DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (b6057e17f856)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set sw=2 ts=2 et tw=80 : */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "mozilla/layers/AsyncCompositionManager.h"
#include <stdint.h>                     // for uint32_t
#include "AnimationCommon.h"            // for ComputedTimingFunction
#include "CompositorParent.h"           // for CompositorParent, etc
#include "FrameMetrics.h"               // for FrameMetrics
#include "LayerManagerComposite.h"      // for LayerManagerComposite, etc
#include "Layers.h"                     // for Layer, ContainerLayer, etc
#include "gfxPoint.h"                   // for gfxPoint, gfxSize
#include "gfxPoint3D.h"                 // for gfxPoint3D
#include "mozilla/WidgetUtils.h"        // for ComputeTransformForRotation
#include "mozilla/gfx/BaseRect.h"       // for BaseRect
#include "mozilla/gfx/Point.h"          // for RoundedToInt, PointTyped
#include "mozilla/gfx/Rect.h"           // for RoundedToInt, RectTyped
#include "mozilla/gfx/ScaleFactor.h"    // for ScaleFactor
#include "mozilla/layers/AsyncPanZoomController.h"
#include "mozilla/layers/Compositor.h"  // for Compositor
#include "nsAnimationManager.h"         // for ElementAnimations
#include "nsCSSPropList.h"
#include "nsCoord.h"                    // for NSAppUnitsToFloatPixels, etc
#include "nsDebug.h"                    // for NS_ASSERTION, etc
#include "nsDeviceContext.h"            // for nsDeviceContext
#include "nsDisplayList.h"              // for nsDisplayTransform, etc
#include "nsMathUtils.h"                // for NS_round
#include "nsPoint.h"                    // for nsPoint
#include "nsRect.h"                     // for nsIntRect
#include "nsRegion.h"                   // for nsIntRegion
#include "nsStyleAnimation.h"           // for nsStyleAnimation::Value, etc
#include "nsTArray.h"                   // for nsTArray, nsTArray_Impl, etc
#include "nsTArrayForwardDeclare.h"     // for InfallibleTArray
#if defined(MOZ_WIDGET_ANDROID)
# include <android/log.h>
# include "AndroidBridge.h"
#endif
#include "GeckoProfiler.h"

struct nsCSSValueSharedList;

namespace mozilla {
namespace layers {

using namespace mozilla::gfx;

enum Op { Resolve, Detach };

static bool
IsSameDimension(dom::ScreenOrientation o1, dom::ScreenOrientation o2)
{
  bool isO1portrait = (o1 == dom::eScreenOrientation_PortraitPrimary || o1 == dom::eScreenOrientation_PortraitSecondary);
  bool isO2portrait = (o2 == dom::eScreenOrientation_PortraitPrimary || o2 == dom::eScreenOrientation_PortraitSecondary);
  return !(isO1portrait ^ isO2portrait);
}

static bool
ContentMightReflowOnOrientationChange(const nsIntRect& rect)
{
  return rect.width != rect.height;
}

template<Op OP>
static void
WalkTheTree(Layer* aLayer,
            bool& aReady,
            const TargetConfig& aTargetConfig)
{
  if (RefLayer* ref = aLayer->AsRefLayer()) {
    if (const CompositorParent::LayerTreeState* state = CompositorParent::GetIndirectShadowTree(ref->GetReferentId())) {
      if (Layer* referent = state->mRoot) {
        if (!ref->GetVisibleRegion().IsEmpty()) {
          dom::ScreenOrientation chromeOrientation = aTargetConfig.orientation();
          dom::ScreenOrientation contentOrientation = state->mTargetConfig.orientation();
          if (!IsSameDimension(chromeOrientation, contentOrientation) &&
              ContentMightReflowOnOrientationChange(aTargetConfig.clientBounds())) {
            aReady = false;
          }
        }

        if (OP == Resolve) {
          ref->ConnectReferentLayer(referent);
        } else {
          ref->DetachReferentLayer(referent);
        }
      }
    }
  }
  for (Layer* child = aLayer->GetFirstChild();
       child; child = child->GetNextSibling()) {
    WalkTheTree<OP>(child, aReady, aTargetConfig);
  }
}

void
AsyncCompositionManager::ResolveRefLayers()
{
  if (!mLayerManager->GetRoot()) {
    return;
  }

  mReadyForCompose = true;
  WalkTheTree<Resolve>(mLayerManager->GetRoot(),
                       mReadyForCompose,
                       mTargetConfig);
}

void
AsyncCompositionManager::DetachRefLayers()
{
  if (!mLayerManager->GetRoot()) {
    return;
  }
  WalkTheTree<Detach>(mLayerManager->GetRoot(),
                      mReadyForCompose,
                      mTargetConfig);
}

void
AsyncCompositionManager::ComputeRotation()
{
  if (!mTargetConfig.naturalBounds().IsEmpty()) {
    mLayerManager->SetWorldTransform(
      ComputeTransformForRotation(mTargetConfig.naturalBounds(),
                                  mTargetConfig.rotation()));
  }
}

static bool
GetBaseTransform2D(Layer* aLayer, Matrix* aTransform)
{
  // Start with the animated transform if there is one
  return (aLayer->AsLayerComposite()->GetShadowTransformSetByAnimation() ?
          aLayer->GetLocalTransform() : aLayer->GetTransform()).Is2D(aTransform);
}

static void
TranslateShadowLayer2D(Layer* aLayer,
                       const gfxPoint& aTranslation)
{
  Matrix layerTransform;
  if (!GetBaseTransform2D(aLayer, &layerTransform)) {
    return;
  }

  // Apply the 2D translation to the layer transform.
  layerTransform._31 += aTranslation.x;
  layerTransform._32 += aTranslation.y;

  // The transform already takes the resolution scale into account.  Since we
  // will apply the resolution scale again when computing the effective
  // transform, we must apply the inverse resolution scale here.
  Matrix4x4 layerTransform3D = Matrix4x4::From2D(layerTransform);
  if (ContainerLayer* c = aLayer->AsContainerLayer()) {
    layerTransform3D.Scale(1.0f/c->GetPreXScale(),
                           1.0f/c->GetPreYScale(),
                           1);
  }
  layerTransform3D = layerTransform3D *
    Matrix4x4().Scale(1.0f/aLayer->GetPostXScale(),
                      1.0f/aLayer->GetPostYScale(),
                      1);

  LayerComposite* layerComposite = aLayer->AsLayerComposite();
  layerComposite->SetShadowTransform(layerTransform3D);
  layerComposite->SetShadowTransformSetByAnimation(false);

  const nsIntRect* clipRect = aLayer->GetClipRect();
  if (clipRect) {
    nsIntRect transformedClipRect(*clipRect);
    transformedClipRect.MoveBy(aTranslation.x, aTranslation.y);
    layerComposite->SetShadowClipRect(&transformedClipRect);
  }
}

static bool
AccumulateLayerTransforms2D(Layer* aLayer,
                            Layer* aAncestor,
                            Matrix& aMatrix)
{
  // Accumulate the transforms between this layer and the subtree root layer.
  for (Layer* l = aLayer; l && l != aAncestor; l = l->GetParent()) {
    Matrix l2D;
    if (!GetBaseTransform2D(l, &l2D)) {
      return false;
    }
    aMatrix *= l2D;
  }

  return true;
}

static LayerPoint
GetLayerFixedMarginsOffset(Layer* aLayer,
                           const LayerMargin& aFixedLayerMargins)
{
  // Work out the necessary translation, in root scrollable layer space.
  // Because fixed layer margins are stored relative to the root scrollable
  // layer, we can just take the difference between these values.
  LayerPoint translation;
  const LayerPoint& anchor = aLayer->GetFixedPositionAnchor();
  const LayerMargin& fixedMargins = aLayer->GetFixedPositionMargins();

  if (fixedMargins.left >= 0) {
    if (anchor.x > 0) {
      translation.x -= aFixedLayerMargins.right - fixedMargins.right;
    } else {
      translation.x += aFixedLayerMargins.left - fixedMargins.left;
    }
  }

  if (fixedMargins.top >= 0) {
    if (anchor.y > 0) {
      translation.y -= aFixedLayerMargins.bottom - fixedMargins.bottom;
    } else {
      translation.y += aFixedLayerMargins.top - fixedMargins.top;
    }
  }

  return translation;
}

static gfxFloat
IntervalOverlap(gfxFloat aTranslation, gfxFloat aMin, gfxFloat aMax)
{
  // Determine the amount of overlap between the 1D vector |aTranslation|
  // and the interval [aMin, aMax].
  if (aTranslation > 0) {
    return std::max(0.0, std::min(aMax, aTranslation) - std::max(aMin, 0.0));
  } else {
    return std::min(0.0, std::max(aMin, aTranslation) - std::min(aMax, 0.0));
  }
}

void
AsyncCompositionManager::AlignFixedAndStickyLayers(Layer* aLayer,
                                                   Layer* aTransformedSubtreeRoot,
                                                   const Matrix4x4& aPreviousTransformForRoot,
                                                   const Matrix4x4& aCurrentTransformForRoot,
                                                   const LayerMargin& aFixedLayerMargins)
{
  bool isRootFixed = aLayer->GetIsFixedPosition() &&
    !aLayer->GetParent()->GetIsFixedPosition();
  bool isStickyForSubtree = aLayer->GetIsStickyPosition() &&
    aTransformedSubtreeRoot->AsContainerLayer() &&
    aLayer->GetStickyScrollContainerId() ==
      aTransformedSubtreeRoot->AsContainerLayer()->GetFrameMetrics().GetScrollId();
  if (aLayer != aTransformedSubtreeRoot && (isRootFixed || isStickyForSubtree)) {
    // Insert a translation so that the position of the anchor point is the same
    // before and after the change to the transform of aTransformedSubtreeRoot.
    // This currently only works for fixed layers with 2D transforms.

    // Accumulate the transforms between this layer and the subtree root layer.
    Matrix ancestorTransform;
    if (!AccumulateLayerTransforms2D(aLayer->GetParent(), aTransformedSubtreeRoot,
                                     ancestorTransform)) {
      return;
    }

    Matrix oldRootTransform;
    Matrix newRootTransform;
    if (!aPreviousTransformForRoot.Is2D(&oldRootTransform) ||
        !aCurrentTransformForRoot.Is2D(&newRootTransform)) {
      return;
    }

    // Calculate the cumulative transforms between the subtree root with the
    // old transform and the current transform.
    Matrix oldCumulativeTransform = ancestorTransform * oldRootTransform;
    Matrix newCumulativeTransform = ancestorTransform * newRootTransform;
    if (newCumulativeTransform.IsSingular()) {
      return;
    }
    Matrix newCumulativeTransformInverse = newCumulativeTransform;
    newCumulativeTransformInverse.Invert();

    // Now work out the translation necessary to make sure the layer doesn't
    // move given the new sub-tree root transform.
    Matrix layerTransform;
    if (!GetBaseTransform2D(aLayer, &layerTransform)) {
      return;
    }

    // Calculate any offset necessary, in previous transform sub-tree root
    // space. This is used to make sure fixed position content respects
    // content document fixed position margins.
    LayerPoint offsetInOldSubtreeLayerSpace = GetLayerFixedMarginsOffset(aLayer, aFixedLayerMargins);

    // Add the above offset to the anchor point so we can offset the layer by
    // and amount that's specified in old subtree layer space.
    const LayerPoint& anchorInOldSubtreeLayerSpace = aLayer->GetFixedPositionAnchor();
    LayerPoint offsetAnchorInOldSubtreeLayerSpace = anchorInOldSubtreeLayerSpace + offsetInOldSubtreeLayerSpace;

    // Add the local layer transform to the two points to make the equation
    // below this section more convenient.
    Point anchor(anchorInOldSubtreeLayerSpace.x, anchorInOldSubtreeLayerSpace.y);
    Point offsetAnchor(offsetAnchorInOldSubtreeLayerSpace.x, offsetAnchorInOldSubtreeLayerSpace.y);
    Point locallyTransformedAnchor = layerTransform * anchor;
    Point locallyTransformedOffsetAnchor = layerTransform * offsetAnchor;

    // Transforming the locallyTransformedAnchor by oldCumulativeTransform
    // returns the layer's anchor point relative to the parent of
    // aTransformedSubtreeRoot, before the new transform was applied.
    // Then, applying newCumulativeTransformInverse maps that point relative
    // to the layer's parent, which is the same coordinate space as
    // locallyTransformedAnchor again, allowing us to subtract them and find
    // out the offset necessary to make sure the layer stays stationary.
    Point oldAnchorPositionInNewSpace =
      newCumulativeTransformInverse * (oldCumulativeTransform * locallyTransformedOffsetAnchor);
    Point translation = oldAnchorPositionInNewSpace - locallyTransformedAnchor;

    if (aLayer->GetIsStickyPosition()) {
      // For sticky positioned layers, the difference between the two rectangles
      // defines a pair of translation intervals in each dimension through which
      // the layer should not move relative to the scroll container. To
      // accomplish this, we limit each dimension of the |translation| to that
      // part of it which overlaps those intervals.
      const LayerRect& stickyOuter = aLayer->GetStickyScrollRangeOuter();
      const LayerRect& stickyInner = aLayer->GetStickyScrollRangeInner();

      translation.y = IntervalOverlap(translation.y, stickyOuter.y, stickyOuter.YMost()) -
                      IntervalOverlap(translation.y, stickyInner.y, stickyInner.YMost());
      translation.x = IntervalOverlap(translation.x, stickyOuter.x, stickyOuter.XMost()) -
                      IntervalOverlap(translation.x, stickyInner.x, stickyInner.XMost());
    }

    // Finally, apply the 2D translation to the layer transform.
    TranslateShadowLayer2D(aLayer, ThebesPoint(translation));

    // The transform has now been applied, so there's no need to iterate over
    // child layers.
    return;
  }

  // Fixed layers are relative to their nearest scrollable layer, so when we
  // encounter a scrollable layer, bail. ApplyAsyncContentTransformToTree will
  // have already recursed on this layer and called AlignFixedAndStickyLayers
  // on it with its own transforms.
  if (aLayer->AsContainerLayer() &&
      aLayer->AsContainerLayer()->GetFrameMetrics().IsScrollable() &&
      aLayer != aTransformedSubtreeRoot) {
    return;
  }

  for (Layer* child = aLayer->GetFirstChild();
       child; child = child->GetNextSibling()) {
    AlignFixedAndStickyLayers(child, aTransformedSubtreeRoot,
                              aPreviousTransformForRoot,
                              aCurrentTransformForRoot, aFixedLayerMargins);
  }
}

static void
SampleValue(float aPortion, Animation& aAnimation, nsStyleAnimation::Value& aStart,
            nsStyleAnimation::Value& aEnd, Animatable* aValue)
{
  nsStyleAnimation::Value interpolatedValue;
  NS_ASSERTION(aStart.GetUnit() == aEnd.GetUnit() ||
               aStart.GetUnit() == nsStyleAnimation::eUnit_None ||
               aEnd.GetUnit() == nsStyleAnimation::eUnit_None, "Must have same unit");
  nsStyleAnimation::Interpolate(aAnimation.property(), aStart, aEnd,
                                aPortion, interpolatedValue);
  if (aAnimation.property() == eCSSProperty_opacity) {
    *aValue = interpolatedValue.GetFloatValue();
    return;
  }

  nsCSSValueSharedList* interpolatedList =
    interpolatedValue.GetCSSValueSharedListValue();

  TransformData& data = aAnimation.data().get_TransformData();
  nsPoint origin = data.origin();
  // we expect all our transform data to arrive in css pixels, so here we must
  // adjust to dev pixels.
  double cssPerDev = double(nsDeviceContext::AppUnitsPerCSSPixel())
                     / double(data.appUnitsPerDevPixel());
  gfxPoint3D transformOrigin = data.transformOrigin();
  transformOrigin.x = transformOrigin.x * cssPerDev;
  transformOrigin.y = transformOrigin.y * cssPerDev;
  gfxPoint3D perspectiveOrigin = data.perspectiveOrigin();
  perspectiveOrigin.x = perspectiveOrigin.x * cssPerDev;
  perspectiveOrigin.y = perspectiveOrigin.y * cssPerDev;
  nsDisplayTransform::FrameTransformProperties props(interpolatedList,
                                                     transformOrigin,
                                                     perspectiveOrigin,
                                                     data.perspective());
  gfx3DMatrix transform =
    nsDisplayTransform::GetResultingTransformMatrix(props, origin,
                                                    data.appUnitsPerDevPixel(),
                                                    &data.bounds());
  gfxPoint3D scaledOrigin =
    gfxPoint3D(NS_round(NSAppUnitsToFloatPixels(origin.x, data.appUnitsPerDevPixel())),
               NS_round(NSAppUnitsToFloatPixels(origin.y, data.appUnitsPerDevPixel())),
               0.0f);

  transform.Translate(scaledOrigin);

  InfallibleTArray<TransformFunction> functions;
  Matrix4x4 realTransform;
  ToMatrix4x4(transform, realTransform);
  functions.AppendElement(TransformMatrix(realTransform));
  *aValue = functions;
}

static bool
SampleAnimations(Layer* aLayer, TimeStamp aPoint)
{
  AnimationArray& animations = aLayer->GetAnimations();
  InfallibleTArray<AnimData>& animationData = aLayer->GetAnimationData();

  bool activeAnimations = false;

  for (uint32_t i = animations.Length(); i-- !=0; ) {
    Animation& animation = animations[i];
    AnimData& animData = animationData[i];

    activeAnimations = true;

    TimeDuration elapsedDuration = aPoint - animation.startTime();
    // Skip animations that are yet to start.
    //
    // Currently, this should only happen when the refresh driver is under test
    // control and is made to produce a time in the past or is restored from
    // test control causing it to jump backwards in time.
    //
    // Since activeAnimations is true, this could mean we keep compositing
    // unnecessarily during the delay, but so long as this only happens while
    // the refresh driver is under test control that should be ok.
    if (elapsedDuration.ToSeconds() < 0) {
      continue;
    }

    AnimationTiming timing;
    timing.mIterationDuration = animation.duration();
    timing.mIterationCount = animation.iterationCount();
    timing.mDirection = animation.direction();
    // Animations typically only run on the compositor during their active
    // interval but if we end up sampling them outside that range (for
    // example, while they are waiting to be removed) we currently just
    // assume that we should fill.
    timing.mFillMode = NS_STYLE_ANIMATION_FILL_MODE_BOTH;

    ComputedTiming computedTiming =
      ElementAnimation::GetComputedTimingAt(elapsedDuration, timing);

    NS_ABORT_IF_FALSE(0.0 <= computedTiming.mTimeFraction &&
                      computedTiming.mTimeFraction <= 1.0,
                      "time fraction should be in [0-1]");

    int segmentIndex = 0;
    AnimationSegment* segment = animation.segments().Elements();
    while (segment->endPortion() < computedTiming.mTimeFraction) {
      ++segment;
      ++segmentIndex;
    }

    double positionInSegment =
      (computedTiming.mTimeFraction - segment->startPortion()) /
      (segment->endPortion() - segment->startPortion());

    double portion =
      animData.mFunctions[segmentIndex]->GetValue(positionInSegment);

    // interpolate the property
    Animatable interpolatedValue;
    SampleValue(portion, animation, animData.mStartValues[segmentIndex],
                animData.mEndValues[segmentIndex], &interpolatedValue);
    LayerComposite* layerComposite = aLayer->AsLayerComposite();
    switch (animation.property()) {
    case eCSSProperty_opacity:
    {
      layerComposite->SetShadowOpacity(interpolatedValue.get_float());
      break;
    }
    case eCSSProperty_transform:
    {
      Matrix4x4 matrix = interpolatedValue.get_ArrayOfTransformFunction()[0].get_TransformMatrix().value();
      if (ContainerLayer* c = aLayer->AsContainerLayer()) {
        matrix = matrix * Matrix4x4().Scale(c->GetInheritedXScale(),
                                            c->GetInheritedYScale(),
                                            1);
      }
      layerComposite->SetShadowTransform(matrix);
      layerComposite->SetShadowTransformSetByAnimation(true);
      break;
    }
    default:
      NS_WARNING("Unhandled animated property");
    }
  }

  for (Layer* child = aLayer->GetFirstChild(); child;
       child = child->GetNextSibling()) {
    activeAnimations |= SampleAnimations(child, aPoint);
  }

  return activeAnimations;
}

Matrix4x4
CombineWithCSSTransform(const gfx3DMatrix& treeTransform, Layer* aLayer)
{
  Matrix4x4 result;
  ToMatrix4x4(treeTransform, result);
  result = result * aLayer->GetTransform();
  return result;
}

bool
AsyncCompositionManager::ApplyAsyncContentTransformToTree(TimeStamp aCurrentFrame,
                                                          Layer *aLayer,
                                                          bool* aWantNextFrame)
{
  bool appliedTransform = false;
  for (Layer* child = aLayer->GetFirstChild();
      child; child = child->GetNextSibling()) {
    appliedTransform |=
      ApplyAsyncContentTransformToTree(aCurrentFrame, child, aWantNextFrame);
  }

  ContainerLayer* container = aLayer->AsContainerLayer();
  if (!container) {
    return appliedTransform;
  }

  if (AsyncPanZoomController* controller = container->GetAsyncPanZoomController()) {
    LayerComposite* layerComposite = aLayer->AsLayerComposite();
    Matrix4x4 oldTransform = aLayer->GetTransform();

    ViewTransform treeTransformWithoutOverscroll, overscrollTransform;
    ScreenPoint scrollOffset;
    *aWantNextFrame |=
      controller->SampleContentTransformForFrame(aCurrentFrame,
                                                 &treeTransformWithoutOverscroll,
                                                 scrollOffset,
                                                 &overscrollTransform);

    const FrameMetrics& metrics = container->GetFrameMetrics();
    CSSToLayerScale paintScale = metrics.LayersPixelsPerCSSPixel();
    CSSRect displayPort(metrics.mCriticalDisplayPort.IsEmpty() ?
                        metrics.mDisplayPort : metrics.mCriticalDisplayPort);
    LayerMargin fixedLayerMargins(0, 0, 0, 0);
    ScreenPoint offset(0, 0);
    SyncFrameMetrics(scrollOffset, treeTransformWithoutOverscroll.mScale.scale,
                     metrics.mScrollableRect, mLayersUpdated, displayPort,
                     paintScale, mIsFirstPaint, fixedLayerMargins, offset);

    mIsFirstPaint = false;
    mLayersUpdated = false;

    // Apply the render offset
    mLayerManager->GetCompositor()->SetScreenRenderOffset(offset);

    Matrix4x4 transform = CombineWithCSSTransform(
        treeTransformWithoutOverscroll * overscrollTransform, aLayer);

    // GetTransform already takes the pre- and post-scale into account.  Since we
    // will apply the pre- and post-scale again when computing the effective
    // transform, we must apply the inverses here.
    transform.Scale(1.0f/container->GetPreXScale(),
                    1.0f/container->GetPreYScale(),
                    1);
    transform = transform * Matrix4x4().Scale(1.0f/aLayer->GetPostXScale(),
                                              1.0f/aLayer->GetPostYScale(),
                                              1);
    layerComposite->SetShadowTransform(transform);
    NS_ASSERTION(!layerComposite->GetShadowTransformSetByAnimation(),
                 "overwriting animated transform!");

    // Apply resolution scaling to the old transform - the layer tree as it is
    // doesn't have the necessary transform to display correctly.
    LayoutDeviceToLayerScale resolution = metrics.mCumulativeResolution;
    oldTransform.Scale(resolution.scale, resolution.scale, 1);

    // For the purpose of aligning fixed and sticky layers, we disregard
    // the overscroll transform when computing the 'aCurrentTransformForRoot'
    // parameter. This ensures that the overscroll transform is not unapplied,
    // and therefore that the visual effect applies to fixed and sticky layers.
    Matrix4x4 transformWithoutOverscroll = CombineWithCSSTransform(
        treeTransformWithoutOverscroll, aLayer);
    AlignFixedAndStickyLayers(aLayer, aLayer, oldTransform,
                              transformWithoutOverscroll, fixedLayerMargins);

    appliedTransform = true;
  }

  if (container->GetScrollbarDirection() != Layer::NONE) {
    ApplyAsyncTransformToScrollbar(aCurrentFrame, container);
  }
  return appliedTransform;
}

static bool
LayerHasNonContainerDescendants(ContainerLayer* aContainer)
{
  for (Layer* child = aContainer->GetFirstChild();
       child; child = child->GetNextSibling()) {
    ContainerLayer* container = child->AsContainerLayer();
    if (!container || LayerHasNonContainerDescendants(container)) {
      return true;
    }
  }

  return false;
}

static bool
LayerIsContainerForScrollbarTarget(Layer* aTarget, ContainerLayer* aScrollbar)
{
  if (!aTarget->AsContainerLayer()) {
    return false;
  }
  AsyncPanZoomController* apzc = aTarget->AsContainerLayer()->GetAsyncPanZoomController();
  if (!apzc) {
    return false;
  }
  const FrameMetrics& metrics = aTarget->AsContainerLayer()->GetFrameMetrics();
  if (metrics.GetScrollId() != aScrollbar->GetScrollbarTargetContainerId()) {
    return false;
  }
  return true;
}

static void
ApplyAsyncTransformToScrollbarForContent(TimeStamp aCurrentFrame, ContainerLayer* aScrollbar,
                                         Layer* aContent, bool aScrollbarIsChild)
{
  ContainerLayer* content = aContent->AsContainerLayer();

  // We only apply the transform if the scroll-target layer has non-container
  // children (i.e. when it has some possibly-visible content). This is to
  // avoid moving scroll-bars in the situation that only a scroll information
  // layer has been built for a scroll frame, as this would result in a
  // disparity between scrollbars and visible content.
  if (!LayerHasNonContainerDescendants(content)) {
    return;
  }

  const FrameMetrics& metrics = content->GetFrameMetrics();
  AsyncPanZoomController* apzc = content->GetAsyncPanZoomController();

  if (aScrollbarIsChild) {
    // Because we try to apply the scrollbar transform before we apply the async transform on
    // the actual content, we need to ensure that the APZC has updated any pending animations
    // to the current frame timestamp before we extract the transforms from it. The code in this
    // block accomplishes that and throws away the temp variables.
    // TODO: it might be cleaner to do a pass through the layer tree to advance all the APZC
    // transforms before updating the layer shadow transforms. That will allow removal of this code.
    ViewTransform treeTransform;
    ScreenPoint scrollOffset;
    apzc->SampleContentTransformForFrame(aCurrentFrame, &treeTransform, scrollOffset);
  }

  gfx3DMatrix asyncTransform = gfx3DMatrix(apzc->GetCurrentAsyncTransform());
  gfx3DMatrix nontransientTransform = apzc->GetNontransientAsyncTransform();
  gfx3DMatrix transientTransform = asyncTransform * nontransientTransform.Inverse();

  // |transientTransform| represents the amount by which we have scrolled and
  // zoomed since the last paint. Because the scrollbar was sized and positioned based
  // on the painted content, we need to adjust it based on transientTransform so that
  // it reflects what the user is actually seeing now.
  // - The scroll thumb needs to be scaled in the direction of scrolling by the inverse
  //   of the transientTransform scale (representing the zoom). This is because zooming
  //   in decreases the fraction of the whole scrollable rect that is in view.
  // - It needs to be translated in opposite direction of the transientTransform
  //   translation (representing the scroll). This is because scrolling down, which
  //   translates the layer content up, should result in moving the scroll thumb down.
  //   The amount of the translation to the scroll thumb should be such that the ratio
  //   of the translation to the size of the scroll port is the same as the ratio
  //   of the scroll amount to the size of the scrollable rect.
  Matrix4x4 scrollbarTransform;
  if (aScrollbar->GetScrollbarDirection() == Layer::VERTICAL) {
    float scale = metrics.CalculateCompositedSizeInCssPixels().height / metrics.mScrollableRect.height;
    scrollbarTransform = scrollbarTransform * Matrix4x4().Scale(1.f, 1.f / transientTransform.GetYScale(), 1.f);
    scrollbarTransform = scrollbarTransform * Matrix4x4().Translate(0, -transientTransform._42 * scale, 0);
  }
  if (aScrollbar->GetScrollbarDirection() == Layer::HORIZONTAL) {
    float scale = metrics.CalculateCompositedSizeInCssPixels().width / metrics.mScrollableRect.width;
    scrollbarTransform = scrollbarTransform * Matrix4x4().Scale(1.f / transientTransform.GetXScale(), 1.f, 1.f);
    scrollbarTransform = scrollbarTransform * Matrix4x4().Translate(-transientTransform._41 * scale, 0, 0);
  }

  Matrix4x4 transform = scrollbarTransform * aScrollbar->GetTransform();

  if (aScrollbarIsChild) {
    // If the scrollbar layer is a child of the content it is a scrollbar for, then we
    // need to do an extra untransform to cancel out the transient async transform on
    // the content. This is needed because otherwise that transient async transform is
    // part of the effective transform of this scrollbar, and the scrollbar will jitter
    // as the content scrolls.
    Matrix4x4 targetUntransform;
    ToMatrix4x4(transientTransform.Inverse(), targetUntransform);
    transform = transform * targetUntransform;
  }

  // GetTransform already takes the pre- and post-scale into account.  Since we
  // will apply the pre- and post-scale again when computing the effective
  // transform, we must apply the inverses here.
  transform.Scale(1.0f/aScrollbar->GetPreXScale(),
                  1.0f/aScrollbar->GetPreYScale(),
                  1);
  transform = transform * Matrix4x4().Scale(1.0f/aScrollbar->GetPostXScale(),
                                            1.0f/aScrollbar->GetPostYScale(),
                                            1);
  aScrollbar->AsLayerComposite()->SetShadowTransform(transform);
}

static Layer*
FindScrolledLayerForScrollbar(ContainerLayer* aLayer, bool* aOutIsAncestor)
{
  // Search all siblings of aLayer and of its ancestors.
  for (Layer* ancestor = aLayer; ancestor; ancestor = ancestor->GetParent()) {
    for (Layer* scrollTarget = ancestor;
         scrollTarget;
         scrollTarget = scrollTarget->GetPrevSibling()) {
      if (scrollTarget != aLayer &&
          LayerIsContainerForScrollbarTarget(scrollTarget, aLayer)) {
        *aOutIsAncestor = (scrollTarget == ancestor);
        return scrollTarget;
      }
    }
    for (Layer* scrollTarget = ancestor->GetNextSibling();
         scrollTarget;
         scrollTarget = scrollTarget->GetNextSibling()) {
      if (LayerIsContainerForScrollbarTarget(scrollTarget, aLayer)) {
        *aOutIsAncestor = false;
        return scrollTarget;
      }
    }
  }
  return nullptr;
}

void
AsyncCompositionManager::ApplyAsyncTransformToScrollbar(TimeStamp aCurrentFrame, ContainerLayer* aLayer)
{
  // If this layer corresponds to a scrollbar, then there should be a layer that
  // is a previous sibling or a parent that has a matching ViewID on its FrameMetrics.
  // That is the content that this scrollbar is for. We pick up the transient
  // async transform from that layer and use it to update the scrollbar position.
  // Note that it is possible that the content layer is no longer there; in
  // this case we don't need to do anything because there can't be an async
  // transform on the content.
  bool isAncestor = false;
  Layer* scrollTarget = FindScrolledLayerForScrollbar(aLayer, &isAncestor);
  if (scrollTarget) {
    ApplyAsyncTransformToScrollbarForContent(aCurrentFrame, aLayer, scrollTarget,
                                             isAncestor);
  }
}

void
AsyncCompositionManager::TransformScrollableLayer(Layer* aLayer)
{
  LayerComposite* layerComposite = aLayer->AsLayerComposite();
  ContainerLayer* container = aLayer->AsContainerLayer();

  const FrameMetrics& metrics = container->GetFrameMetrics();
  // We must apply the resolution scale before a pan/zoom transform, so we call
  // GetTransform here.
  gfx3DMatrix currentTransform;
  To3DMatrix(aLayer->GetTransform(), currentTransform);
  Matrix4x4 oldTransform = aLayer->GetTransform();

  gfx3DMatrix treeTransform;

  CSSToLayerScale geckoZoom = metrics.LayersPixelsPerCSSPixel();

  LayerIntPoint scrollOffsetLayerPixels = RoundedToInt(metrics.GetScrollOffset() * geckoZoom);

  if (mIsFirstPaint) {
    mContentRect = metrics.mScrollableRect;
    SetFirstPaintViewport(scrollOffsetLayerPixels,
                          geckoZoom,
                          mContentRect);
    mIsFirstPaint = false;
  } else if (!metrics.mScrollableRect.IsEqualEdges(mContentRect)) {
    mContentRect = metrics.mScrollableRect;
    SetPageRect(mContentRect);
  }

  // We synchronise the viewport information with Java after sending the above
  // notifications, so that Java can take these into account in its response.
  // Calculate the absolute display port to send to Java
  LayerIntRect displayPort = RoundedToInt(
    (metrics.mCriticalDisplayPort.IsEmpty()
      ? metrics.mDisplayPort
      : metrics.mCriticalDisplayPort
    ) * geckoZoom);
  displayPort += scrollOffsetLayerPixels;

  LayerMargin fixedLayerMargins(0, 0, 0, 0);
  ScreenPoint offset(0, 0);

  // Ideally we would initialize userZoom to AsyncPanZoomController::CalculateResolution(metrics)
  // but this causes a reftest-ipc test to fail (see bug 883646 comment 27). The reason for this
  // appears to be that metrics.mZoom is poorly initialized in some scenarios. In these scenarios,
  // however, we can assume there is no async zooming in progress and so the following statement
  // works fine.
  CSSToScreenScale userZoom(metrics.mDevPixelsPerCSSPixel * metrics.mCumulativeResolution * LayerToScreenScale(1));
  ScreenPoint userScroll = metrics.GetScrollOffset() * userZoom;
  SyncViewportInfo(displayPort, geckoZoom, mLayersUpdated,
                   userScroll, userZoom, fixedLayerMargins,
                   offset);
  mLayersUpdated = false;

  // Apply the render offset
  mLayerManager->GetCompositor()->SetScreenRenderOffset(offset);

  // Handle transformations for asynchronous panning and zooming. We determine the
  // zoom used by Gecko from the transformation set on the root layer, and we
  // determine the scroll offset used by Gecko from the frame metrics of the
  // primary scrollable layer. We compare this to the user zoom and scroll
  // offset in the view transform we obtained from Java in order to compute the
  // transformation we need to apply.
  LayerToScreenScale zoomAdjust = userZoom / geckoZoom;

  LayerPoint geckoScroll(0, 0);
  if (metrics.IsScrollable()) {
    geckoScroll = metrics.GetScrollOffset() * geckoZoom;
  }

  LayerPoint translation = (userScroll / zoomAdjust) - geckoScroll;
  treeTransform = gfx3DMatrix(ViewTransform(-translation,
                                            userZoom
                                          / metrics.mDevPixelsPerCSSPixel
                                          / metrics.GetParentResolution()));

  // The transform already takes the resolution scale into account.  Since we
  // will apply the resolution scale again when computing the effective
  // transform, we must apply the inverse resolution scale here.
  gfx3DMatrix computedTransform = treeTransform * currentTransform;
  computedTransform.Scale(1.0f/container->GetPreXScale(),
                          1.0f/container->GetPreYScale(),
                          1);
  computedTransform.ScalePost(1.0f/container->GetPostXScale(),
                              1.0f/container->GetPostYScale(),
                              1);
  Matrix4x4 matrix;
  ToMatrix4x4(computedTransform, matrix);
  layerComposite->SetShadowTransform(matrix);
  NS_ASSERTION(!layerComposite->GetShadowTransformSetByAnimation(),
               "overwriting animated transform!");

  // Apply resolution scaling to the old transform - the layer tree as it is
  // doesn't have the necessary transform to display correctly.
  oldTransform.Scale(metrics.mResolution.scale, metrics.mResolution.scale, 1);

  // Make sure that overscroll and under-zoom are represented in the old
  // transform so that fixed position content moves and scales accordingly.
  // These calculations will effectively scale and offset fixed position layers
  // in screen space when the compensatory transform is performed in
  // AlignFixedAndStickyLayers.
  ScreenRect contentScreenRect = mContentRect * userZoom;
  gfxPoint3D overscrollTranslation;
  if (userScroll.x < contentScreenRect.x) {
    overscrollTranslation.x = contentScreenRect.x - userScroll.x;
  } else if (userScroll.x + metrics.mCompositionBounds.width > contentScreenRect.XMost()) {
    overscrollTranslation.x = contentScreenRect.XMost() -
      (userScroll.x + metrics.mCompositionBounds.width);
  }
  if (userScroll.y < contentScreenRect.y) {
    overscrollTranslation.y = contentScreenRect.y - userScroll.y;
  } else if (userScroll.y + metrics.mCompositionBounds.height > contentScreenRect.YMost()) {
    overscrollTranslation.y = contentScreenRect.YMost() -
      (userScroll.y + metrics.mCompositionBounds.height);
  }
  oldTransform.Translate(overscrollTranslation.x,
                         overscrollTranslation.y,
                         overscrollTranslation.z);

  gfx::Size underZoomScale(1.0f, 1.0f);
  if (mContentRect.width * userZoom.scale < metrics.mCompositionBounds.width) {
    underZoomScale.width = (mContentRect.width * userZoom.scale) /
      metrics.mCompositionBounds.width;
  }
  if (mContentRect.height * userZoom.scale < metrics.mCompositionBounds.height) {
    underZoomScale.height = (mContentRect.height * userZoom.scale) /
      metrics.mCompositionBounds.height;
  }
  oldTransform.Scale(underZoomScale.width, underZoomScale.height, 1);

  // Make sure fixed position layers don't move away from their anchor points
  // when we're asynchronously panning or zooming
  AlignFixedAndStickyLayers(aLayer, aLayer, oldTransform,
                            aLayer->GetLocalTransform(), fixedLayerMargins);
}

bool
AsyncCompositionManager::TransformShadowTree(TimeStamp aCurrentFrame)
{
  PROFILER_LABEL("AsyncCompositionManager", "TransformShadowTree",
    js::ProfileEntry::Category::GRAPHICS);

  Layer* root = mLayerManager->GetRoot();
  if (!root) {
    return false;
  }

  // NB: we must sample animations *before* sampling pan/zoom
  // transforms.
  bool wantNextFrame = SampleAnimations(root, aCurrentFrame);

  // FIXME/bug 775437: unify this interface with the ~native-fennec
  // derived code
  //
  // Attempt to apply an async content transform to any layer that has
  // an async pan zoom controller (which means that it is rendered
  // async using Gecko). If this fails, fall back to transforming the
  // primary scrollable layer.  "Failing" here means that we don't
  // find a frame that is async scrollable.  Note that the fallback
  // code also includes Fennec which is rendered async.  Fennec uses
  // its own platform-specific async rendering that is done partially
  // in Gecko and partially in Java.
  if (!ApplyAsyncContentTransformToTree(aCurrentFrame, root, &wantNextFrame)) {
    nsAutoTArray<Layer*,1> scrollableLayers;
#ifdef MOZ_WIDGET_ANDROID
    scrollableLayers.AppendElement(mLayerManager->GetPrimaryScrollableLayer());
#else
    mLayerManager->GetScrollableLayers(scrollableLayers);
#endif

    for (uint32_t i = 0; i < scrollableLayers.Length(); i++) {
      if (scrollableLayers[i]) {
        TransformScrollableLayer(scrollableLayers[i]);
      }
    }
  }

  return wantNextFrame;
}

void
AsyncCompositionManager::SetFirstPaintViewport(const LayerIntPoint& aOffset,
                                               const CSSToLayerScale& aZoom,
                                               const CSSRect& aCssPageRect)
{
#ifdef MOZ_WIDGET_ANDROID
  AndroidBridge::Bridge()->SetFirstPaintViewport(aOffset, aZoom, aCssPageRect);
#endif
}

void
AsyncCompositionManager::SetPageRect(const CSSRect& aCssPageRect)
{
#ifdef MOZ_WIDGET_ANDROID
  AndroidBridge::Bridge()->SetPageRect(aCssPageRect);
#endif
}

void
AsyncCompositionManager::SyncViewportInfo(const LayerIntRect& aDisplayPort,
                                          const CSSToLayerScale& aDisplayResolution,
                                          bool aLayersUpdated,
                                          ScreenPoint& aScrollOffset,
                                          CSSToScreenScale& aScale,
                                          LayerMargin& aFixedLayerMargins,
                                          ScreenPoint& aOffset)
{
#ifdef MOZ_WIDGET_ANDROID
  AndroidBridge::Bridge()->SyncViewportInfo(aDisplayPort,
                                            aDisplayResolution,
                                            aLayersUpdated,
                                            aScrollOffset,
                                            aScale,
                                            aFixedLayerMargins,
                                            aOffset);
#endif
}

void
AsyncCompositionManager::SyncFrameMetrics(const ScreenPoint& aScrollOffset,
                                          float aZoom,
                                          const CSSRect& aCssPageRect,
                                          bool aLayersUpdated,
                                          const CSSRect& aDisplayPort,
                                          const CSSToLayerScale& aDisplayResolution,
                                          bool aIsFirstPaint,
                                          LayerMargin& aFixedLayerMargins,
                                          ScreenPoint& aOffset)
{
#ifdef MOZ_WIDGET_ANDROID
  AndroidBridge::Bridge()->SyncFrameMetrics(aScrollOffset, aZoom, aCssPageRect,
                                            aLayersUpdated, aDisplayPort,
                                            aDisplayResolution, aIsFirstPaint,
                                            aFixedLayerMargins, aOffset);
#endif
}

} // namespace layers
} // namespace mozilla