Since we may have dropped some digits the input is not accurate.
  // If remaining_decimals is different than 0 than the error is at most
  // .5 ulp (unit in the last place).
  // We don't want to deal with fractions and therefore keep a common
  // denominator.
  const int kDenominatorLog = 3;
  const int kDenominator = 1 << kDenominatorLog;
  // Move the remaining decimals into the exponent.
  exponent += remaining_decimals;
  int error = (remaining_decimals == 0 ? 0 : kDenominator / 2);

  int old_e = input.e();
  input.Normalize();
  error <<= old_e - input.e();

  ASSERT(exponent <= PowersOfTenCache::kMaxDecimalExponent);
  if (exponent < PowersOfTenCache::kMinDecimalExponent) {
    *result = 0.0;
    return true;
  }
  DiyFp cached_power;
  int cached_decimal_exponent;
  PowersOfTenCache::GetCachedPowerForDecimalExponent(exponent,
                                                     &cached_power,
                                                     &cached_decimal_exponent);

  if (cached_decimal_exponent != exponent) {
    int adjustment_exponent = exponent - cached_decimal_exponent;
    DiyFp adjustment_power = AdjustmentPowerOfTen(adjustment_exponent);
    input.Multiply(adjustment_power);
    if (kMaxUint64DecimalDigits - buffer.length() >= adjustment_exponent) {
      // The product of input with the adjustment power fits into a 64 bit
      // integer.
      ASSERT(DiyFp::kSignificandSize == 64);
    } else {
      // The adjustment power is exact. There is hence only an error of 0.5.
      error += kDenominator / 2;
    }
  }

  input.Multiply(cached_power);
  // The error introduced by a multiplication of a*b equals
  //   error_a + error_b + error_a*error_b/2^64 + 0.5
  // Substituting a with 'input' and b with 'cached_power' we have
  //   error_b = 0.5  (all cached powers have an error of less than 0.5 ulp),
  //   error_ab = 0 or 1 / kDenominator > error_a*error_b/ 2^64
  int error_b = kDenominator / 2;
  int error_ab = (error == 0 ? 0 : 1);  // We round up to 1.
  int fixed_error = kDenominator / 2;
  error += error_b + error_ab + fixed_error;

  old_e = input.e();
  input.Normalize();
  error <<= old_e - input.e();

  // See if the double's significand changes if we add/subtract the error.
  int order_of_magnitude = DiyFp::kSignificandSize + input.e();
  int effective_significand_size =
      Double::SignificandSizeForOrderOfMagnitude(order_of_magnitude);
  int precision_digits_count =
      DiyFp::kSignificandSize - effective_significand_size;
  if (precision_digits_count + kDenominatorLog >= DiyFp::kSignificandSize) {
    // This can only happen for very small denormals. In this case the
    // half-way multiplied by the denominator exceeds the range of an uint64.
    // Simply shift everything to the right.
    int shift_amount = (precision_digits_count + kDenominatorLog) -
        DiyFp::kSignificandSize + 1;
    input.set_f(input.f() >> shift_amount);
    input.set_e(input.e() + shift_amount);
    // We add 1 for the lost precision of error, and kDenominator for
    // the lost precision of input.f().
    error = (error >> shift_amount) + 1 + kDenominator;
    precision_digits_count -= shift_amount;
  }
  // We use uint64_ts now. This only works if the DiyFp uses uint64_ts too.
  ASSERT(DiyFp::kSignificandSize == 64);
  ASSERT(precision_digits_count < 64);
  uint64_t one64 = 1;
  uint64_t precision_bits_mask = (one64 << precision_digits_count) - 1;
  uint64_t precision_bits = input.f() & precision_bits_mask;
  uint64_t half_way = one64 << (precision_digits_count - 1);
  precision_bits *= kDenominator;
  half_way *= kDenominator;
  DiyFp rounded_input(input.f() >> precision_digits_count,
                      input.e() + precision_digits_count);
  if (precision_bits >= half_way + error) {
    rounded_input.set_f(rounded_input.f() + 1);
  }
  // If the last_bits are too close to the half-way case than we are too
  // inaccurate and round down. In this case we return false so that we can
  // fall back to a more precise algorithm.

  *result = Double(rounded_input).value();
  if (half_way - error < precision_bits && precision_bits < half_way + error) {
    // Too imprecise. The caller will have to fall back to a slower version.
    // However the returned number is guaranteed to be either the correct
    // double, or the next-lower double.
    return false;
  } else {
    return true;
  }
}


// Returns
//   - -1 if buffer*10^exponent < diy_fp.
//   -  0 if buffer*10^exponent == diy_fp.
//   - +1 if buffer*10^exponent > diy_fp.
// Preconditions:
//   buffer.length() + exponent <= kMaxDecimalPower + 1
//   buffer.length() + exponent > kMinDecimalPower
//   buffer.length() <= kMaxDecimalSignificantDigits
static int CompareBufferWithDiyFp(Vector<const char> buffer,
                                  int exponent,
                                  DiyFp diy_fp) {
  ASSERT(buffer.length() + exponent <= kMaxDecimalPower + 1);
  ASSERT(buffer.length() + exponent > kMinDecimalPower);
  ASSERT(buffer.length() <= kMaxSignificantDecimalDigits);
  // Make sure that the Bignum will be able to hold all our numbers.
  // Our Bignum implementation has a separate field for exponents. Shifts will
  // consume at most one bigit (< 64 bits).
  // ln(10) == 3.3219...
  ASSERT(((kMaxDecimalPower + 1) * 333 / 100) < Bignum::kMaxSignificantBits);
  Bignum buffer_bignum;
  Bignum diy_fp_bignum;
  buffer_bignum.AssignDecimalString(buffer);
  diy_fp_bignum.AssignUInt64(diy_fp.f());
  if (exponent >= 0) {
    buffer_bignum.MultiplyByPowerOfTen(exponent);
  } else {
    diy_fp_bignum.MultiplyByPowerOfTen(-exponent);
  }
  if (diy_fp.e() > 0) {
    diy_fp_bignum.ShiftLeft(diy_fp.e());
  } else {
    buffer_bignum.ShiftLeft(-diy_fp.e());
  }
  return Bignum::Compare(buffer_bignum, diy_fp_bignum);
}


// Returns true if the guess is the correct double.
// Returns false, when guess is either correct or the next-lower double.
static bool ComputeGuess(Vector<const char> trimmed, int exponent,
                         double* guess) {
  if (trimmed.length() == 0) {
    *guess = 0.0;
    return true;
  }
  if (exponent + trimmed.length() - 1 >= kMaxDecimalPower) {
    *guess = Double::Infinity();
    return true;
  }
  if (exponent + trimmed.length() <= kMinDecimalPower) {
    *guess = 0.0;
    return true;
  }

  if (DoubleStrtod(trimmed, exponent, guess) ||
      DiyFpStrtod(trimmed, exponent, guess)) {
    return true;
  }
  if (*guess == Double::Infinity()) {
    return true;
  }
  return false;
}

double Strtod(Vector<const char> buffer, int exponent) {
  char copy_buffer[kMaxSignificantDecimalDigits];
  Vector<const char> trimmed;
  int updated_exponent;
  TrimAndCut(buffer, exponent, copy_buffer, kMaxSignificantDecimalDigits,
             &trimmed, &updated_exponent);
  exponent = updated_exponent;

  double guess;
  bool is_correct = ComputeGuess(trimmed, exponent, &guess);
  if (is_correct) return guess;

  DiyFp upper_boundary = Double(guess).UpperBoundary();
  int comparison = CompareBufferWithDiyFp(trimmed, exponent, upper_boundary);
  if (comparison < 0) {
    return guess;
  } else if (comparison > 0) {
    return Double(guess).NextDouble();
  } else if ((Double(guess).Significand() & 1) == 0) {
    // Round towards even.
    return guess;
  } else {
    return Double(guess).NextDouble();
  }
}

float Strtof(Vector<const char> buffer, int exponent) {
  char copy_buffer[kMaxSignificantDecimalDigits];
  Vector<const char> trimmed;
  int updated_exponent;
  TrimAndCut(buffer, exponent, copy_buffer, kMaxSignificantDecimalDigits,
             &trimmed, &updated_exponent);
  exponent = updated_exponent;

  double double_guess;
  bool is_correct = ComputeGuess(trimmed, exponent, &double_guess);

  float float_guess = static_cast<float>(double_guess);
  if (float_guess == double_guess) {
    // This shortcut triggers for integer values.
    return float_guess;
  }

  // We must catch double-rounding. Say the double has been rounded up, and is
  // now a boundary of a float, and rounds up again. This is why we have to
  // look at previous too.
  // Example (in decimal numbers):
  //    input: 12349
  //    high-precision (4 digits): 1235
  //    low-precision (3 digits):
  //       when read from input: 123
  //       when rounded from high precision: 124.
  // To do this we simply look at the neigbors of the correct result and see
  // if they would round to the same float. If the guess is not correct we have
  // to look at four values (since two different doubles could be the correct
  // double).

  double double_next = Double(double_guess).NextDouble();
  double double_previous = Double(double_guess).PreviousDouble();

  float f1 = static_cast<float>(double_previous);
#if defined(DEBUG)
  float f2 = float_guess;
#endif
  float f3 = static_cast<float>(double_next);
  float f4;
  if (is_correct) {
    f4 = f3;
  } else {
    double double_next2 = Double(double_next).NextDouble();
    f4 = static_cast<float>(double_next2);
  }
  ASSERT(f1 <= f2 && f2 <= f3 && f3 <= f4);

  // If the guess doesn't lie near a single-precision boundary we can simply
  // return its float-value.
  if (f1 == f4) {
    return float_guess;
  }

  ASSERT((f1 != f2 && f2 == f3 && f3 == f4) ||
         (f1 == f2 && f2 != f3 && f3 == f4) ||
         (f1 == f2 && f2 == f3 && f3 != f4));

  // guess and next are the two possible canditates (in the same way that
  // double_guess was the lower candidate for a double-precision guess).
  float guess = f1;
  float next = f4;
  DiyFp upper_boundary;
  if (guess == 0.0f) {
    float min_float = 1e-45f;
    upper_boundary = Double(static_cast<double>(min_float) / 2).AsDiyFp();
  } else {
    upper_boundary = Single(guess).UpperBoundary();
  }
  int comparison = CompareBufferWithDiyFp(trimmed, exponent, upper_boundary);
  if (comparison < 0) {
    return guess;
  } else if (comparison > 0) {
    return next;
  } else if ((Single(guess).Significand() & 1) == 0) {
    // Round towards even.
    return guess;
  } else {
    return next;
  }
}

}  // namespace double_conversion