DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (b6057e17f856)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

/*
 * Implements (almost always) lock-free atomic operations. The operations here
 * are a subset of that which can be found in C++11's <atomic> header, with a
 * different API to enforce consistent memory ordering constraints.
 *
 * Anyone caught using |volatile| for inter-thread memory safety needs to be
 * sent a copy of this header and the C++11 standard.
 */

#ifndef mozilla_Atomics_h
#define mozilla_Atomics_h

#include "mozilla/Assertions.h"
#include "mozilla/Attributes.h"
#include "mozilla/Compiler.h"
#include "mozilla/TypeTraits.h"

#include <stdint.h>

/*
 * Our minimum deployment target on clang/OS X is OS X 10.6, whose SDK
 * does not have <atomic>.  So be sure to check for <atomic> support
 * along with C++0x support.
 */
#if defined(__clang__) || defined(__GNUC__)
   /*
    * Clang doesn't like <atomic> from libstdc++ before 4.7 due to the
    * loose typing of the atomic builtins. GCC 4.5 and 4.6 lacks inline
    * definitions for unspecialized std::atomic and causes linking errors.
    * Therefore, we require at least 4.7.0 for using libstdc++.
    */
#  if MOZ_USING_LIBSTDCXX && MOZ_LIBSTDCXX_VERSION_AT_LEAST(4, 7, 0)
#    define MOZ_HAVE_CXX11_ATOMICS
#  elif MOZ_USING_LIBCXX
#    define MOZ_HAVE_CXX11_ATOMICS
#  endif
#elif defined(_MSC_VER) && _MSC_VER >= 1700
#  if defined(DEBUG)
     /*
      * Provide our own failure code since we're having trouble linking to
      * std::_Debug_message (bug 982310).
      */
#    define _INVALID_MEMORY_ORDER MOZ_CRASH("Invalid memory order")
#  endif
#  define MOZ_HAVE_CXX11_ATOMICS
#endif

namespace mozilla {

/**
 * An enum of memory ordering possibilities for atomics.
 *
 * Memory ordering is the observable state of distinct values in memory.
 * (It's a separate concept from atomicity, which concerns whether an
 * operation can ever be observed in an intermediate state.  Don't
 * conflate the two!)  Given a sequence of operations in source code on
 * memory, it is *not* always the case that, at all times and on all
 * cores, those operations will appear to have occurred in that exact
 * sequence.  First, the compiler might reorder that sequence, if it
 * thinks another ordering will be more efficient.  Second, the CPU may
 * not expose so consistent a view of memory.  CPUs will often perform
 * their own instruction reordering, above and beyond that performed by
 * the compiler.  And each core has its own memory caches, and accesses
 * (reads and writes both) to "memory" may only resolve to out-of-date
 * cache entries -- not to the "most recently" performed operation in
 * some global sense.  Any access to a value that may be used by
 * multiple threads, potentially across multiple cores, must therefore
 * have a memory ordering imposed on it, for all code on all
 * threads/cores to have a sufficiently coherent worldview.
 *
 * http://gcc.gnu.org/wiki/Atomic/GCCMM/AtomicSync and
 * http://en.cppreference.com/w/cpp/atomic/memory_order go into more
 * detail on all this, including examples of how each mode works.
 *
 * Note that for simplicity and practicality, not all of the modes in
 * C++11 are supported.  The missing C++11 modes are either subsumed by
 * the modes we provide below, or not relevant for the CPUs we support
 * in Gecko.  These three modes are confusing enough as it is!
 */
enum MemoryOrdering {
  /*
   * Relaxed ordering is the simplest memory ordering: none at all.
   * When the result of a write is observed, nothing may be inferred
   * about other memory.  Writes ostensibly performed "before" on the
   * writing thread may not yet be visible.  Writes performed "after" on
   * the writing thread may already be visible, if the compiler or CPU
   * reordered them.  (The latter can happen if reads and/or writes get
   * held up in per-processor caches.)  Relaxed ordering means
   * operations can always use cached values (as long as the actual
   * updates to atomic values actually occur, correctly, eventually), so
   * it's usually the fastest sort of atomic access.  For this reason,
   * *it's also the most dangerous kind of access*.
   *
   * Relaxed ordering is good for things like process-wide statistics
   * counters that don't need to be consistent with anything else, so
   * long as updates themselves are atomic.  (And so long as any
   * observations of that value can tolerate being out-of-date -- if you
   * need some sort of up-to-date value, you need some sort of other
   * synchronizing operation.)  It's *not* good for locks, mutexes,
   * reference counts, etc. that mediate access to other memory, or must
   * be observably consistent with other memory.
   *
   * x86 architectures don't take advantage of the optimization
   * opportunities that relaxed ordering permits.  Thus it's possible
   * that using relaxed ordering will "work" on x86 but fail elsewhere
   * (ARM, say, which *does* implement non-sequentially-consistent
   * relaxed ordering semantics).  Be extra-careful using relaxed
   * ordering if you can't easily test non-x86 architectures!
   */
  Relaxed,

  /*
   * When an atomic value is updated with ReleaseAcquire ordering, and
   * that new value is observed with ReleaseAcquire ordering, prior
   * writes (atomic or not) are also observable.  What ReleaseAcquire
   * *doesn't* give you is any observable ordering guarantees for
   * ReleaseAcquire-ordered operations on different objects.  For
   * example, if there are two cores that each perform ReleaseAcquire
   * operations on separate objects, each core may or may not observe
   * the operations made by the other core.  The only way the cores can
   * be synchronized with ReleaseAcquire is if they both
   * ReleaseAcquire-access the same object.  This implies that you can't
   * necessarily describe some global total ordering of ReleaseAcquire
   * operations.
   *
   * ReleaseAcquire ordering is good for (as the name implies) atomic
   * operations on values controlling ownership of things: reference
   * counts, mutexes, and the like.  However, if you are thinking about
   * using these to implement your own locks or mutexes, you should take
   * a good, hard look at actual lock or mutex primitives first.
   */
  ReleaseAcquire,

  /*
   * When an atomic value is updated with SequentiallyConsistent
   * ordering, all writes observable when the update is observed, just
   * as with ReleaseAcquire ordering.  But, furthermore, a global total
   * ordering of SequentiallyConsistent operations *can* be described.
   * For example, if two cores perform SequentiallyConsistent operations
   * on separate objects, one core will observably perform its update
   * (and all previous operations will have completed), then the other
   * core will observably perform its update (and all previous
   * operations will have completed).  (Although those previous
   * operations aren't themselves ordered -- they could be intermixed,
   * or ordered if they occur on atomic values with ordering
   * requirements.)  SequentiallyConsistent is the *simplest and safest*
   * ordering of atomic operations -- it's always as if one operation
   * happens, then another, then another, in some order -- and every
   * core observes updates to happen in that single order.  Because it
   * has the most synchronization requirements, operations ordered this
   * way also tend to be slowest.
   *
   * SequentiallyConsistent ordering can be desirable when multiple
   * threads observe objects, and they all have to agree on the
   * observable order of changes to them.  People expect
   * SequentiallyConsistent ordering, even if they shouldn't, when
   * writing code, atomic or otherwise.  SequentiallyConsistent is also
   * the ordering of choice when designing lockless data structures.  If
   * you don't know what order to use, use this one.
   */
  SequentiallyConsistent,
};

} // namespace mozilla

// Build up the underlying intrinsics.
#ifdef MOZ_HAVE_CXX11_ATOMICS

#  include <atomic>

namespace mozilla {
namespace detail {

/*
 * We provide CompareExchangeFailureOrder to work around a bug in some
 * versions of GCC's <atomic> header.  See bug 898491.
 */
template<MemoryOrdering Order> struct AtomicOrderConstraints;

template<>
struct AtomicOrderConstraints<Relaxed>
{
  static const std::memory_order AtomicRMWOrder = std::memory_order_relaxed;
  static const std::memory_order LoadOrder = std::memory_order_relaxed;
  static const std::memory_order StoreOrder = std::memory_order_relaxed;
  static const std::memory_order CompareExchangeFailureOrder =
    std::memory_order_relaxed;
};

template<>
struct AtomicOrderConstraints<ReleaseAcquire>
{
  static const std::memory_order AtomicRMWOrder = std::memory_order_acq_rel;
  static const std::memory_order LoadOrder = std::memory_order_acquire;
  static const std::memory_order StoreOrder = std::memory_order_release;
  static const std::memory_order CompareExchangeFailureOrder =
    std::memory_order_acquire;
};

template<>
struct AtomicOrderConstraints<SequentiallyConsistent>
{
  static const std::memory_order AtomicRMWOrder = std::memory_order_seq_cst;
  static const std::memory_order LoadOrder = std::memory_order_seq_cst;
  static const std::memory_order StoreOrder = std::memory_order_seq_cst;
  static const std::memory_order CompareExchangeFailureOrder =
    std::memory_order_seq_cst;
};

template<typename T, MemoryOrdering Order>
struct IntrinsicBase
{
  typedef std::atomic<T> ValueType;
  typedef AtomicOrderConstraints<Order> OrderedOp;
};

template<typename T, MemoryOrdering Order>
struct IntrinsicMemoryOps : public IntrinsicBase<T, Order>
{
  typedef IntrinsicBase<T, Order> Base;

  static T load(const typename Base::ValueType& aPtr)
  {
    return aPtr.load(Base::OrderedOp::LoadOrder);
  }

  static void store(typename Base::ValueType& aPtr, T aVal)
  {
    aPtr.store(aVal, Base::OrderedOp::StoreOrder);
  }

  static T exchange(typename Base::ValueType& aPtr, T aVal)
  {
    return aPtr.exchange(aVal, Base::OrderedOp::AtomicRMWOrder);
  }

  static bool compareExchange(typename Base::ValueType& aPtr,
                              T aOldVal, T aNewVal)
  {
    return aPtr.compare_exchange_strong(aOldVal, aNewVal,
                                        Base::OrderedOp::AtomicRMWOrder,
                                        Base::OrderedOp::CompareExchangeFailureOrder);
  }
};

template<typename T, MemoryOrdering Order>
struct IntrinsicAddSub : public IntrinsicBase<T, Order>
{
  typedef IntrinsicBase<T, Order> Base;

  static T add(typename Base::ValueType& aPtr, T aVal)
  {
    return aPtr.fetch_add(aVal, Base::OrderedOp::AtomicRMWOrder);
  }

  static T sub(typename Base::ValueType& aPtr, T aVal)
  {
    return aPtr.fetch_sub(aVal, Base::OrderedOp::AtomicRMWOrder);
  }
};

template<typename T, MemoryOrdering Order>
struct IntrinsicAddSub<T*, Order> : public IntrinsicBase<T*, Order>
{
  typedef IntrinsicBase<T*, Order> Base;

  static T* add(typename Base::ValueType& aPtr, ptrdiff_t aVal)
  {
    return aPtr.fetch_add(fixupAddend(aVal), Base::OrderedOp::AtomicRMWOrder);
  }

  static T* sub(typename Base::ValueType& aPtr, ptrdiff_t aVal)
  {
    return aPtr.fetch_sub(fixupAddend(aVal), Base::OrderedOp::AtomicRMWOrder);
  }
private:
  /*
   * GCC 4.6's <atomic> header has a bug where adding X to an
   * atomic<T*> is not the same as adding X to a T*.  Hence the need
   * for this function to provide the correct addend.
   */
  static ptrdiff_t fixupAddend(ptrdiff_t aVal) {
#if defined(__clang__) || defined(_MSC_VER)
    return aVal;
#elif defined(__GNUC__) && MOZ_GCC_VERSION_AT_LEAST(4, 6, 0) && \
    !MOZ_GCC_VERSION_AT_LEAST(4, 7, 0)
    return aVal * sizeof(T);
#else
    return aVal;
#endif
  }
};

template<typename T, MemoryOrdering Order>
struct IntrinsicIncDec : public IntrinsicAddSub<T, Order>
{
  typedef IntrinsicBase<T, Order> Base;

  static T inc(typename Base::ValueType& aPtr)
  {
    return IntrinsicAddSub<T, Order>::add(aPtr, 1);
  }

  static T dec(typename Base::ValueType& aPtr)
  {
    return IntrinsicAddSub<T, Order>::sub(aPtr, 1);
  }
};

template<typename T, MemoryOrdering Order>
struct AtomicIntrinsics : public IntrinsicMemoryOps<T, Order>,
                          public IntrinsicIncDec<T, Order>
{
  typedef IntrinsicBase<T, Order> Base;

  static T or_(typename Base::ValueType& aPtr, T aVal)
  {
    return aPtr.fetch_or(aVal, Base::OrderedOp::AtomicRMWOrder);
  }

  static T xor_(typename Base::ValueType& aPtr, T aVal)
  {
    return aPtr.fetch_xor(aVal, Base::OrderedOp::AtomicRMWOrder);
  }

  static T and_(typename Base::ValueType& aPtr, T aVal)
  {
    return aPtr.fetch_and(aVal, Base::OrderedOp::AtomicRMWOrder);
  }
};

template<typename T, MemoryOrdering Order>
struct AtomicIntrinsics<T*, Order>
  : public IntrinsicMemoryOps<T*, Order>, public IntrinsicIncDec<T*, Order>
{
};

} // namespace detail
} // namespace mozilla

#elif defined(__GNUC__)

namespace mozilla {
namespace detail {

/*
 * The __sync_* family of intrinsics is documented here:
 *
 * http://gcc.gnu.org/onlinedocs/gcc-4.6.4/gcc/Atomic-Builtins.html
 *
 * While these intrinsics are deprecated in favor of the newer __atomic_*
 * family of intrincs:
 *
 * http://gcc.gnu.org/onlinedocs/gcc-4.7.3/gcc/_005f_005fatomic-Builtins.html
 *
 * any GCC version that supports the __atomic_* intrinsics will also support
 * the <atomic> header and so will be handled above.  We provide a version of
 * atomics using the __sync_* intrinsics to support older versions of GCC.
 *
 * All __sync_* intrinsics that we use below act as full memory barriers, for
 * both compiler and hardware reordering, except for __sync_lock_test_and_set,
 * which is a only an acquire barrier.  When we call __sync_lock_test_and_set,
 * we add a barrier above it as appropriate.
 */

template<MemoryOrdering Order> struct Barrier;

/*
 * Some processors (in particular, x86) don't require quite so many calls to
 * __sync_sychronize as our specializations of Barrier produce.  If
 * performance turns out to be an issue, defining these specializations
 * on a per-processor basis would be a good first tuning step.
 */

template<>
struct Barrier<Relaxed>
{
  static void beforeLoad() {}
  static void afterLoad() {}
  static void beforeStore() {}
  static void afterStore() {}
};

template<>
struct Barrier<ReleaseAcquire>
{
  static void beforeLoad() {}
  static void afterLoad() { __sync_synchronize(); }
  static void beforeStore() { __sync_synchronize(); }
  static void afterStore() {}
};

template<>
struct Barrier<SequentiallyConsistent>
{
  static void beforeLoad() { __sync_synchronize(); }
  static void afterLoad() { __sync_synchronize(); }
  static void beforeStore() { __sync_synchronize(); }
  static void afterStore() { __sync_synchronize(); }
};

template<typename T, MemoryOrdering Order>
struct IntrinsicMemoryOps
{
  static T load(const T& aPtr)
  {
    Barrier<Order>::beforeLoad();
    T val = aPtr;
    Barrier<Order>::afterLoad();
    return val;
  }

  static void store(T& aPtr, T aVal)
  {
    Barrier<Order>::beforeStore();
    aPtr = aVal;
    Barrier<Order>::afterStore();
  }

  static T exchange(T& aPtr, T aVal)
  {
    // __sync_lock_test_and_set is only an acquire barrier; loads and stores
    // can't be moved up from after to before it, but they can be moved down
    // from before to after it.  We may want a stricter ordering, so we need
    // an explicit barrier.
    Barrier<Order>::beforeStore();
    return __sync_lock_test_and_set(&aPtr, aVal);
  }

  static bool compareExchange(T& aPtr, T aOldVal, T aNewVal)
  {
    return __sync_bool_compare_and_swap(&aPtr, aOldVal, aNewVal);
  }
};

template<typename T>
struct IntrinsicAddSub
{
  typedef T ValueType;

  static T add(T& aPtr, T aVal)
  {
    return __sync_fetch_and_add(&aPtr, aVal);
  }

  static T sub(T& aPtr, T aVal)
  {
    return __sync_fetch_and_sub(&aPtr, aVal);
  }
};

template<typename T>
struct IntrinsicAddSub<T*>
{
  typedef T* ValueType;

  /*
   * The reinterpret_casts are needed so that
   * __sync_fetch_and_{add,sub} will properly type-check.
   *
   * Also, these functions do not provide standard semantics for
   * pointer types, so we need to adjust the addend.
   */
  static ValueType add(ValueType& aPtr, ptrdiff_t aVal)
  {
    ValueType amount = reinterpret_cast<ValueType>(aVal * sizeof(T));
    return __sync_fetch_and_add(&aPtr, amount);
  }

  static ValueType sub(ValueType& aPtr, ptrdiff_t aVal)
  {
    ValueType amount = reinterpret_cast<ValueType>(aVal * sizeof(T));
    return __sync_fetch_and_sub(&aPtr, amount);
  }
};

template<typename T>
struct IntrinsicIncDec : public IntrinsicAddSub<T>
{
  static T inc(T& aPtr) { return IntrinsicAddSub<T>::add(aPtr, 1); }
  static T dec(T& aPtr) { return IntrinsicAddSub<T>::sub(aPtr, 1); }
};

template<typename T, MemoryOrdering Order>
struct AtomicIntrinsics : public IntrinsicMemoryOps<T, Order>,
                          public IntrinsicIncDec<T>
{
  static T or_( T& aPtr, T aVal) { return __sync_fetch_and_or(&aPtr, aVal); }
  static T xor_(T& aPtr, T aVal) { return __sync_fetch_and_xor(&aPtr, aVal); }
  static T and_(T& aPtr, T aVal) { return __sync_fetch_and_and(&aPtr, aVal); }
};

template<typename T, MemoryOrdering Order>
struct AtomicIntrinsics<T*, Order> : public IntrinsicMemoryOps<T*, Order>,
                                     public IntrinsicIncDec<T*>
{
};

} // namespace detail
} // namespace mozilla

#elif defined(_MSC_VER)

/*
 * Windows comes with a full complement of atomic operations.
 * Unfortunately, most of those aren't available for Windows XP (even if
 * the compiler supports intrinsics for them), which is the oldest
 * version of Windows we support.  Therefore, we only provide operations
 * on 32-bit datatypes for 32-bit Windows versions; for 64-bit Windows
 * versions, we support 64-bit datatypes as well.
 *
 * To avoid namespace pollution issues, we declare whatever functions we
 * need ourselves.
 */

extern "C" {
long __cdecl _InterlockedExchangeAdd(long volatile* aDst, long aVal);
long __cdecl _InterlockedOr(long volatile* aDst, long aVal);
long __cdecl _InterlockedXor(long volatile* aDst, long aVal);
long __cdecl _InterlockedAnd(long volatile* aDst, long aVal);
long __cdecl _InterlockedExchange(long volatile *aDst, long aVal);
long __cdecl _InterlockedCompareExchange(long volatile *aDst, long aNewVal, long aOldVal);
}

#  pragma intrinsic(_InterlockedExchangeAdd)
#  pragma intrinsic(_InterlockedOr)
#  pragma intrinsic(_InterlockedXor)
#  pragma intrinsic(_InterlockedAnd)
#  pragma intrinsic(_InterlockedExchange)
#  pragma intrinsic(_InterlockedCompareExchange)

namespace mozilla {
namespace detail {

#  if !defined(_M_IX86) && !defined(_M_X64)
     /*
      * The implementations below are optimized for x86ish systems.  You
      * will have to modify them if you are porting to Windows on a
      * different architecture.
      */
#    error "Unknown CPU type"
#  endif

/*
 * The PrimitiveIntrinsics template should define |Type|, the datatype of size
 * DataSize upon which we operate, and the following eight functions.
 *
 * static Type add(Type* aPtr, Type aVal);
 * static Type sub(Type* aPtr, Type aVal);
 * static Type or_(Type* aPtr, Type aVal);
 * static Type xor_(Type* aPtr, Type aVal);
 * static Type and_(Type* aPtr, Type aVal);
 *
 *   These functions perform the obvious operation on the value contained in
 *   |*aPtr| combined with |aVal| and return the value previously stored in
 *   |*aPtr|.
 *
 * static void store(Type* aPtr, Type aVal);
 *
 *   This function atomically stores |aVal| into |*aPtr| and must provide a full
 *   memory fence after the store to prevent compiler and hardware instruction
 *   reordering.  It should also act as a compiler barrier to prevent reads and
 *   writes from moving to after the store.
 *
 * static Type exchange(Type* aPtr, Type aVal);
 *
 *   This function atomically stores |aVal| into |*aPtr| and returns the
 *   previous contents of |*aPtr|;
 *
 * static bool compareExchange(Type* aPtr, Type aOldVal, Type aNewVal);
 *
 *   This function atomically performs the following operation:
 *
 *     if (*aPtr == aOldVal) {
 *       *aPtr = aNewVal;
 *       return true;
 *     } else {
 *       return false;
 *     }
 *
 */
template<size_t DataSize> struct PrimitiveIntrinsics;

template<>
struct PrimitiveIntrinsics<4>
{
  typedef long Type;

  static Type add(Type* aPtr, Type aVal)
  {
    return _InterlockedExchangeAdd(aPtr, aVal);
  }

  static Type sub(Type* aPtr, Type aVal)
  {
    /*
     * _InterlockedExchangeSubtract isn't available before Windows 7,
     * and we must support Windows XP.
     */
    return _InterlockedExchangeAdd(aPtr, -aVal);
  }

  static Type or_(Type* aPtr, Type aVal)
  {
    return _InterlockedOr(aPtr, aVal);
  }

  static Type xor_(Type* aPtr, Type aVal)
  {
    return _InterlockedXor(aPtr, aVal);
  }

  static Type and_(Type* aPtr, Type aVal)
  {
    return _InterlockedAnd(aPtr, aVal);
  }

  static void store(Type* aPtr, Type aVal)
  {
    _InterlockedExchange(aPtr, aVal);
  }

  static Type exchange(Type* aPtr, Type aVal)
  {
    return _InterlockedExchange(aPtr, aVal);
  }

  static bool compareExchange(Type* aPtr, Type aOldVal, Type aNewVal)
  {
    return _InterlockedCompareExchange(aPtr, aNewVal, aOldVal) == aOldVal;
  }
};

#  if defined(_M_X64)

extern "C" {
long long __cdecl _InterlockedExchangeAdd64(long long volatile* aDst,
                                            long long aVal);
long long __cdecl _InterlockedOr64(long long volatile* aDst,
                                   long long aVal);
long long __cdecl _InterlockedXor64(long long volatile* aDst,
                                    long long aVal);
long long __cdecl _InterlockedAnd64(long long volatile* aDst,
                                    long long aVal);
long long __cdecl _InterlockedExchange64(long long volatile* aDst,
                                         long long aVal);
long long __cdecl _InterlockedCompareExchange64(long long volatile* aDst,
                                                long long aNewVal,
                                                long long aOldVal);
}

#    pragma intrinsic(_InterlockedExchangeAdd64)
#    pragma intrinsic(_InterlockedOr64)
#    pragma intrinsic(_InterlockedXor64)
#    pragma intrinsic(_InterlockedAnd64)
#    pragma intrinsic(_InterlockedExchange64)
#    pragma intrinsic(_InterlockedCompareExchange64)

template <>
struct PrimitiveIntrinsics<8>
{
  typedef __int64 Type;

  static Type add(Type* aPtr, Type aVal)
  {
    return _InterlockedExchangeAdd64(aPtr, aVal);
  }

  static Type sub(Type* aPtr, Type aVal)
  {
    /*
     * There is no _InterlockedExchangeSubtract64.
     */
    return _InterlockedExchangeAdd64(aPtr, -aVal);
  }

  static Type or_(Type* aPtr, Type aVal)
  {
    return _InterlockedOr64(aPtr, aVal);
  }

  static Type xor_(Type* aPtr, Type aVal)
  {
    return _InterlockedXor64(aPtr, aVal);
  }

  static Type and_(Type* aPtr, Type aVal)
  {
    return _InterlockedAnd64(aPtr, aVal);
  }

  static void store(Type* aPtr, Type aVal)
  {
    _InterlockedExchange64(aPtr, aVal);
  }

  static Type exchange(Type* aPtr, Type aVal)
  {
    return _InterlockedExchange64(aPtr, aVal);
  }

  static bool compareExchange(Type* aPtr, Type aOldVal, Type aNewVal)
  {
    return _InterlockedCompareExchange64(aPtr, aNewVal, aOldVal) == aOldVal;
  }
};

#  endif

extern "C" { void _ReadWriteBarrier(); }

#  pragma intrinsic(_ReadWriteBarrier)

template<MemoryOrdering Order> struct Barrier;

/*
 * We do not provide an afterStore method in Barrier, as Relaxed and
 * ReleaseAcquire orderings do not require one, and the required barrier
 * for SequentiallyConsistent is handled by PrimitiveIntrinsics.
 */

template<>
struct Barrier<Relaxed>
{
  static void beforeLoad() {}
  static void afterLoad() {}
  static void beforeStore() {}
};

template<>
struct Barrier<ReleaseAcquire>
{
  static void beforeLoad() {}
  static void afterLoad() { _ReadWriteBarrier(); }
  static void beforeStore() { _ReadWriteBarrier(); }
};

template<>
struct Barrier<SequentiallyConsistent>
{
  static void beforeLoad() { _ReadWriteBarrier(); }
  static void afterLoad() { _ReadWriteBarrier(); }
  static void beforeStore() { _ReadWriteBarrier(); }
};

template<typename PrimType, typename T>
struct CastHelper
{
  static PrimType toPrimType(T aVal) { return static_cast<PrimType>(aVal); }
  static T fromPrimType(PrimType aVal) { return static_cast<T>(aVal); }
};

template<typename PrimType, typename T>
struct CastHelper<PrimType, T*>
{
  static PrimType toPrimType(T* aVal) { return reinterpret_cast<PrimType>(aVal); }
  static T* fromPrimType(PrimType aVal) { return reinterpret_cast<T*>(aVal); }
};

template<typename T>
struct IntrinsicBase
{
  typedef T ValueType;
  typedef PrimitiveIntrinsics<sizeof(T)> Primitives;
  typedef typename Primitives::Type PrimType;
  static_assert(sizeof(PrimType) == sizeof(T),
                "Selection of PrimitiveIntrinsics was wrong");
  typedef CastHelper<PrimType, T> Cast;
};

template<typename T, MemoryOrdering Order>
struct IntrinsicMemoryOps : public IntrinsicBase<T>
{
  typedef typename IntrinsicBase<T>::ValueType ValueType;
  typedef typename IntrinsicBase<T>::Primitives Primitives;
  typedef typename IntrinsicBase<T>::PrimType PrimType;
  typedef typename IntrinsicBase<T>::Cast Cast;

  static ValueType load(const ValueType& aPtr)
  {
    Barrier<Order>::beforeLoad();
    ValueType val = aPtr;
    Barrier<Order>::afterLoad();
    return val;
  }

  static void store(ValueType& aPtr, ValueType aVal)
  {
    // For SequentiallyConsistent, Primitives::store() will generate the
    // proper memory fence.  Everything else just needs a barrier before
    // the store.
    if (Order == SequentiallyConsistent) {
      Primitives::store(reinterpret_cast<PrimType*>(&aPtr),
                        Cast::toPrimType(aVal));
    } else {
      Barrier<Order>::beforeStore();
      aPtr = aVal;
    }
  }

  static ValueType exchange(ValueType& aPtr, ValueType aVal)
  {
    PrimType oldval =
      Primitives::exchange(reinterpret_cast<PrimType*>(&aPtr),
                           Cast::toPrimType(aVal));
    return Cast::fromPrimType(oldval);
  }

  static bool compareExchange(ValueType& aPtr, ValueType aOldVal,
                              ValueType aNewVal)
  {
    return Primitives::compareExchange(reinterpret_cast<PrimType*>(&aPtr),
                                       Cast::toPrimType(aOldVal),
                                       Cast::toPrimType(aNewVal));
  }
};

template<typename T>
struct IntrinsicApplyHelper : public IntrinsicBase<T>
{
  typedef typename IntrinsicBase<T>::ValueType ValueType;
  typedef typename IntrinsicBase<T>::PrimType PrimType;
  typedef typename IntrinsicBase<T>::Cast Cast;
  typedef PrimType (*BinaryOp)(PrimType*, PrimType);
  typedef PrimType (*UnaryOp)(PrimType*);

  static ValueType applyBinaryFunction(BinaryOp aOp, ValueType& aPtr,
                                       ValueType aVal)
  {
    PrimType* primTypePtr = reinterpret_cast<PrimType*>(&aPtr);
    PrimType primTypeVal = Cast::toPrimType(aVal);
    return Cast::fromPrimType(aOp(primTypePtr, primTypeVal));
  }

  static ValueType applyUnaryFunction(UnaryOp aOp, ValueType& aPtr)
  {
    PrimType* primTypePtr = reinterpret_cast<PrimType*>(&aPtr);
    return Cast::fromPrimType(aOp(primTypePtr));
  }
};

template<typename T>
struct IntrinsicAddSub : public IntrinsicApplyHelper<T>
{
  typedef typename IntrinsicApplyHelper<T>::ValueType ValueType;
  typedef typename IntrinsicBase<T>::Primitives Primitives;

  static ValueType add(ValueType& aPtr, ValueType aVal)
  {
    return applyBinaryFunction(&Primitives::add, aPtr, aVal);
  }

  static ValueType sub(ValueType& aPtr, ValueType aVal)
  {
    return applyBinaryFunction(&Primitives::sub, aPtr, aVal);
  }
};

template<typename T>
struct IntrinsicAddSub<T*> : public IntrinsicApplyHelper<T*>
{
  typedef typename IntrinsicApplyHelper<T*>::ValueType ValueType;

  static ValueType add(ValueType& aPtr, ptrdiff_t aAmount)
  {
    return applyBinaryFunction(&Primitives::add, aPtr,
                               (ValueType)(aAmount * sizeof(T)));
  }

  static ValueType sub(ValueType& aPtr, ptrdiff_t aAmount)
  {
    return applyBinaryFunction(&Primitives::sub, aPtr,
                               (ValueType)(aAmount * sizeof(T)));
  }
};

template<typename T>
struct IntrinsicIncDec : public IntrinsicAddSub<T>
{
  typedef typename IntrinsicAddSub<T>::ValueType ValueType;
  static ValueType inc(ValueType& aPtr) { return add(aPtr, 1); }
  static ValueType dec(ValueType& aPtr) { return sub(aPtr, 1); }
};

template<typename T, MemoryOrdering Order>
struct AtomicIntrinsics : public IntrinsicMemoryOps<T, Order>,
                          public IntrinsicIncDec<T>
{
  typedef typename IntrinsicIncDec<T>::ValueType ValueType;

  static ValueType or_(ValueType& aPtr, T aVal)
  {
    return applyBinaryFunction(&Primitives::or_, aPtr, aVal);
  }

  static ValueType xor_(ValueType& aPtr, T aVal)
  {
    return applyBinaryFunction(&Primitives::xor_, aPtr, aVal);
  }

  static ValueType and_(ValueType& aPtr, T aVal)
  {
    return applyBinaryFunction(&Primitives::and_, aPtr, aVal);
  }
};

template<typename T, MemoryOrdering Order>
struct AtomicIntrinsics<T*, Order> : public IntrinsicMemoryOps<T*, Order>,
                                     public IntrinsicIncDec<T*>
{
  typedef typename IntrinsicMemoryOps<T*, Order>::ValueType ValueType;
};

} // namespace detail
} // namespace mozilla

#else
# error "Atomic compiler intrinsics are not supported on your platform"
#endif

namespace mozilla {

namespace detail {

template<typename T, MemoryOrdering Order>
class AtomicBase
{
  // We only support 32-bit types on 32-bit Windows, which constrains our
  // implementation elsewhere.  But we support pointer-sized types everywhere.
  static_assert(sizeof(T) == 4 || (sizeof(uintptr_t) == 8 && sizeof(T) == 8),
                "mozilla/Atomics.h only supports 32-bit and pointer-sized types");

protected:
  typedef typename detail::AtomicIntrinsics<T, Order> Intrinsics;
  typename Intrinsics::ValueType mValue;

public:
  MOZ_CONSTEXPR AtomicBase() : mValue() {}
  explicit MOZ_CONSTEXPR AtomicBase(T aInit) : mValue(aInit) {}

  // Note: we can't provide operator T() here because Atomic<bool> inherits
  // from AtomcBase with T=uint32_t and not T=bool. If we implemented
  // operator T() here, it would cause errors when comparing Atomic<bool> with
  // a regular bool.

  T operator=(T aVal)
  {
    Intrinsics::store(mValue, aVal);
    return aVal;
  }

  /**
   * Performs an atomic swap operation.  aVal is stored and the previous
   * value of this variable is returned.
   */
  T exchange(T aVal)
  {
    return Intrinsics::exchange(mValue, aVal);
  }

  /**
   * Performs an atomic compare-and-swap operation and returns true if it
   * succeeded. This is equivalent to atomically doing
   *
   *   if (mValue == aOldValue) {
   *     mValue = aNewValue;
   *     return true;
   *   } else {
   *     return false;
   *   }
   */
  bool compareExchange(T aOldValue, T aNewValue)
  {
    return Intrinsics::compareExchange(mValue, aOldValue, aNewValue);
  }

private:
  template<MemoryOrdering AnyOrder>
  AtomicBase(const AtomicBase<T, AnyOrder>& aCopy) MOZ_DELETE;
};

template<typename T, MemoryOrdering Order>
class AtomicBaseIncDec : public AtomicBase<T, Order>
{
  typedef typename detail::AtomicBase<T, Order> Base;

public:
  MOZ_CONSTEXPR AtomicBaseIncDec() : Base() {}
  explicit MOZ_CONSTEXPR AtomicBaseIncDec(T aInit) : Base(aInit) {}

  using Base::operator=;

  operator T() const { return Base::Intrinsics::load(Base::mValue); }
  T operator++(int) { return Base::Intrinsics::inc(Base::mValue); }
  T operator--(int) { return Base::Intrinsics::dec(Base::mValue); }
  T operator++() { return Base::Intrinsics::inc(Base::mValue) + 1; }
  T operator--() { return Base::Intrinsics::dec(Base::mValue) - 1; }

private:
  template<MemoryOrdering AnyOrder>
  AtomicBaseIncDec(const AtomicBaseIncDec<T, AnyOrder>& aCopy) MOZ_DELETE;
};

} // namespace detail

/**
 * A wrapper for a type that enforces that all memory accesses are atomic.
 *
 * In general, where a variable |T foo| exists, |Atomic<T> foo| can be used in
 * its place.  Implementations for integral and pointer types are provided
 * below.
 *
 * Atomic accesses are sequentially consistent by default.  You should
 * use the default unless you are tall enough to ride the
 * memory-ordering roller coaster (if you're not sure, you aren't) and
 * you have a compelling reason to do otherwise.
 *
 * There is one exception to the case of atomic memory accesses: providing an
 * initial value of the atomic value is not guaranteed to be atomic.  This is a
 * deliberate design choice that enables static atomic variables to be declared
 * without introducing extra static constructors.
 */
template<typename T,
         MemoryOrdering Order = SequentiallyConsistent,
         typename Enable = void>
class Atomic;

/**
 * Atomic<T> implementation for integral types.
 *
 * In addition to atomic store and load operations, compound assignment and
 * increment/decrement operators are implemented which perform the
 * corresponding read-modify-write operation atomically.  Finally, an atomic
 * swap method is provided.
 */
template<typename T, MemoryOrdering Order>
class Atomic<T, Order, typename EnableIf<IsIntegral<T>::value &&
                       !IsSame<T, bool>::value>::Type>
  : public detail::AtomicBaseIncDec<T, Order>
{
  typedef typename detail::AtomicBaseIncDec<T, Order> Base;

public:
  MOZ_CONSTEXPR Atomic() : Base() {}
  explicit MOZ_CONSTEXPR Atomic(T aInit) : Base(aInit) {}

  using Base::operator=;

  T operator+=(T aDelta)
  {
    return Base::Intrinsics::add(Base::mValue, aDelta) + aDelta;
  }

  T operator-=(T aDelta)
  {
    return Base::Intrinsics::sub(Base::mValue, aDelta) - aDelta;
  }

  T operator|=(T aVal)
  {
    return Base::Intrinsics::or_(Base::mValue, aVal) | aVal;
  }

  T operator^=(T aVal)
  {
    return Base::Intrinsics::xor_(Base::mValue, aVal) ^ aVal;
  }

  T operator&=(T aVal)
  {
    return Base::Intrinsics::and_(Base::mValue, aVal) & aVal;
  }

private:
  Atomic(Atomic<T, Order>& aOther) MOZ_DELETE;
};

/**
 * Atomic<T> implementation for pointer types.
 *
 * An atomic compare-and-swap primitive for pointer variables is provided, as
 * are atomic increment and decement operators.  Also provided are the compound
 * assignment operators for addition and subtraction. Atomic swap (via
 * exchange()) is included as well.
 */
template<typename T, MemoryOrdering Order>
class Atomic<T*, Order> : public detail::AtomicBaseIncDec<T*, Order>
{
  typedef typename detail::AtomicBaseIncDec<T*, Order> Base;

public:
  MOZ_CONSTEXPR Atomic() : Base() {}
  explicit MOZ_CONSTEXPR Atomic(T* aInit) : Base(aInit) {}

  using Base::operator=;

  T* operator+=(ptrdiff_t aDelta)
  {
    return Base::Intrinsics::add(Base::mValue, aDelta) + aDelta;
  }

  T* operator-=(ptrdiff_t aDelta)
  {
    return Base::Intrinsics::sub(Base::mValue, aDelta) - aDelta;
  }

private:
  Atomic(Atomic<T*, Order>& aOther) MOZ_DELETE;
};

/**
 * Atomic<T> implementation for enum types.
 *
 * The atomic store and load operations and the atomic swap method is provided.
 */
template<typename T, MemoryOrdering Order>
class Atomic<T, Order, typename EnableIf<IsEnum<T>::value>::Type>
  : public detail::AtomicBase<T, Order>
{
  typedef typename detail::AtomicBase<T, Order> Base;

public:
  MOZ_CONSTEXPR Atomic() : Base() {}
  explicit MOZ_CONSTEXPR Atomic(T aInit) : Base(aInit) {}

  operator T() const { return Base::Intrinsics::load(Base::mValue); }

  using Base::operator=;

private:
  Atomic(Atomic<T, Order>& aOther) MOZ_DELETE;
};

/**
 * Atomic<T> implementation for boolean types.
 *
 * The atomic store and load operations and the atomic swap method is provided.
 *
 * Note:
 *
 * - sizeof(Atomic<bool>) != sizeof(bool) for some implementations of
 *   bool and/or some implementations of std::atomic. This is allowed in
 *   [atomic.types.generic]p9.
 *
 * - It's not obvious whether the 8-bit atomic functions on Windows are always
 *   inlined or not. If they are not inlined, the corresponding functions in the
 *   runtime library are not available on Windows XP. This is why we implement
 *   Atomic<bool> with an underlying type of uint32_t.
 */
template<MemoryOrdering Order>
class Atomic<bool, Order>
  : protected detail::AtomicBase<uint32_t, Order>
{
  typedef typename detail::AtomicBase<uint32_t, Order> Base;

public:
  MOZ_CONSTEXPR Atomic() : Base() {}
  explicit MOZ_CONSTEXPR Atomic(bool aInit) : Base(aInit) {}

  // We provide boolean wrappers for the underlying AtomicBase methods.
  operator bool() const
  {
    return Base::Intrinsics::load(Base::mValue);
  }

  bool operator=(bool aVal)
  {
    return Base::operator=(aVal);
  }

  bool exchange(bool aVal)
  {
    return Base::exchange(aVal);
  }

  bool compareExchange(bool aOldValue, bool aNewValue)
  {
    return Base::compareExchange(aOldValue, aNewValue);
  }

private:
  Atomic(Atomic<bool, Order>& aOther) MOZ_DELETE;
};

} // namespace mozilla

#endif /* mozilla_Atomics_h */