DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (27a812186ff4)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

/* A type/length-parametrized vector class. */

#ifndef mozilla_Vector_h
#define mozilla_Vector_h

#include "mozilla/Alignment.h"
#include "mozilla/AllocPolicy.h"
#include "mozilla/ArrayUtils.h" // for PointerRangeSize
#include "mozilla/Assertions.h"
#include "mozilla/Attributes.h"
#include "mozilla/MathAlgorithms.h"
#include "mozilla/MemoryReporting.h"
#include "mozilla/Move.h"
#include "mozilla/NullPtr.h"
#include "mozilla/ReentrancyGuard.h"
#include "mozilla/TemplateLib.h"
#include "mozilla/TypeTraits.h"

#include <new> // for placement new

/* Silence dire "bugs in previous versions of MSVC have been fixed" warnings */
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable:4345)
#endif

namespace mozilla {

template<typename T, size_t N, class AllocPolicy, class ThisVector>
class VectorBase;

namespace detail {

/*
 * Check that the given capacity wastes the minimal amount of space if
 * allocated on the heap.  This means that cap*sizeof(T) is as close to a
 * power-of-two as possible.  growStorageBy() is responsible for ensuring
 * this.
 */
template<typename T>
static bool CapacityHasExcessSpace(size_t cap)
{
  size_t size = cap * sizeof(T);
  return RoundUpPow2(size) - size >= sizeof(T);
}

/*
 * This template class provides a default implementation for vector operations
 * when the element type is not known to be a POD, as judged by IsPod.
 */
template<typename T, size_t N, class AP, class ThisVector, bool IsPod>
struct VectorImpl
{
    /* Destroys constructed objects in the range [begin, end). */
    static inline void destroy(T* begin, T* end) {
      MOZ_ASSERT(begin <= end);
      for (T* p = begin; p < end; ++p)
        p->~T();
    }

    /* Constructs objects in the uninitialized range [begin, end). */
    static inline void initialize(T* begin, T* end) {
      MOZ_ASSERT(begin <= end);
      for (T* p = begin; p < end; ++p)
        new(p) T();
    }

    /*
     * Copy-constructs objects in the uninitialized range
     * [dst, dst+(srcend-srcbeg)) from the range [srcbeg, srcend).
     */
    template<typename U>
    static inline void copyConstruct(T* dst, const U* srcbeg, const U* srcend) {
      MOZ_ASSERT(srcbeg <= srcend);
      for (const U* p = srcbeg; p < srcend; ++p, ++dst)
        new(dst) T(*p);
    }

    /*
     * Move-constructs objects in the uninitialized range
     * [dst, dst+(srcend-srcbeg)) from the range [srcbeg, srcend).
     */
    template<typename U>
    static inline void moveConstruct(T* dst, U* srcbeg, U* srcend) {
      MOZ_ASSERT(srcbeg <= srcend);
      for (U* p = srcbeg; p < srcend; ++p, ++dst)
        new(dst) T(Move(*p));
    }

    /*
     * Copy-constructs objects in the uninitialized range [dst, dst+n) from the
     * same object u.
     */
    template<typename U>
    static inline void copyConstructN(T* dst, size_t n, const U& u) {
      for (T* end = dst + n; dst < end; ++dst)
        new(dst) T(u);
    }

    /*
     * Grows the given buffer to have capacity newCap, preserving the objects
     * constructed in the range [begin, end) and updating v. Assumes that (1)
     * newCap has not overflowed, and (2) multiplying newCap by sizeof(T) will
     * not overflow.
     */
    static inline bool
    growTo(VectorBase<T, N, AP, ThisVector>& v, size_t newCap) {
      MOZ_ASSERT(!v.usingInlineStorage());
      MOZ_ASSERT(!CapacityHasExcessSpace<T>(newCap));
      T* newbuf = reinterpret_cast<T*>(v.malloc_(newCap * sizeof(T)));
      if (!newbuf)
        return false;
      T* dst = newbuf;
      T* src = v.beginNoCheck();
      for (; src < v.endNoCheck(); ++dst, ++src)
        new(dst) T(Move(*src));
      VectorImpl::destroy(v.beginNoCheck(), v.endNoCheck());
      v.free_(v.mBegin);
      v.mBegin = newbuf;
      /* v.mLength is unchanged. */
      v.mCapacity = newCap;
      return true;
    }
};

/*
 * This partial template specialization provides a default implementation for
 * vector operations when the element type is known to be a POD, as judged by
 * IsPod.
 */
template<typename T, size_t N, class AP, class ThisVector>
struct VectorImpl<T, N, AP, ThisVector, true>
{
    static inline void destroy(T*, T*) {}

    static inline void initialize(T* begin, T* end) {
      /*
       * You would think that memset would be a big win (or even break even)
       * when we know T is a POD. But currently it's not. This is probably
       * because |append| tends to be given small ranges and memset requires
       * a function call that doesn't get inlined.
       *
       * memset(begin, 0, sizeof(T) * (end-begin));
       */
      MOZ_ASSERT(begin <= end);
      for (T* p = begin; p < end; ++p)
        new(p) T();
    }

    template<typename U>
    static inline void copyConstruct(T* dst, const U* srcbeg, const U* srcend) {
      /*
       * See above memset comment. Also, notice that copyConstruct is
       * currently templated (T != U), so memcpy won't work without
       * requiring T == U.
       *
       * memcpy(dst, srcbeg, sizeof(T) * (srcend - srcbeg));
       */
      MOZ_ASSERT(srcbeg <= srcend);
      for (const U* p = srcbeg; p < srcend; ++p, ++dst)
        *dst = *p;
    }

    template<typename U>
    static inline void moveConstruct(T* dst, const U* srcbeg, const U* srcend) {
      copyConstruct(dst, srcbeg, srcend);
    }

    static inline void copyConstructN(T* dst, size_t n, const T& t) {
      for (T* end = dst + n; dst < end; ++dst)
        *dst = t;
    }

    static inline bool
    growTo(VectorBase<T, N, AP, ThisVector>& v, size_t newCap) {
      MOZ_ASSERT(!v.usingInlineStorage());
      MOZ_ASSERT(!CapacityHasExcessSpace<T>(newCap));
      size_t oldSize = sizeof(T) * v.mCapacity;
      size_t newSize = sizeof(T) * newCap;
      T* newbuf = reinterpret_cast<T*>(v.realloc_(v.mBegin, oldSize, newSize));
      if (!newbuf)
        return false;
      v.mBegin = newbuf;
      /* v.mLength is unchanged. */
      v.mCapacity = newCap;
      return true;
    }
};

} // namespace detail

/*
 * A CRTP base class for vector-like classes.  Unless you really really want
 * your own vector class -- and you almost certainly don't -- you should use
 * mozilla::Vector instead!
 *
 * See mozilla::Vector for interface requirements.
 */
template<typename T, size_t N, class AllocPolicy, class ThisVector>
class VectorBase : private AllocPolicy
{
    /* utilities */

    static const bool sElemIsPod = IsPod<T>::value;
    typedef detail::VectorImpl<T, N, AllocPolicy, ThisVector, sElemIsPod> Impl;
    friend struct detail::VectorImpl<T, N, AllocPolicy, ThisVector, sElemIsPod>;

    bool growStorageBy(size_t incr);
    bool convertToHeapStorage(size_t newCap);

    /* magic constants */

    static const int sMaxInlineBytes = 1024;

    /* compute constants */

    /*
     * Consider element size to be 1 for buffer sizing if there are 0 inline
     * elements.  This allows us to compile when the definition of the element
     * type is not visible here.
     *
     * Explicit specialization is only allowed at namespace scope, so in order
     * to keep everything here, we use a dummy template parameter with partial
     * specialization.
     */
    template<int M, int Dummy>
    struct ElemSize
    {
        static const size_t value = sizeof(T);
    };
    template<int Dummy>
    struct ElemSize<0, Dummy>
    {
        static const size_t value = 1;
    };

    static const size_t sInlineCapacity =
      tl::Min<N, sMaxInlineBytes / ElemSize<N, 0>::value>::value;

    /* Calculate inline buffer size; avoid 0-sized array. */
    static const size_t sInlineBytes =
      tl::Max<1, sInlineCapacity * ElemSize<N, 0>::value>::value;

    /* member data */

    /*
     * Pointer to the buffer, be it inline or heap-allocated. Only [mBegin,
     * mBegin + mLength) hold valid constructed T objects. The range [mBegin +
     * mLength, mBegin + mCapacity) holds uninitialized memory. The range
     * [mBegin + mLength, mBegin + mReserved) also holds uninitialized memory
     * previously allocated by a call to reserve().
     */
    T* mBegin;

    /* Number of elements in the vector. */
    size_t mLength;

    /* Max number of elements storable in the vector without resizing. */
    size_t mCapacity;

#ifdef DEBUG
    /* Max elements of reserved or used space in this vector. */
    size_t mReserved;
#endif

    /* Memory used for inline storage. */
    AlignedStorage<sInlineBytes> storage;

#ifdef DEBUG
    friend class ReentrancyGuard;
    bool entered;
#endif

    /* private accessors */

    bool usingInlineStorage() const {
      return mBegin == const_cast<VectorBase*>(this)->inlineStorage();
    }

    T* inlineStorage() {
      return static_cast<T*>(storage.addr());
    }

    T* beginNoCheck() const {
      return mBegin;
    }

    T* endNoCheck() {
      return mBegin + mLength;
    }

    const T* endNoCheck() const {
      return mBegin + mLength;
    }

#ifdef DEBUG
    size_t reserved() const {
      MOZ_ASSERT(mReserved <= mCapacity);
      MOZ_ASSERT(mLength <= mReserved);
      return mReserved;
    }
#endif

    /* Append operations guaranteed to succeed due to pre-reserved space. */
    template<typename U> void internalAppend(U&& u);
    template<typename U, size_t O, class BP, class UV>
    void internalAppendAll(const VectorBase<U, O, BP, UV>& u);
    void internalAppendN(const T& t, size_t n);
    template<typename U> void internalAppend(const U* begin, size_t length);

  public:
    static const size_t sMaxInlineStorage = N;

    typedef T ElementType;

    VectorBase(AllocPolicy = AllocPolicy());
    VectorBase(ThisVector&&); /* Move constructor. */
    ThisVector& operator=(ThisVector&&); /* Move assignment. */
    ~VectorBase();

    /* accessors */

    const AllocPolicy& allocPolicy() const {
      return *this;
    }

    AllocPolicy& allocPolicy() {
      return *this;
    }

    enum { InlineLength = N };

    size_t length() const {
      return mLength;
    }

    bool empty() const {
      return mLength == 0;
    }

    size_t capacity() const {
      return mCapacity;
    }

    T* begin() {
      MOZ_ASSERT(!entered);
      return mBegin;
    }

    const T* begin() const {
      MOZ_ASSERT(!entered);
      return mBegin;
    }

    T* end() {
      MOZ_ASSERT(!entered);
      return mBegin + mLength;
    }

    const T* end() const {
      MOZ_ASSERT(!entered);
      return mBegin + mLength;
    }

    T& operator[](size_t i) {
      MOZ_ASSERT(!entered);
      MOZ_ASSERT(i < mLength);
      return begin()[i];
    }

    const T& operator[](size_t i) const {
      MOZ_ASSERT(!entered);
      MOZ_ASSERT(i < mLength);
      return begin()[i];
    }

    T& back() {
      MOZ_ASSERT(!entered);
      MOZ_ASSERT(!empty());
      return *(end() - 1);
    }

    const T& back() const {
      MOZ_ASSERT(!entered);
      MOZ_ASSERT(!empty());
      return *(end() - 1);
    }

    class Range
    {
        friend class VectorBase;
        T* cur_;
        T* end_;
        Range(T* cur, T* end) : cur_(cur), end_(end) {
          MOZ_ASSERT(cur <= end);
        }

      public:
        Range() {}
        bool empty() const { return cur_ == end_; }
        size_t remain() const { return PointerRangeSize(cur_, end_); }
        T& front() const { MOZ_ASSERT(!empty()); return *cur_; }
        void popFront() { MOZ_ASSERT(!empty()); ++cur_; }
        T popCopyFront() { MOZ_ASSERT(!empty()); return *cur_++; }
    };

    Range all() {
      return Range(begin(), end());
    }

    /* mutators */

    /**
     * Given that the vector is empty and has no inline storage, grow to
     * |capacity|.
     */
    bool initCapacity(size_t request);

    /**
     * If reserve(length() + N) succeeds, the N next appends are guaranteed to
     * succeed.
     */
    bool reserve(size_t request);

    /**
     * Destroy elements in the range [end() - incr, end()). Does not deallocate
     * or unreserve storage for those elements.
     */
    void shrinkBy(size_t incr);

    /** Grow the vector by incr elements. */
    bool growBy(size_t incr);

    /** Call shrinkBy or growBy based on whether newSize > length(). */
    bool resize(size_t newLength);

    /**
     * Increase the length of the vector, but don't initialize the new elements
     * -- leave them as uninitialized memory.
     */
    bool growByUninitialized(size_t incr);
    bool resizeUninitialized(size_t newLength);

    /** Shorthand for shrinkBy(length()). */
    void clear();

    /** Clears and releases any heap-allocated storage. */
    void clearAndFree();

    /**
     * If true, appending |needed| elements won't reallocate elements storage.
     * This *doesn't* mean that infallibleAppend may be used!  You still must
     * reserve the extra space, even if this method indicates that appends won't
     * need to reallocate elements storage.
     */
    bool canAppendWithoutRealloc(size_t needed) const;

    /** Potentially fallible append operations. */

    /**
     * This can take either a T& or a T&&. Given a T&&, it moves |u| into the
     * vector, instead of copying it. If it fails, |u| is left unmoved. ("We are
     * not amused.")
     */
    template<typename U> bool append(U&& u);

    template<typename U, size_t O, class BP, class UV>
    bool appendAll(const VectorBase<U, O, BP, UV>& u);
    bool appendN(const T& t, size_t n);
    template<typename U> bool append(const U* begin, const U* end);
    template<typename U> bool append(const U* begin, size_t length);

    /*
     * Guaranteed-infallible append operations for use upon vectors whose
     * memory has been pre-reserved.  Don't use this if you haven't reserved the
     * memory!
     */
    template<typename U> void infallibleAppend(U&& u) {
      internalAppend(Forward<U>(u));
    }
    void infallibleAppendN(const T& t, size_t n) {
      internalAppendN(t, n);
    }
    template<typename U> void infallibleAppend(const U* aBegin, const U* aEnd) {
      internalAppend(aBegin, PointerRangeSize(aBegin, aEnd));
    }
    template<typename U> void infallibleAppend(const U* aBegin, size_t aLength) {
      internalAppend(aBegin, aLength);
    }

    void popBack();

    T popCopy();

    /**
     * Transfers ownership of the internal buffer used by this vector to the
     * caller.  (It's the caller's responsibility to properly deallocate this
     * buffer, in accordance with this vector's AllocPolicy.)  After this call,
     * the vector is empty.  Since the returned buffer may need to be allocated
     * (if the elements are currently stored in-place), the call can fail,
     * returning nullptr.
     *
     * N.B. Although a T*, only the range [0, length()) is constructed.
     */
    T* extractRawBuffer();

    /**
     * Transfer ownership of an array of objects into the vector.  The caller
     * must have allocated the array in accordance with this vector's
     * AllocPolicy.
     *
     * N.B. This call assumes that there are no uninitialized elements in the
     *      passed array.
     */
    void replaceRawBuffer(T* p, size_t length);

    /**
     * Places |val| at position |p|, shifting existing elements from |p| onward
     * one position higher.  On success, |p| should not be reused because it'll
     * be a dangling pointer if reallocation of the vector storage occurred; the
     * return value should be used instead.  On failure, nullptr is returned.
     *
     * Example usage:
     *
     *   if (!(p = vec.insert(p, val)))
     *     <handle failure>
     *   <keep working with p>
     *
     * This is inherently a linear-time operation.  Be careful!
     */
    template<typename U>
    T* insert(T* p, U&& val);

    /**
     * Removes the element |t|, which must fall in the bounds [begin, end),
     * shifting existing elements from |t + 1| onward one position lower.
     */
    void erase(T* t);

    /**
     * Measure the size of the vector's heap-allocated storage.
     */
    size_t sizeOfExcludingThis(MallocSizeOf mallocSizeOf) const;

    /**
     * Like sizeOfExcludingThis, but also measures the size of the vector
     * object (which must be heap-allocated) itself.
     */
    size_t sizeOfIncludingThis(MallocSizeOf mallocSizeOf) const;

    void swap(ThisVector& other);

  private:
    VectorBase(const VectorBase&) MOZ_DELETE;
    void operator=(const VectorBase&) MOZ_DELETE;

    /* Move-construct/assign only from our derived class, ThisVector. */
    VectorBase(VectorBase&&) MOZ_DELETE;
    void operator=(VectorBase&&) MOZ_DELETE;
};

/* This does the re-entrancy check plus several other sanity checks. */
#define MOZ_REENTRANCY_GUARD_ET_AL \
  ReentrancyGuard g(*this); \
  MOZ_ASSERT_IF(usingInlineStorage(), mCapacity == sInlineCapacity); \
  MOZ_ASSERT(reserved() <= mCapacity); \
  MOZ_ASSERT(mLength <= reserved()); \
  MOZ_ASSERT(mLength <= mCapacity)

/* Vector Implementation */

template<typename T, size_t N, class AP, class TV>
MOZ_ALWAYS_INLINE
VectorBase<T, N, AP, TV>::VectorBase(AP ap)
  : AP(ap),
    mLength(0),
    mCapacity(sInlineCapacity)
#ifdef DEBUG
  , mReserved(sInlineCapacity),
    entered(false)
#endif
{
  mBegin = static_cast<T*>(storage.addr());
}

/* Move constructor. */
template<typename T, size_t N, class AllocPolicy, class TV>
MOZ_ALWAYS_INLINE
VectorBase<T, N, AllocPolicy, TV>::VectorBase(TV&& rhs)
  : AllocPolicy(Move(rhs))
#ifdef DEBUG
    , entered(false)
#endif
{
  mLength = rhs.mLength;
  mCapacity = rhs.mCapacity;
#ifdef DEBUG
  mReserved = rhs.mReserved;
#endif

  if (rhs.usingInlineStorage()) {
    /* We can't move the buffer over in this case, so copy elements. */
    mBegin = static_cast<T*>(storage.addr());
    Impl::moveConstruct(mBegin, rhs.beginNoCheck(), rhs.endNoCheck());
    /*
     * Leave rhs's mLength, mBegin, mCapacity, and mReserved as they are.
     * The elements in its in-line storage still need to be destroyed.
     */
  } else {
    /*
     * Take src's buffer, and turn src into an empty vector using
     * in-line storage.
     */
    mBegin = rhs.mBegin;
    rhs.mBegin = static_cast<T*>(rhs.storage.addr());
    rhs.mCapacity = sInlineCapacity;
    rhs.mLength = 0;
#ifdef DEBUG
    rhs.mReserved = sInlineCapacity;
#endif
  }
}

/* Move assignment. */
template<typename T, size_t N, class AP, class TV>
MOZ_ALWAYS_INLINE
TV&
VectorBase<T, N, AP, TV>::operator=(TV&& rhs)
{
  MOZ_ASSERT(this != &rhs, "self-move assignment is prohibited");
  TV* tv = static_cast<TV*>(this);
  tv->~TV();
  new(tv) TV(Move(rhs));
  return *tv;
}

template<typename T, size_t N, class AP, class TV>
MOZ_ALWAYS_INLINE
VectorBase<T, N, AP, TV>::~VectorBase()
{
  MOZ_REENTRANCY_GUARD_ET_AL;
  Impl::destroy(beginNoCheck(), endNoCheck());
  if (!usingInlineStorage())
    this->free_(beginNoCheck());
}

/*
 * This function will create a new heap buffer with capacity newCap,
 * move all elements in the inline buffer to this new buffer,
 * and fail on OOM.
 */
template<typename T, size_t N, class AP, class TV>
inline bool
VectorBase<T, N, AP, TV>::convertToHeapStorage(size_t newCap)
{
  MOZ_ASSERT(usingInlineStorage());

  /* Allocate buffer. */
  MOZ_ASSERT(!detail::CapacityHasExcessSpace<T>(newCap));
  T* newBuf = reinterpret_cast<T*>(this->malloc_(newCap * sizeof(T)));
  if (!newBuf)
    return false;

  /* Copy inline elements into heap buffer. */
  Impl::moveConstruct(newBuf, beginNoCheck(), endNoCheck());
  Impl::destroy(beginNoCheck(), endNoCheck());

  /* Switch in heap buffer. */
  mBegin = newBuf;
  /* mLength is unchanged. */
  mCapacity = newCap;
  return true;
}

template<typename T, size_t N, class AP, class TV>
MOZ_NEVER_INLINE bool
VectorBase<T, N, AP, TV>::growStorageBy(size_t incr)
{
  MOZ_ASSERT(mLength + incr > mCapacity);
  MOZ_ASSERT_IF(!usingInlineStorage(),
                !detail::CapacityHasExcessSpace<T>(mCapacity));

  /*
   * When choosing a new capacity, its size should is as close to 2**N bytes
   * as possible.  2**N-sized requests are best because they are unlikely to
   * be rounded up by the allocator.  Asking for a 2**N number of elements
   * isn't as good, because if sizeof(T) is not a power-of-two that would
   * result in a non-2**N request size.
   */

  size_t newCap;

  if (incr == 1) {
    if (usingInlineStorage()) {
      /* This case occurs in ~70--80% of the calls to this function. */
      size_t newSize =
        tl::RoundUpPow2<(sInlineCapacity + 1) * sizeof(T)>::value;
      newCap = newSize / sizeof(T);
      goto convert;
    }

    if (mLength == 0) {
      /* This case occurs in ~0--10% of the calls to this function. */
      newCap = 1;
      goto grow;
    }

    /* This case occurs in ~15--20% of the calls to this function. */

    /*
     * Will mLength * 4 *sizeof(T) overflow?  This condition limits a vector
     * to 1GB of memory on a 32-bit system, which is a reasonable limit.  It
     * also ensures that
     *
     *   static_cast<char*>(end()) - static_cast<char*>(begin())
     *
     * doesn't overflow ptrdiff_t (see bug 510319).
     */
    if (mLength & tl::MulOverflowMask<4 * sizeof(T)>::value) {
      this->reportAllocOverflow();
      return false;
    }

    /*
     * If we reach here, the existing capacity will have a size that is already
     * as close to 2^N as sizeof(T) will allow.  Just double the capacity, and
     * then there might be space for one more element.
     */
    newCap = mLength * 2;
    if (detail::CapacityHasExcessSpace<T>(newCap))
      newCap += 1;
  } else {
    /* This case occurs in ~2% of the calls to this function. */
    size_t newMinCap = mLength + incr;

    /* Did mLength + incr overflow?  Will newCap * sizeof(T) overflow? */
    if (newMinCap < mLength ||
        newMinCap & tl::MulOverflowMask<2 * sizeof(T)>::value)
    {
      this->reportAllocOverflow();
      return false;
    }

    size_t newMinSize = newMinCap * sizeof(T);
    size_t newSize = RoundUpPow2(newMinSize);
    newCap = newSize / sizeof(T);
  }

  if (usingInlineStorage()) {
  convert:
    return convertToHeapStorage(newCap);
  }

grow:
  return Impl::growTo(*this, newCap);
}

template<typename T, size_t N, class AP, class TV>
inline bool
VectorBase<T, N, AP, TV>::initCapacity(size_t request)
{
  MOZ_ASSERT(empty());
  MOZ_ASSERT(usingInlineStorage());
  if (request == 0)
    return true;
  T* newbuf = reinterpret_cast<T*>(this->malloc_(request * sizeof(T)));
  if (!newbuf)
    return false;
  mBegin = newbuf;
  mCapacity = request;
#ifdef DEBUG
  mReserved = request;
#endif
  return true;
}

template<typename T, size_t N, class AP, class TV>
inline bool
VectorBase<T, N, AP, TV>::reserve(size_t request)
{
  MOZ_REENTRANCY_GUARD_ET_AL;
  if (request > mCapacity && !growStorageBy(request - mLength))
    return false;

#ifdef DEBUG
  if (request > mReserved)
    mReserved = request;
  MOZ_ASSERT(mLength <= mReserved);
  MOZ_ASSERT(mReserved <= mCapacity);
#endif
  return true;
}

template<typename T, size_t N, class AP, class TV>
inline void
VectorBase<T, N, AP, TV>::shrinkBy(size_t incr)
{
  MOZ_REENTRANCY_GUARD_ET_AL;
  MOZ_ASSERT(incr <= mLength);
  Impl::destroy(endNoCheck() - incr, endNoCheck());
  mLength -= incr;
}

template<typename T, size_t N, class AP, class TV>
MOZ_ALWAYS_INLINE bool
VectorBase<T, N, AP, TV>::growBy(size_t incr)
{
  MOZ_REENTRANCY_GUARD_ET_AL;
  if (incr > mCapacity - mLength && !growStorageBy(incr))
    return false;

  MOZ_ASSERT(mLength + incr <= mCapacity);
  T* newend = endNoCheck() + incr;
  Impl::initialize(endNoCheck(), newend);
  mLength += incr;
#ifdef DEBUG
  if (mLength > mReserved)
    mReserved = mLength;
#endif
  return true;
}

template<typename T, size_t N, class AP, class TV>
MOZ_ALWAYS_INLINE bool
VectorBase<T, N, AP, TV>::growByUninitialized(size_t incr)
{
  MOZ_REENTRANCY_GUARD_ET_AL;
  if (incr > mCapacity - mLength && !growStorageBy(incr))
    return false;

  MOZ_ASSERT(mLength + incr <= mCapacity);
  mLength += incr;
#ifdef DEBUG
  if (mLength > mReserved)
    mReserved = mLength;
#endif
  return true;
}

template<typename T, size_t N, class AP, class TV>
inline bool
VectorBase<T, N, AP, TV>::resize(size_t newLength)
{
  size_t curLength = mLength;
  if (newLength > curLength)
    return growBy(newLength - curLength);
  shrinkBy(curLength - newLength);
  return true;
}

template<typename T, size_t N, class AP, class TV>
MOZ_ALWAYS_INLINE bool
VectorBase<T, N, AP, TV>::resizeUninitialized(size_t newLength)
{
  size_t curLength = mLength;
  if (newLength > curLength)
    return growByUninitialized(newLength - curLength);
  shrinkBy(curLength - newLength);
  return true;
}

template<typename T, size_t N, class AP, class TV>
inline void
VectorBase<T, N, AP, TV>::clear()
{
  MOZ_REENTRANCY_GUARD_ET_AL;
  Impl::destroy(beginNoCheck(), endNoCheck());
  mLength = 0;
}

template<typename T, size_t N, class AP, class TV>
inline void
VectorBase<T, N, AP, TV>::clearAndFree()
{
  clear();

  if (usingInlineStorage())
    return;

  this->free_(beginNoCheck());
  mBegin = static_cast<T*>(storage.addr());
  mCapacity = sInlineCapacity;
#ifdef DEBUG
  mReserved = sInlineCapacity;
#endif
}

template<typename T, size_t N, class AP, class TV>
inline bool
VectorBase<T, N, AP, TV>::canAppendWithoutRealloc(size_t needed) const
{
  return mLength + needed <= mCapacity;
}

template<typename T, size_t N, class AP, class TV>
template<typename U, size_t O, class BP, class UV>
MOZ_ALWAYS_INLINE void
VectorBase<T, N, AP, TV>::internalAppendAll(const VectorBase<U, O, BP, UV>& other)
{
  internalAppend(other.begin(), other.length());
}

template<typename T, size_t N, class AP, class TV>
template<typename U>
MOZ_ALWAYS_INLINE void
VectorBase<T, N, AP, TV>::internalAppend(U&& u)
{
  MOZ_ASSERT(mLength + 1 <= mReserved);
  MOZ_ASSERT(mReserved <= mCapacity);
  new(endNoCheck()) T(Forward<U>(u));
  ++mLength;
}

template<typename T, size_t N, class AP, class TV>
MOZ_ALWAYS_INLINE bool
VectorBase<T, N, AP, TV>::appendN(const T& t, size_t needed)
{
  MOZ_REENTRANCY_GUARD_ET_AL;
  if (mLength + needed > mCapacity && !growStorageBy(needed))
    return false;

#ifdef DEBUG
  if (mLength + needed > mReserved)
    mReserved = mLength + needed;
#endif
  internalAppendN(t, needed);
  return true;
}

template<typename T, size_t N, class AP, class TV>
MOZ_ALWAYS_INLINE void
VectorBase<T, N, AP, TV>::internalAppendN(const T& t, size_t needed)
{
  MOZ_ASSERT(mLength + needed <= mReserved);
  MOZ_ASSERT(mReserved <= mCapacity);
  Impl::copyConstructN(endNoCheck(), needed, t);
  mLength += needed;
}

template<typename T, size_t N, class AP, class TV>
template<typename U>
inline T*
VectorBase<T, N, AP, TV>::insert(T* p, U&& val)
{
  MOZ_ASSERT(begin() <= p);
  MOZ_ASSERT(p <= end());
  size_t pos = p - begin();
  MOZ_ASSERT(pos <= mLength);
  size_t oldLength = mLength;
  if (pos == oldLength) {
    if (!append(Forward<U>(val)))
      return nullptr;
  } else {
    T oldBack = Move(back());
    if (!append(Move(oldBack))) /* Dup the last element. */
      return nullptr;
    for (size_t i = oldLength; i > pos; --i)
      (*this)[i] = Move((*this)[i - 1]);
    (*this)[pos] = Forward<U>(val);
  }
  return begin() + pos;
}

template<typename T, size_t N, class AP, class TV>
inline void
VectorBase<T, N, AP, TV>::erase(T* it)
{
  MOZ_ASSERT(begin() <= it);
  MOZ_ASSERT(it < end());
  while (it + 1 < end()) {
    *it = *(it + 1);
    ++it;
  }
    popBack();
}

template<typename T, size_t N, class AP, class TV>
template<typename U>
MOZ_ALWAYS_INLINE bool
VectorBase<T, N, AP, TV>::append(const U* insBegin, const U* insEnd)
{
  MOZ_REENTRANCY_GUARD_ET_AL;
  size_t needed = PointerRangeSize(insBegin, insEnd);
  if (mLength + needed > mCapacity && !growStorageBy(needed))
    return false;

#ifdef DEBUG
  if (mLength + needed > mReserved)
    mReserved = mLength + needed;
#endif
  internalAppend(insBegin, needed);
  return true;
}

template<typename T, size_t N, class AP, class TV>
template<typename U>
MOZ_ALWAYS_INLINE void
VectorBase<T, N, AP, TV>::internalAppend(const U* insBegin, size_t insLength)
{
  MOZ_ASSERT(mLength + insLength <= mReserved);
  MOZ_ASSERT(mReserved <= mCapacity);
  Impl::copyConstruct(endNoCheck(), insBegin, insBegin + insLength);
  mLength += insLength;
}

template<typename T, size_t N, class AP, class TV>
template<typename U>
MOZ_ALWAYS_INLINE bool
VectorBase<T, N, AP, TV>::append(U&& u)
{
  MOZ_REENTRANCY_GUARD_ET_AL;
  if (mLength == mCapacity && !growStorageBy(1))
    return false;

#ifdef DEBUG
  if (mLength + 1 > mReserved)
    mReserved = mLength + 1;
#endif
  internalAppend(Forward<U>(u));
  return true;
}

template<typename T, size_t N, class AP, class TV>
template<typename U, size_t O, class BP, class UV>
MOZ_ALWAYS_INLINE bool
VectorBase<T, N, AP, TV>::appendAll(const VectorBase<U, O, BP, UV>& other)
{
  return append(other.begin(), other.length());
}

template<typename T, size_t N, class AP, class TV>
template<class U>
MOZ_ALWAYS_INLINE bool
VectorBase<T, N, AP, TV>::append(const U *insBegin, size_t insLength)
{
  return append(insBegin, insBegin + insLength);
}

template<typename T, size_t N, class AP, class TV>
MOZ_ALWAYS_INLINE void
VectorBase<T, N, AP, TV>::popBack()
{
  MOZ_REENTRANCY_GUARD_ET_AL;
  MOZ_ASSERT(!empty());
  --mLength;
  endNoCheck()->~T();
}

template<typename T, size_t N, class AP, class TV>
MOZ_ALWAYS_INLINE T
VectorBase<T, N, AP, TV>::popCopy()
{
  T ret = back();
  popBack();
  return ret;
}

template<typename T, size_t N, class AP, class TV>
inline T*
VectorBase<T, N, AP, TV>::extractRawBuffer()
{
  T* ret;
  if (usingInlineStorage()) {
    ret = reinterpret_cast<T*>(this->malloc_(mLength * sizeof(T)));
    if (!ret)
      return nullptr;
    Impl::copyConstruct(ret, beginNoCheck(), endNoCheck());
    Impl::destroy(beginNoCheck(), endNoCheck());
    /* mBegin, mCapacity are unchanged. */
    mLength = 0;
  } else {
    ret = mBegin;
    mBegin = static_cast<T*>(storage.addr());
    mLength = 0;
    mCapacity = sInlineCapacity;
#ifdef DEBUG
    mReserved = sInlineCapacity;
#endif
  }
  return ret;
}

template<typename T, size_t N, class AP, class TV>
inline void
VectorBase<T, N, AP, TV>::replaceRawBuffer(T* p, size_t aLength)
{
  MOZ_REENTRANCY_GUARD_ET_AL;

  /* Destroy what we have. */
  Impl::destroy(beginNoCheck(), endNoCheck());
  if (!usingInlineStorage())
    this->free_(beginNoCheck());

  /* Take in the new buffer. */
  if (aLength <= sInlineCapacity) {
    /*
     * We convert to inline storage if possible, even though p might
     * otherwise be acceptable.  Maybe this behaviour should be
     * specifiable with an argument to this function.
     */
    mBegin = static_cast<T*>(storage.addr());
    mLength = aLength;
    mCapacity = sInlineCapacity;
    Impl::moveConstruct(mBegin, p, p + aLength);
    Impl::destroy(p, p + aLength);
    this->free_(p);
  } else {
    mBegin = p;
    mLength = aLength;
    mCapacity = aLength;
  }
#ifdef DEBUG
  mReserved = aLength;
#endif
}

template<typename T, size_t N, class AP, class TV>
inline size_t
VectorBase<T, N, AP, TV>::sizeOfExcludingThis(MallocSizeOf mallocSizeOf) const
{
  return usingInlineStorage() ? 0 : mallocSizeOf(beginNoCheck());
}

template<typename T, size_t N, class AP, class TV>
inline size_t
VectorBase<T, N, AP, TV>::sizeOfIncludingThis(MallocSizeOf mallocSizeOf) const
{
  return mallocSizeOf(this) + sizeOfExcludingThis(mallocSizeOf);
}

template<typename T, size_t N, class AP, class TV>
inline void
VectorBase<T, N, AP, TV>::swap(TV& other)
{
  static_assert(N == 0,
                "still need to implement this for N != 0");

  // This only works when inline storage is always empty.
  if (!usingInlineStorage() && other.usingInlineStorage()) {
    other.mBegin = mBegin;
    mBegin = inlineStorage();
  } else if (usingInlineStorage() && !other.usingInlineStorage()) {
    mBegin = other.mBegin;
    other.mBegin = other.inlineStorage();
  } else if (!usingInlineStorage() && !other.usingInlineStorage()) {
    Swap(mBegin, other.mBegin);
  } else {
    // This case is a no-op, since we'd set both to use their inline storage.
  }

  Swap(mLength, other.mLength);
  Swap(mCapacity, other.mCapacity);
#ifdef DEBUG
  Swap(mReserved, other.mReserved);
#endif
}

/*
 * STL-like container providing a short-lived, dynamic buffer.  Vector calls the
 * constructors/destructors of all elements stored in its internal buffer, so
 * non-PODs may be safely used.  Additionally, Vector will store the first N
 * elements in-place before resorting to dynamic allocation.
 *
 * T requirements:
 *  - default and copy constructible, assignable, destructible
 *  - operations do not throw
 * N requirements:
 *  - any value, however, N is clamped to min/max values
 * AllocPolicy:
 *  - see "Allocation policies" in AllocPolicy.h (defaults to
 *    mozilla::MallocAllocPolicy)
 *
 * Vector is not reentrant: T member functions called during Vector member
 * functions must not call back into the same object!
 */
template<typename T,
         size_t MinInlineCapacity = 0,
         class AllocPolicy = MallocAllocPolicy>
class Vector
  : public VectorBase<T,
                      MinInlineCapacity,
                      AllocPolicy,
                      Vector<T, MinInlineCapacity, AllocPolicy> >
{
    typedef VectorBase<T, MinInlineCapacity, AllocPolicy, Vector> Base;

  public:
    Vector(AllocPolicy alloc = AllocPolicy()) : Base(alloc) {}
    Vector(Vector&& vec) : Base(Move(vec)) {}
    Vector& operator=(Vector&& vec) {
      return Base::operator=(Move(vec));
    }
};

} // namespace mozilla

#ifdef _MSC_VER
#pragma warning(pop)
#endif

#endif /* mozilla_Vector_h */