DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (27a812186ff4)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
 * vim: set ts=8 sts=4 et sw=4 tw=99:
 *
 * Copyright (C) 2009 Apple Inc. All rights reserved.
 * Copyright (C) 2010 Peter Varga (pvarga@inf.u-szeged.hu), University of Szeged
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
 */

#include "yarr/YarrPattern.h"

#include "yarr/Yarr.h"
#include "yarr/YarrCanonicalizeUCS2.h"
#include "yarr/YarrParser.h"

using namespace WTF;

namespace JSC { namespace Yarr {

#include "yarr/RegExpJitTables.h"

#if WTF_CPU_SPARC
# define BASE_FRAME_SIZE 24
#else
# define BASE_FRAME_SIZE 0
#endif

// Thanks, windows.h!
#undef min
#undef max

class CharacterClassConstructor {
public:
    CharacterClassConstructor(bool isCaseInsensitive = false)
        : m_isCaseInsensitive(isCaseInsensitive)
    {
    }
    
    void reset()
    {
        m_matches.clear();
        m_ranges.clear();
        m_matchesUnicode.clear();
        m_rangesUnicode.clear();
    }

    void append(const CharacterClass* other)
    {
        for (size_t i = 0; i < other->m_matches.size(); ++i)
            addSorted(m_matches, other->m_matches[i]);
        for (size_t i = 0; i < other->m_ranges.size(); ++i)
            addSortedRange(m_ranges, other->m_ranges[i].begin, other->m_ranges[i].end);
        for (size_t i = 0; i < other->m_matchesUnicode.size(); ++i)
            addSorted(m_matchesUnicode, other->m_matchesUnicode[i]);
        for (size_t i = 0; i < other->m_rangesUnicode.size(); ++i)
            addSortedRange(m_rangesUnicode, other->m_rangesUnicode[i].begin, other->m_rangesUnicode[i].end);
    }

    void putChar(UChar ch)
    {
        // Handle ascii cases.
        if (ch <= 0x7f) {
            if (m_isCaseInsensitive && isASCIIAlpha(ch)) {
                addSorted(m_matches, toASCIIUpper(ch));
                addSorted(m_matches, toASCIILower(ch));
            } else
                addSorted(m_matches, ch);
            return;
        }

        // Simple case, not a case-insensitive match.
        if (!m_isCaseInsensitive) {
            addSorted(m_matchesUnicode, ch);
            return;
        }

        // Add multiple matches, if necessary.
        const UCS2CanonicalizationRange* info = rangeInfoFor(ch);
        if (info->type == CanonicalizeUnique)
            addSorted(m_matchesUnicode, ch);
        else
            putUnicodeIgnoreCase(ch, info);
    }

    void putUnicodeIgnoreCase(UChar ch, const UCS2CanonicalizationRange* info)
    {
        ASSERT(m_isCaseInsensitive);
        ASSERT(ch > 0x7f);
        ASSERT(ch >= info->begin && ch <= info->end);
        ASSERT(info->type != CanonicalizeUnique);
        if (info->type == CanonicalizeSet) {
            for (const uint16_t* set = characterSetInfo[info->value]; (ch = *set); ++set)
                addSorted(m_matchesUnicode, ch);
        } else {
            addSorted(m_matchesUnicode, ch);
            addSorted(m_matchesUnicode, getCanonicalPair(info, ch));
        }
    }

    void putRange(UChar lo, UChar hi)
    {
        if (lo <= 0x7f) {
            char asciiLo = lo;
            char asciiHi = std::min(hi, (UChar)0x7f);
            addSortedRange(m_ranges, lo, asciiHi);
            
            if (m_isCaseInsensitive) {
                if ((asciiLo <= 'Z') && (asciiHi >= 'A'))
                    addSortedRange(m_ranges, std::max(asciiLo, 'A')+('a'-'A'), std::min(asciiHi, 'Z')+('a'-'A'));
                if ((asciiLo <= 'z') && (asciiHi >= 'a'))
                    addSortedRange(m_ranges, std::max(asciiLo, 'a')+('A'-'a'), std::min(asciiHi, 'z')+('A'-'a'));
            }
        }
        if (hi <= 0x7f)
            return;

        lo = std::max(lo, (UChar)0x80);
        addSortedRange(m_rangesUnicode, lo, hi);
        
        if (!m_isCaseInsensitive)
            return;

        const UCS2CanonicalizationRange* info = rangeInfoFor(lo);
        while (true) {
            // Handle the range [lo .. end]
            UChar end = std::min<UChar>(info->end, hi);

            switch (info->type) {
            case CanonicalizeUnique:
                // Nothing to do - no canonical equivalents.
                break;
            case CanonicalizeSet: {
                UChar ch;
                for (const uint16_t* set = characterSetInfo[info->value]; (ch = *set); ++set)
                    addSorted(m_matchesUnicode, ch);
                break;
            }
            case CanonicalizeRangeLo:
                addSortedRange(m_rangesUnicode, lo + info->value, end + info->value);
                break;
            case CanonicalizeRangeHi:
                addSortedRange(m_rangesUnicode, lo - info->value, end - info->value);
                break;
            case CanonicalizeAlternatingAligned:
                // Use addSortedRange since there is likely an abutting range to combine with.
                if (lo & 1)
                    addSortedRange(m_rangesUnicode, lo - 1, lo - 1);
                if (!(end & 1))
                    addSortedRange(m_rangesUnicode, end + 1, end + 1);
                break;
            case CanonicalizeAlternatingUnaligned:
                // Use addSortedRange since there is likely an abutting range to combine with.
                if (!(lo & 1))
                    addSortedRange(m_rangesUnicode, lo - 1, lo - 1);
                if (end & 1)
                    addSortedRange(m_rangesUnicode, end + 1, end + 1);
                break;
            }

            if (hi == end)
                return;

            ++info;
            lo = info->begin;
        };

    }

    CharacterClass* charClass()
    {
        CharacterClass* characterClass = js_new<CharacterClass>();

        characterClass->m_matches.swap(m_matches);
        characterClass->m_ranges.swap(m_ranges);
        characterClass->m_matchesUnicode.swap(m_matchesUnicode);
        characterClass->m_rangesUnicode.swap(m_rangesUnicode);

        return characterClass;
    }

private:
    void addSorted(Vector<UChar>& matches, UChar ch)
    {
        unsigned pos = 0;
        unsigned range = matches.size();

        // binary chop, find position to insert char.
        while (range) {
            unsigned index = range >> 1;

            int val = matches[pos+index] - ch;
            if (!val)
                return;
            else if (val > 0)
                range = index;
            else {
                pos += (index+1);
                range -= (index+1);
            }
        }
        
        if (pos == matches.size())
            matches.append(ch);
        else
            matches.insert(pos, ch);
    }

    void addSortedRange(Vector<CharacterRange>& ranges, UChar lo, UChar hi)
    {
        unsigned end = ranges.size();
        
        // Simple linear scan - I doubt there are that many ranges anyway...
        // feel free to fix this with something faster (eg binary chop).
        for (unsigned i = 0; i < end; ++i) {
            // does the new range fall before the current position in the array
            if (hi < ranges[i].begin) {
                // optional optimization: concatenate appending ranges? - may not be worthwhile.
                if (hi == (ranges[i].begin - 1)) {
                    ranges[i].begin = lo;
                    return;
                }
                ranges.insert(i, CharacterRange(lo, hi));
                return;
            }
            // Okay, since we didn't hit the last case, the end of the new range is definitely at or after the begining
            // If the new range start at or before the end of the last range, then the overlap (if it starts one after the
            // end of the last range they concatenate, which is just as good.
            if (lo <= (ranges[i].end + 1)) {
                // found an intersect! we'll replace this entry in the array.
                ranges[i].begin = std::min(ranges[i].begin, lo);
                ranges[i].end = std::max(ranges[i].end, hi);

                // now check if the new range can subsume any subsequent ranges.
                unsigned next = i+1;
                // each iteration of the loop we will either remove something from the list, or break the loop.
                while (next < ranges.size()) {
                    if (ranges[next].begin <= (ranges[i].end + 1)) {
                        // the next entry now overlaps / concatenates this one.
                        ranges[i].end = std::max(ranges[i].end, ranges[next].end);
                        ranges.remove(next);
                    } else
                        break;
                }
                
                return;
            }
        }

        // CharacterRange comes after all existing ranges.
        ranges.append(CharacterRange(lo, hi));
    }

    bool m_isCaseInsensitive;

    Vector<UChar> m_matches;
    Vector<CharacterRange> m_ranges;
    Vector<UChar> m_matchesUnicode;
    Vector<CharacterRange> m_rangesUnicode;
};

class YarrPatternConstructor {
public:
    YarrPatternConstructor(YarrPattern& pattern)
        : m_pattern(pattern)
        , m_stackBase(nullptr)
        , m_characterClassConstructor(pattern.m_ignoreCase)
        , m_invertParentheticalAssertion(false)
    {
        m_pattern.m_body = js_new<PatternDisjunction>();
        m_alternative = m_pattern.m_body->addNewAlternative();
        m_pattern.m_disjunctions.append(m_pattern.m_body);
    }

    ~YarrPatternConstructor()
    {
    }

    void reset()
    {
        m_pattern.reset();
        m_characterClassConstructor.reset();

        m_pattern.m_body = js_new<PatternDisjunction>();
        m_alternative = m_pattern.m_body->addNewAlternative();
        m_pattern.m_disjunctions.append(m_pattern.m_body);
    }
    
    void assertionBOL()
    {
        if (!m_alternative->m_terms.size() & !m_invertParentheticalAssertion) {
            m_alternative->m_startsWithBOL = true;
            m_alternative->m_containsBOL = true;
            m_pattern.m_containsBOL = true;
        }
        m_alternative->m_terms.append(PatternTerm::BOL());
    }
    void assertionEOL()
    {
        m_alternative->m_terms.append(PatternTerm::EOL());
    }
    void assertionWordBoundary(bool invert)
    {
        m_alternative->m_terms.append(PatternTerm::WordBoundary(invert));
    }

    void atomPatternCharacter(UChar ch)
    {
        // We handle case-insensitive checking of unicode characters which do have both
        // cases by handling them as if they were defined using a CharacterClass.
        if (!m_pattern.m_ignoreCase || isASCII(ch)) {
            m_alternative->m_terms.append(PatternTerm(ch));
            return;
        }

        const UCS2CanonicalizationRange* info = rangeInfoFor(ch);
        if (info->type == CanonicalizeUnique) {
            m_alternative->m_terms.append(PatternTerm(ch));
            return;
        }

        m_characterClassConstructor.putUnicodeIgnoreCase(ch, info);
        CharacterClass* newCharacterClass = m_characterClassConstructor.charClass();
        m_pattern.m_userCharacterClasses.append(newCharacterClass);
        m_alternative->m_terms.append(PatternTerm(newCharacterClass, false));
    }

    void atomBuiltInCharacterClass(BuiltInCharacterClassID classID, bool invert)
    {
        switch (classID) {
        case DigitClassID:
            m_alternative->m_terms.append(PatternTerm(m_pattern.digitsCharacterClass(), invert));
            break;
        case SpaceClassID:
            m_alternative->m_terms.append(PatternTerm(m_pattern.spacesCharacterClass(), invert));
            break;
        case WordClassID:
            m_alternative->m_terms.append(PatternTerm(m_pattern.wordcharCharacterClass(), invert));
            break;
        case NewlineClassID:
            m_alternative->m_terms.append(PatternTerm(m_pattern.newlineCharacterClass(), invert));
            break;
        }
    }

    void atomCharacterClassBegin(bool invert = false)
    {
        m_invertCharacterClass = invert;
    }

    void atomCharacterClassAtom(UChar ch)
    {
        m_characterClassConstructor.putChar(ch);
    }

    void atomCharacterClassRange(UChar begin, UChar end)
    {
        m_characterClassConstructor.putRange(begin, end);
    }

    void atomCharacterClassBuiltIn(BuiltInCharacterClassID classID, bool invert)
    {
        ASSERT(classID != NewlineClassID);

        switch (classID) {
        case DigitClassID:
            m_characterClassConstructor.append(invert ? m_pattern.nondigitsCharacterClass() : m_pattern.digitsCharacterClass());
            break;
        
        case SpaceClassID:
            m_characterClassConstructor.append(invert ? m_pattern.nonspacesCharacterClass() : m_pattern.spacesCharacterClass());
            break;
        
        case WordClassID:
            m_characterClassConstructor.append(invert ? m_pattern.nonwordcharCharacterClass() : m_pattern.wordcharCharacterClass());
            break;
        
        default:
            ASSERT_NOT_REACHED();
        }
    }

    void atomCharacterClassEnd()
    {
        CharacterClass* newCharacterClass = m_characterClassConstructor.charClass();
        m_pattern.m_userCharacterClasses.append(newCharacterClass);
        m_alternative->m_terms.append(PatternTerm(newCharacterClass, m_invertCharacterClass));
    }

    void atomParenthesesSubpatternBegin(bool capture = true)
    {
        unsigned subpatternId = m_pattern.m_numSubpatterns + 1;
        if (capture)
            m_pattern.m_numSubpatterns++;

        PatternDisjunction* parenthesesDisjunction = js_new<PatternDisjunction>(m_alternative);
        m_pattern.m_disjunctions.append(parenthesesDisjunction);
        m_alternative->m_terms.append(PatternTerm(PatternTerm::TypeParenthesesSubpattern, subpatternId, parenthesesDisjunction, capture, false));
        m_alternative = parenthesesDisjunction->addNewAlternative();
    }

    void atomParentheticalAssertionBegin(bool invert = false)
    {
        PatternDisjunction* parenthesesDisjunction = js_new<PatternDisjunction>(m_alternative);
        m_pattern.m_disjunctions.append(parenthesesDisjunction);
        m_alternative->m_terms.append(PatternTerm(PatternTerm::TypeParentheticalAssertion, m_pattern.m_numSubpatterns + 1, parenthesesDisjunction, false, invert));
        m_alternative = parenthesesDisjunction->addNewAlternative();
        m_invertParentheticalAssertion = invert;
    }

    void atomParenthesesEnd()
    {
        ASSERT(m_alternative->m_parent);
        ASSERT(m_alternative->m_parent->m_parent);

        PatternDisjunction* parenthesesDisjunction = m_alternative->m_parent;
        m_alternative = m_alternative->m_parent->m_parent;

        PatternTerm& lastTerm = m_alternative->lastTerm();

        unsigned numParenAlternatives = parenthesesDisjunction->m_alternatives.size();
        unsigned numBOLAnchoredAlts = 0;

        for (unsigned i = 0; i < numParenAlternatives; i++) {
            // Bubble up BOL flags
            if (parenthesesDisjunction->m_alternatives[i]->m_startsWithBOL)
                numBOLAnchoredAlts++;
        }

        if (numBOLAnchoredAlts) {
            m_alternative->m_containsBOL = true;
            // If all the alternatives in parens start with BOL, then so does this one
            if (numBOLAnchoredAlts == numParenAlternatives)
                m_alternative->m_startsWithBOL = true;
        }

        lastTerm.parentheses.lastSubpatternId = m_pattern.m_numSubpatterns;
        m_invertParentheticalAssertion = false;
    }

    void atomBackReference(unsigned subpatternId)
    {
        ASSERT(subpatternId);
        m_pattern.m_containsBackreferences = true;
        m_pattern.m_maxBackReference = std::max(m_pattern.m_maxBackReference, subpatternId);

        if (subpatternId > m_pattern.m_numSubpatterns) {
            m_alternative->m_terms.append(PatternTerm::ForwardReference());
            return;
        }

        PatternAlternative* currentAlternative = m_alternative;
        ASSERT(currentAlternative);

        // Note to self: if we waited until the AST was baked, we could also remove forwards refs 
        while ((currentAlternative = currentAlternative->m_parent->m_parent)) {
            PatternTerm& term = currentAlternative->lastTerm();
            ASSERT((term.type == PatternTerm::TypeParenthesesSubpattern) || (term.type == PatternTerm::TypeParentheticalAssertion));

            if ((term.type == PatternTerm::TypeParenthesesSubpattern) && term.capture() && (subpatternId == term.parentheses.subpatternId)) {
                m_alternative->m_terms.append(PatternTerm::ForwardReference());
                return;
            }
        }

        m_alternative->m_terms.append(PatternTerm(subpatternId));
    }

    // deep copy the argument disjunction.  If filterStartsWithBOL is true, 
    // skip alternatives with m_startsWithBOL set true.
    PatternDisjunction* copyDisjunction(PatternDisjunction* disjunction, bool filterStartsWithBOL = false)
    {
        PatternDisjunction* newDisjunction = 0;
        for (unsigned alt = 0; alt < disjunction->m_alternatives.size(); ++alt) {
            PatternAlternative* alternative = disjunction->m_alternatives[alt];
            if (!filterStartsWithBOL || !alternative->m_startsWithBOL) {
                if (!newDisjunction) {
                    newDisjunction = js_new<PatternDisjunction>();
                    newDisjunction->m_parent = disjunction->m_parent;
                }
                PatternAlternative* newAlternative = newDisjunction->addNewAlternative();
                newAlternative->m_terms.reserve(alternative->m_terms.size());
                for (unsigned i = 0; i < alternative->m_terms.size(); ++i)
                    newAlternative->m_terms.append(copyTerm(alternative->m_terms[i], filterStartsWithBOL));
            }
        }

        if (newDisjunction)
            m_pattern.m_disjunctions.append(newDisjunction);
        return newDisjunction;
    }
    
    PatternTerm copyTerm(PatternTerm& term, bool filterStartsWithBOL = false)
    {
        if ((term.type != PatternTerm::TypeParenthesesSubpattern) && (term.type != PatternTerm::TypeParentheticalAssertion))
            return PatternTerm(term);
        
        PatternTerm termCopy = term;
        termCopy.parentheses.disjunction = copyDisjunction(termCopy.parentheses.disjunction, filterStartsWithBOL);
        return termCopy;
    }
    
    void quantifyAtom(unsigned min, unsigned max, bool greedy)
    {
        ASSERT(min <= max);
        ASSERT(m_alternative->m_terms.size());

        if (!max) {
            m_alternative->removeLastTerm();
            return;
        }

        PatternTerm& term = m_alternative->lastTerm();
        ASSERT(term.type > PatternTerm::TypeAssertionWordBoundary);
        ASSERT((term.quantityCount == 1) && (term.quantityType == QuantifierFixedCount));

        if (term.type == PatternTerm::TypeParentheticalAssertion) {
            // If an assertion is quantified with a minimum count of zero, it can simply be removed.
            // This arises from the RepeatMatcher behaviour in the spec. Matching an assertion never
            // results in any input being consumed, however the continuation passed to the assertion
            // (called in steps, 8c and 9 of the RepeatMatcher definition, ES5.1 15.10.2.5) will
            // reject all zero length matches (see step 2.1). A match from the continuation of the
            // expression will still be accepted regardless (via steps 8a and 11) - the upshot of all
            // this is that matches from the assertion are not required, and won't be accepted anyway,
            // so no need to ever run it.
            if (!min)
                m_alternative->removeLastTerm();
            // We never need to run an assertion more than once. Subsequent interations will be run
            // with the same start index (since assertions are non-capturing) and the same captures
            // (per step 4 of RepeatMatcher in ES5.1 15.10.2.5), and as such will always produce the
            // same result and captures. If the first match succeeds then the subsequent (min - 1)
            // matches will too. Any additional optional matches will fail (on the same basis as the
            // minimum zero quantified assertions, above), but this will still result in a match.
            return;
        }

        if (min == 0)
            term.quantify(max, greedy   ? QuantifierGreedy : QuantifierNonGreedy);
        else if (min == max)
            term.quantify(min, QuantifierFixedCount);
        else {
            term.quantify(min, QuantifierFixedCount);
            m_alternative->m_terms.append(copyTerm(term));
            // NOTE: this term is interesting from an analysis perspective, in that it can be ignored.....
            m_alternative->lastTerm().quantify((max == quantifyInfinite) ? max : max - min, greedy ? QuantifierGreedy : QuantifierNonGreedy);
            if (m_alternative->lastTerm().type == PatternTerm::TypeParenthesesSubpattern)
                m_alternative->lastTerm().parentheses.isCopy = true;
        }
    }

    void disjunction()
    {
        m_alternative = m_alternative->m_parent->addNewAlternative();
    }

    ErrorCode setupAlternativeOffsets(PatternAlternative* alternative, unsigned currentCallFrameSize, unsigned initialInputPosition,
                                      unsigned* callFrameSizeOut)
    {
        /*
         * Attempt detection of over-recursion:
         * "1MB should be enough stack for anyone."
         */
        uint8_t stackDummy_;
        if (m_stackBase - &stackDummy_ > 1024*1024)
            return PatternTooLarge;

        alternative->m_hasFixedSize = true;
        Checked<unsigned> currentInputPosition = initialInputPosition;

        for (unsigned i = 0; i < alternative->m_terms.size(); ++i) {
            PatternTerm& term = alternative->m_terms[i];

            switch (term.type) {
            case PatternTerm::TypeAssertionBOL:
            case PatternTerm::TypeAssertionEOL:
            case PatternTerm::TypeAssertionWordBoundary:
                term.inputPosition = currentInputPosition.unsafeGet();
                break;

            case PatternTerm::TypeBackReference:
                term.inputPosition = currentInputPosition.unsafeGet();
                term.frameLocation = currentCallFrameSize;
                currentCallFrameSize += YarrStackSpaceForBackTrackInfoBackReference;
                alternative->m_hasFixedSize = false;
                break;

            case PatternTerm::TypeForwardReference:
                break;

            case PatternTerm::TypePatternCharacter:
                term.inputPosition = currentInputPosition.unsafeGet();
                if (term.quantityType != QuantifierFixedCount) {
                    term.frameLocation = currentCallFrameSize;
                    currentCallFrameSize += YarrStackSpaceForBackTrackInfoPatternCharacter;
                    alternative->m_hasFixedSize = false;
                } else
                    currentInputPosition += term.quantityCount;
                break;

            case PatternTerm::TypeCharacterClass:
                term.inputPosition = currentInputPosition.unsafeGet();
                if (term.quantityType != QuantifierFixedCount) {
                    term.frameLocation = currentCallFrameSize;
                    currentCallFrameSize += YarrStackSpaceForBackTrackInfoCharacterClass;
                    alternative->m_hasFixedSize = false;
                } else
                    currentInputPosition += term.quantityCount;
                break;

            case PatternTerm::TypeParenthesesSubpattern:
                // Note: for fixed once parentheses we will ensure at least the minimum is available; others are on their own.
                term.frameLocation = currentCallFrameSize;
                if (term.quantityCount == 1 && !term.parentheses.isCopy) {
                    if (term.quantityType != QuantifierFixedCount)
                        currentCallFrameSize += YarrStackSpaceForBackTrackInfoParenthesesOnce;
                    if (ErrorCode error = setupDisjunctionOffsets(term.parentheses.disjunction, currentCallFrameSize, currentInputPosition.unsafeGet(), &currentCallFrameSize))
                        return error;
                    // If quantity is fixed, then pre-check its minimum size.
                    if (term.quantityType == QuantifierFixedCount)
                        currentInputPosition += term.parentheses.disjunction->m_minimumSize;
                    term.inputPosition = currentInputPosition.unsafeGet();
                } else if (term.parentheses.isTerminal) {
                    currentCallFrameSize += YarrStackSpaceForBackTrackInfoParenthesesTerminal;
                    if (ErrorCode error = setupDisjunctionOffsets(term.parentheses.disjunction, currentCallFrameSize, currentInputPosition.unsafeGet(), &currentCallFrameSize))
                        return error;
                    term.inputPosition = currentInputPosition.unsafeGet();
                } else {
                    term.inputPosition = currentInputPosition.unsafeGet();
                    unsigned dummy;
                    if (ErrorCode error = setupDisjunctionOffsets(term.parentheses.disjunction, BASE_FRAME_SIZE, currentInputPosition.unsafeGet(), &dummy))
                        return error;
                    currentCallFrameSize += YarrStackSpaceForBackTrackInfoParentheses;
                }
                // Fixed count of 1 could be accepted, if they have a fixed size *AND* if all alternatives are of the same length.
                alternative->m_hasFixedSize = false;
                break;

            case PatternTerm::TypeParentheticalAssertion:
                term.inputPosition = currentInputPosition.unsafeGet();
                term.frameLocation = currentCallFrameSize;
                if (ErrorCode error = setupDisjunctionOffsets(term.parentheses.disjunction, currentCallFrameSize + YarrStackSpaceForBackTrackInfoParentheticalAssertion, currentInputPosition.unsafeGet(), &currentCallFrameSize))
                    return error;
                break;

            case PatternTerm::TypeDotStarEnclosure:
                alternative->m_hasFixedSize = false;
                term.inputPosition = initialInputPosition;
                break;
            }
        }

        alternative->m_minimumSize = (currentInputPosition - initialInputPosition).unsafeGet();
        *callFrameSizeOut = currentCallFrameSize;
        return NoError;
    }

    ErrorCode setupDisjunctionOffsets(PatternDisjunction* disjunction, unsigned initialCallFrameSize, unsigned initialInputPosition, unsigned* maximumCallFrameSizeOut)
    {
        if ((disjunction != m_pattern.m_body) && (disjunction->m_alternatives.size() > 1))
            initialCallFrameSize += YarrStackSpaceForBackTrackInfoAlternative;

        unsigned minimumInputSize = UINT_MAX;
        unsigned maximumCallFrameSize = 0;
        bool hasFixedSize = true;

        for (unsigned alt = 0; alt < disjunction->m_alternatives.size(); ++alt) {
            PatternAlternative* alternative = disjunction->m_alternatives[alt];
            unsigned currentAlternativeCallFrameSize;
            if (ErrorCode error = setupAlternativeOffsets(alternative, initialCallFrameSize, initialInputPosition, &currentAlternativeCallFrameSize))
                return error;
            minimumInputSize = std::min(minimumInputSize, alternative->m_minimumSize);
            maximumCallFrameSize = std::max(maximumCallFrameSize, currentAlternativeCallFrameSize);
            hasFixedSize &= alternative->m_hasFixedSize;
        }

        ASSERT(minimumInputSize != UINT_MAX);
        if (minimumInputSize == UINT_MAX)
            return PatternTooLarge;
        
        ASSERT(minimumInputSize != UINT_MAX);
        ASSERT(maximumCallFrameSize >= initialCallFrameSize);

        disjunction->m_hasFixedSize = hasFixedSize;
        disjunction->m_minimumSize = minimumInputSize;
        disjunction->m_callFrameSize = maximumCallFrameSize;
        *maximumCallFrameSizeOut = maximumCallFrameSize;
        return NoError;
    }

    ErrorCode setupOffsets()
    {
        unsigned dummy;
        return setupDisjunctionOffsets(m_pattern.m_body, BASE_FRAME_SIZE, 0, &dummy);
    }

    // This optimization identifies sets of parentheses that we will never need to backtrack.
    // In these cases we do not need to store state from prior iterations.
    // We can presently avoid backtracking for:
    //   * where the parens are at the end of the regular expression (last term in any of the
    //     alternatives of the main body disjunction).
    //   * where the parens are non-capturing, and quantified unbounded greedy (*).
    //   * where the parens do not contain any capturing subpatterns.
    void checkForTerminalParentheses()
    {
        // This check is much too crude; should be just checking whether the candidate
        // node contains nested capturing subpatterns, not the whole expression!
        if (m_pattern.m_numSubpatterns)
            return;

        Vector<PatternAlternative*>& alternatives = m_pattern.m_body->m_alternatives;
        for (size_t i = 0; i < alternatives.size(); ++i) {
            Vector<PatternTerm>& terms = alternatives[i]->m_terms;
            if (terms.size()) {
                PatternTerm& term = terms.last();
                if (term.type == PatternTerm::TypeParenthesesSubpattern
                    && term.quantityType == QuantifierGreedy
                    && term.quantityCount == quantifyInfinite
                    && !term.capture())
                    term.parentheses.isTerminal = true;
            }
        }
    }

    void optimizeBOL()
    {
        // Look for expressions containing beginning of line (^) anchoring and unroll them.
        // e.g. /^a|^b|c/ becomes /^a|^b|c/ which is executed once followed by /c/ which loops
        // This code relies on the parsing code tagging alternatives with m_containsBOL and
        // m_startsWithBOL and rolling those up to containing alternatives.
        // At this point, this is only valid for non-multiline expressions.
        PatternDisjunction* disjunction = m_pattern.m_body;
        
        if (!m_pattern.m_containsBOL || m_pattern.m_multiline)
            return;
        
        PatternDisjunction* loopDisjunction = copyDisjunction(disjunction, true);

        // Set alternatives in disjunction to "onceThrough"
        for (unsigned alt = 0; alt < disjunction->m_alternatives.size(); ++alt)
            disjunction->m_alternatives[alt]->setOnceThrough();

        if (loopDisjunction) {
            // Move alternatives from loopDisjunction to disjunction
            for (unsigned alt = 0; alt < loopDisjunction->m_alternatives.size(); ++alt)
                disjunction->m_alternatives.append(loopDisjunction->m_alternatives[alt]);
                
            loopDisjunction->m_alternatives.clear();
        }
    }

    bool containsCapturingTerms(PatternAlternative* alternative, size_t firstTermIndex, size_t lastTermIndex)
    {
        Vector<PatternTerm>& terms = alternative->m_terms;

        for (size_t termIndex = firstTermIndex; termIndex <= lastTermIndex; ++termIndex) {
            PatternTerm& term = terms[termIndex];

            if (term.m_capture)
                return true;

            if (term.type == PatternTerm::TypeParenthesesSubpattern) {
                PatternDisjunction* nestedDisjunction = term.parentheses.disjunction;
                for (unsigned alt = 0; alt < nestedDisjunction->m_alternatives.size(); ++alt) {
                    PatternAlternative* pattern = nestedDisjunction->m_alternatives[alt];
                    if (pattern->m_terms.size() == 0)
                        continue;
                    if (containsCapturingTerms(pattern, 0, pattern->m_terms.size() - 1))
                        return true;
                }
            }
        }

        return false;
    }

    // This optimization identifies alternatives in the form of 
    // [^].*[?]<expression>.*[$] for expressions that don't have any 
    // capturing terms. The alternative is changed to <expression> 
    // followed by processing of the dot stars to find and adjust the 
    // beginning and the end of the match.
    void optimizeDotStarWrappedExpressions()
    {
        Vector<PatternAlternative*>& alternatives = m_pattern.m_body->m_alternatives;
        if (alternatives.size() != 1)
            return;

        PatternAlternative* alternative = alternatives[0];
        Vector<PatternTerm>& terms = alternative->m_terms;
        if (terms.size() >= 3) {
            bool startsWithBOL = false;
            bool endsWithEOL = false;
            size_t termIndex, firstExpressionTerm, lastExpressionTerm;

            termIndex = 0;
            if (terms[termIndex].type == PatternTerm::TypeAssertionBOL) {
                startsWithBOL = true;
                ++termIndex;
            }
            
            PatternTerm& firstNonAnchorTerm = terms[termIndex];
            if ((firstNonAnchorTerm.type != PatternTerm::TypeCharacterClass) || (firstNonAnchorTerm.characterClass != m_pattern.newlineCharacterClass()) || !((firstNonAnchorTerm.quantityType == QuantifierGreedy) || (firstNonAnchorTerm.quantityType == QuantifierNonGreedy)))
                return;
            
            firstExpressionTerm = termIndex + 1;
            
            termIndex = terms.size() - 1;
            if (terms[termIndex].type == PatternTerm::TypeAssertionEOL) {
                endsWithEOL = true;
                --termIndex;
            }
            
            PatternTerm& lastNonAnchorTerm = terms[termIndex];
            if ((lastNonAnchorTerm.type != PatternTerm::TypeCharacterClass) || (lastNonAnchorTerm.characterClass != m_pattern.newlineCharacterClass()) || (lastNonAnchorTerm.quantityType != QuantifierGreedy))
                return;
            
            lastExpressionTerm = termIndex - 1;

            if (firstExpressionTerm > lastExpressionTerm)
                return;

            if (!containsCapturingTerms(alternative, firstExpressionTerm, lastExpressionTerm)) {
                for (termIndex = terms.size() - 1; termIndex > lastExpressionTerm; --termIndex)
                    terms.remove(termIndex);

                for (termIndex = firstExpressionTerm; termIndex > 0; --termIndex)
                    terms.remove(termIndex - 1);

                terms.append(PatternTerm(startsWithBOL, endsWithEOL));
                
                m_pattern.m_containsBOL = false;
            }
        }
    }

    void setStackBase(uint8_t* stackBase) {
        m_stackBase = stackBase;
    }

private:
    YarrPattern& m_pattern;
    uint8_t * m_stackBase;
    PatternAlternative* m_alternative;
    CharacterClassConstructor m_characterClassConstructor;
    bool m_invertCharacterClass;
    bool m_invertParentheticalAssertion;
};

ErrorCode YarrPattern::compile(const String& patternString)
{
    YarrPatternConstructor constructor(*this);

    if (ErrorCode error = parse(constructor, patternString))
        return error;
    
    // If the pattern contains illegal backreferences reset & reparse.
    // Quoting Netscape's "What's new in JavaScript 1.2",
    //      "Note: if the number of left parentheses is less than the number specified
    //       in \#, the \# is taken as an octal escape as described in the next row."
    if (containsIllegalBackReference()) {
        unsigned numSubpatterns = m_numSubpatterns;

        constructor.reset();
#if !ASSERT_DISABLED
        ErrorCode error =
#endif
            parse(constructor, patternString, numSubpatterns);

        ASSERT(!error);
        ASSERT(numSubpatterns == m_numSubpatterns);
    }

    uint8_t stackDummy_;
    constructor.setStackBase(&stackDummy_);

    constructor.checkForTerminalParentheses();
    constructor.optimizeDotStarWrappedExpressions();
    constructor.optimizeBOL();
        
    if (ErrorCode error = constructor.setupOffsets())
        return error;

    return NoError;
}

YarrPattern::YarrPattern(const String& pattern, bool ignoreCase, bool multiline, ErrorCode* error)
    : m_ignoreCase(ignoreCase)
    , m_multiline(multiline)
    , m_containsBackreferences(false)
    , m_containsBOL(false)
    , m_numSubpatterns(0)
    , m_maxBackReference(0)
    , newlineCached(0)
    , digitsCached(0)
    , spacesCached(0)
    , wordcharCached(0)
    , nondigitsCached(0)
    , nonspacesCached(0)
    , nonwordcharCached(0)
{
    *error = compile(pattern);
}

} }