DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (27a812186ff4)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
 * vim: set ts=8 sts=4 et sw=4 tw=99:
 *
 * Copyright (C) 2011 Apple Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
 */

#ifndef yarr_CheckedArithmetic_h
#define yarr_CheckedArithmetic_h

#include "assembler/wtf/Assertions.h"

#include <limits>
#include <stdint.h>
#include "mozilla/TypeTraits.h"

#ifdef _MSC_VER
# undef min
# undef max
#endif

/* Checked<T>
 *
 * This class provides a mechanism to perform overflow-safe integer arithmetic
 * without having to manually ensure that you have all the required bounds checks
 * directly in your code.
 *
 * There are two modes of operation:
 *  - The default is Checked<T, CrashOnOverflow>, and crashes at the point
 *    and overflow has occurred.
 *  - The alternative is Checked<T, RecordOverflow>, which uses an additional
 *    byte of storage to track whether an overflow has occurred, subsequent
 *    unchecked operations will crash if an overflow has occured
 *
 * It is possible to provide a custom overflow handler, in which case you need
 * to support these functions:
 *  - void overflowed();
 *    This function is called when an operation has produced an overflow.
 *  - bool hasOverflowed();
 *    This function must return true if overflowed() has been called on an
 *    instance and false if it has not.
 *  - void clearOverflow();
 *    Used to reset overflow tracking when a value is being overwritten with
 *    a new value.
 *
 * Checked<T> works for all integer types, with the following caveats:
 *  - Mixing signedness of operands is only supported for types narrower than
 *    64bits.
 *  - It does have a performance impact, so tight loops may want to be careful
 *    when using it.
 *
 */

namespace WTF {

class CrashOnOverflow {
protected:
    void overflowed()
    {
        CRASH();
    }

    void clearOverflow() { }

public:
    bool hasOverflowed() const { return false; }
};

class RecordOverflow {
protected:
    RecordOverflow()
        : m_overflowed(false)
    {
    }

    void overflowed()
    {
        m_overflowed = true;
    }

    void clearOverflow()
    {
        m_overflowed = false;
    }

public:
    bool hasOverflowed() const { return m_overflowed; }

private:
    unsigned char m_overflowed;
};

template <typename T, class OverflowHandler = CrashOnOverflow> class Checked;
template <typename T> struct RemoveChecked;
template <typename T> struct RemoveChecked<Checked<T> >;

template <typename Target, typename Source, bool targetSigned = ::std::numeric_limits<Target>::is_signed, bool sourceSigned = ::std::numeric_limits<Source>::is_signed> struct BoundsChecker;
template <typename Target, typename Source> struct BoundsChecker<Target, Source, false, false> {
    static bool inBounds(Source value)
    {
        // Same signedness so implicit type conversion will always increase precision
        // to widest type
        return value <= ::std::numeric_limits<Target>::max();
    }
};

template <typename Target, typename Source> struct BoundsChecker<Target, Source, true, true> {
    static bool inBounds(Source value)
    {
        // Same signedness so implicit type conversion will always increase precision
        // to widest type
        return ::std::numeric_limits<Target>::min() <= value && value <= ::std::numeric_limits<Target>::max();
    }
};

template <typename Target, typename Source> struct BoundsChecker<Target, Source, false, true> {
    static bool inBounds(Source value)
    {
        // Target is unsigned so any value less than zero is clearly unsafe
        if (value < 0)
            return false;
        // If our (unsigned) Target is the same or greater width we can
        // convert value to type Target without losing precision
        if (sizeof(Target) >= sizeof(Source)) 
            return static_cast<Target>(value) <= ::std::numeric_limits<Target>::max();
        // The signed Source type has greater precision than the target so
        // max(Target) -> Source will widen.
        return value <= static_cast<Source>(::std::numeric_limits<Target>::max());
    }
};

template <typename Target, typename Source> struct BoundsChecker<Target, Source, true, false> {
    static bool inBounds(Source value)
    {
        // Signed target with an unsigned source
        if (sizeof(Target) <= sizeof(Source)) 
            return value <= static_cast<Source>(::std::numeric_limits<Target>::max());
        // Target is Wider than Source so we're guaranteed to fit any value in
        // unsigned Source
        return true;
    }
};

template <typename Target, typename Source, bool SameType = mozilla::IsSame<Target, Source>::value> struct BoundsCheckElider;
template <typename Target, typename Source> struct BoundsCheckElider<Target, Source, true> {
    static bool inBounds(Source) { return true; }
};
template <typename Target, typename Source> struct BoundsCheckElider<Target, Source, false> : public BoundsChecker<Target, Source> {
};

template <typename Target, typename Source> static inline bool isInBounds(Source value)
{
    return BoundsCheckElider<Target, Source>::inBounds(value);
}

template <typename T> struct RemoveChecked {
    typedef T CleanType;
    static const CleanType DefaultValue = 0;    
};

template <typename T> struct RemoveChecked<Checked<T, CrashOnOverflow> > {
    typedef typename RemoveChecked<T>::CleanType CleanType;
    static const CleanType DefaultValue = 0;
};

template <typename T> struct RemoveChecked<Checked<T, RecordOverflow> > {
    typedef typename RemoveChecked<T>::CleanType CleanType;
    static const CleanType DefaultValue = 0;
};

// The ResultBase and SignednessSelector are used to workaround typeof not being
// available in MSVC
template <typename U, typename V, bool uIsBigger = (sizeof(U) > sizeof(V)), bool sameSize = (sizeof(U) == sizeof(V))> struct ResultBase;
template <typename U, typename V> struct ResultBase<U, V, true, false> {
    typedef U ResultType;
};

template <typename U, typename V> struct ResultBase<U, V, false, false> {
    typedef V ResultType;
};

template <typename U> struct ResultBase<U, U, false, true> {
    typedef U ResultType;
};

template <typename U, typename V, bool uIsSigned = ::std::numeric_limits<U>::is_signed, bool vIsSigned = ::std::numeric_limits<V>::is_signed> struct SignednessSelector;
template <typename U, typename V> struct SignednessSelector<U, V, true, true> {
    typedef U ResultType;
};

template <typename U, typename V> struct SignednessSelector<U, V, false, false> {
    typedef U ResultType;
};

template <typename U, typename V> struct SignednessSelector<U, V, true, false> {
    typedef V ResultType;
};

template <typename U, typename V> struct SignednessSelector<U, V, false, true> {
    typedef U ResultType;
};

template <typename U, typename V> struct ResultBase<U, V, false, true> {
    typedef typename SignednessSelector<U, V>::ResultType ResultType;
};

template <typename U, typename V> struct Result : ResultBase<typename RemoveChecked<U>::CleanType, typename RemoveChecked<V>::CleanType> {
};

template <typename LHS, typename RHS, typename ResultType = typename Result<LHS, RHS>::ResultType, 
    bool lhsSigned = ::std::numeric_limits<LHS>::is_signed, bool rhsSigned = ::std::numeric_limits<RHS>::is_signed> struct ArithmeticOperations;

template <typename LHS, typename RHS, typename ResultType> struct ArithmeticOperations<LHS, RHS, ResultType, true, true> {
    // LHS and RHS are signed types

    // Helper function
    static inline bool signsMatch(LHS lhs, RHS rhs)
    {
        return (lhs ^ rhs) >= 0;
    }

    static inline bool add(LHS lhs, RHS rhs, ResultType& result) WARN_UNUSED_RETURN
    {
        if (signsMatch(lhs, rhs)) {
            if (lhs >= 0) {
                if ((::std::numeric_limits<ResultType>::max() - rhs) < lhs)
                    return false;
            } else {
                ResultType temp = lhs - ::std::numeric_limits<ResultType>::min();
                if (rhs < -temp)
                    return false;
            }
        } // if the signs do not match this operation can't overflow
        result = lhs + rhs;
        return true;
    }

    static inline bool sub(LHS lhs, RHS rhs, ResultType& result) WARN_UNUSED_RETURN
    {
        if (!signsMatch(lhs, rhs)) {
            if (lhs >= 0) {
                if (lhs > ::std::numeric_limits<ResultType>::max() + rhs)
                    return false;
            } else {
                if (rhs > ::std::numeric_limits<ResultType>::max() + lhs)
                    return false;
            }
        } // if the signs match this operation can't overflow
        result = lhs - rhs;
        return true;
    }

    static inline bool multiply(LHS lhs, RHS rhs, ResultType& result) WARN_UNUSED_RETURN
    {
        if (signsMatch(lhs, rhs)) {
            if (lhs >= 0) {
                if (lhs && (::std::numeric_limits<ResultType>::max() / lhs) < rhs)
                    return false;
            } else {
                if (lhs == ::std::numeric_limits<ResultType>::min() || rhs == ::std::numeric_limits<ResultType>::min())
                    return false;
                if ((::std::numeric_limits<ResultType>::max() / -lhs) < -rhs)
                    return false;
            }
        } else {
            if (lhs < 0) {
                if (rhs && lhs < (::std::numeric_limits<ResultType>::min() / rhs))
                    return false;
            } else {
                if (lhs && rhs < (::std::numeric_limits<ResultType>::min() / lhs))
                    return false;
            }
        }
        result = lhs * rhs;
        return true;
    }

    static inline bool equals(LHS lhs, RHS rhs) { return lhs == rhs; }

};

template <typename LHS, typename RHS, typename ResultType> struct ArithmeticOperations<LHS, RHS, ResultType, false, false> {
    // LHS and RHS are unsigned types so bounds checks are nice and easy
    static inline bool add(LHS lhs, RHS rhs, ResultType& result) WARN_UNUSED_RETURN
    {
        ResultType temp = lhs + rhs;
        if (temp < lhs)
            return false;
        result = temp;
        return true;
    }

    static inline bool sub(LHS lhs, RHS rhs, ResultType& result) WARN_UNUSED_RETURN
    {
        ResultType temp = lhs - rhs;
        if (temp > lhs)
            return false;
        result = temp;
        return true;
    }

    static inline bool multiply(LHS lhs, RHS rhs, ResultType& result) WARN_UNUSED_RETURN
    {
        ResultType temp = lhs * rhs;
        if (temp < lhs)
            return false;
        result = temp;
        return true;
    }

    static inline bool equals(LHS lhs, RHS rhs) { return lhs == rhs; }

};

template <typename ResultType> struct ArithmeticOperations<int, unsigned, ResultType, true, false> {
    static inline bool add(int64_t lhs, int64_t rhs, ResultType& result)
    {
        int64_t temp = lhs + rhs;
        if (temp < ::std::numeric_limits<ResultType>::min())
            return false;
        if (temp > ::std::numeric_limits<ResultType>::max())
            return false;
        result = static_cast<ResultType>(temp);
        return true;
    }
    
    static inline bool sub(int64_t lhs, int64_t rhs, ResultType& result)
    {
        int64_t temp = lhs - rhs;
        if (temp < ::std::numeric_limits<ResultType>::min())
            return false;
        if (temp > ::std::numeric_limits<ResultType>::max())
            return false;
        result = static_cast<ResultType>(temp);
        return true;
    }

    static inline bool multiply(int64_t lhs, int64_t rhs, ResultType& result)
    {
        int64_t temp = lhs * rhs;
        if (temp < ::std::numeric_limits<ResultType>::min())
            return false;
        if (temp > ::std::numeric_limits<ResultType>::max())
            return false;
        result = static_cast<ResultType>(temp);
        return true;
    }

    static inline bool equals(int lhs, unsigned rhs)
    {
        return static_cast<int64_t>(lhs) == static_cast<int64_t>(rhs);
    }
};

template <typename ResultType> struct ArithmeticOperations<unsigned, int, ResultType, false, true> {
    static inline bool add(int64_t lhs, int64_t rhs, ResultType& result)
    {
        return ArithmeticOperations<int, unsigned, ResultType>::add(rhs, lhs, result);
    }
    
    static inline bool sub(int64_t lhs, int64_t rhs, ResultType& result)
    {
        return ArithmeticOperations<int, unsigned, ResultType>::sub(lhs, rhs, result);
    }

    static inline bool multiply(int64_t lhs, int64_t rhs, ResultType& result)
    {
        return ArithmeticOperations<int, unsigned, ResultType>::multiply(rhs, lhs, result);
    }

    static inline bool equals(unsigned lhs, int rhs)
    {
        return ArithmeticOperations<int, unsigned, ResultType>::equals(rhs, lhs);
    }
};

template <typename U, typename V, typename R> static inline bool safeAdd(U lhs, V rhs, R& result)
{
    return ArithmeticOperations<U, V, R>::add(lhs, rhs, result);
}

template <typename U, typename V, typename R> static inline bool safeSub(U lhs, V rhs, R& result)
{
    return ArithmeticOperations<U, V, R>::sub(lhs, rhs, result);
}

template <typename U, typename V, typename R> static inline bool safeMultiply(U lhs, V rhs, R& result)
{
    return ArithmeticOperations<U, V, R>::multiply(lhs, rhs, result);
}

template <typename U, typename V> static inline bool safeEquals(U lhs, V rhs)
{
    return ArithmeticOperations<U, V>::equals(lhs, rhs);
}

enum ResultOverflowedTag { ResultOverflowed };
    
// FIXME: Needed to workaround http://llvm.org/bugs/show_bug.cgi?id=10801
static inline bool workAroundClangBug() { return true; }

template <typename T, class OverflowHandler> class Checked : public OverflowHandler {
public:
    template <typename _T, class _OverflowHandler> friend class Checked;
    Checked()
        : m_value(0)
    {
    }

    Checked(ResultOverflowedTag)
        : m_value(0)
    {
        // FIXME: Remove this when clang fixes http://llvm.org/bugs/show_bug.cgi?id=10801
        if (workAroundClangBug())
            this->overflowed();
    }

    template <typename U> Checked(U value)
    {
        if (!isInBounds<T>(value))
            this->overflowed();
        m_value = static_cast<T>(value);
    }
    
    template <typename V> Checked(const Checked<T, V>& rhs)
        : m_value(rhs.m_value)
    {
        if (rhs.hasOverflowed())
            this->overflowed();
    }
    
    template <typename U> Checked(const Checked<U, OverflowHandler>& rhs)
        : OverflowHandler(rhs)
    {
        if (!isInBounds<T>(rhs.m_value))
            this->overflowed();
        m_value = static_cast<T>(rhs.m_value);
    }
    
    template <typename U, typename V> Checked(const Checked<U, V>& rhs)
    {
        if (rhs.hasOverflowed())
            this->overflowed();
        if (!isInBounds<T>(rhs.m_value))
            this->overflowed();
        m_value = static_cast<T>(rhs.m_value);
    }
    
    const Checked& operator=(Checked rhs)
    {
        this->clearOverflow();
        if (rhs.hasOverflowed())
            this->overflowed();
        m_value = static_cast<T>(rhs.m_value);
        return *this;
    }
    
    template <typename U> const Checked& operator=(U value)
    {
        return *this = Checked(value);
    }
    
    template <typename U, typename V> const Checked& operator=(const Checked<U, V>& rhs)
    {
        return *this = Checked(rhs);
    }
    
    // prefix
    const Checked& operator++()
    {
        if (m_value == ::std::numeric_limits<T>::max())
            this->overflowed();
        m_value++;
        return *this;
    }
    
    const Checked& operator--()
    {
        if (m_value == ::std::numeric_limits<T>::min())
            this->overflowed();
        m_value--;
        return *this;
    }
    
    // postfix operators
    const Checked operator++(int)
    {
        if (m_value == ::std::numeric_limits<T>::max())
            this->overflowed();
        return Checked(m_value++);
    }
    
    const Checked operator--(int)
    {
        if (m_value == ::std::numeric_limits<T>::min())
            this->overflowed();
        return Checked(m_value--);
    }
    
    // Boolean operators
    bool operator!() const
    {
        if (this->hasOverflowed())
            CRASH();
        return !m_value;
    }

    typedef void* (Checked::*UnspecifiedBoolType);
    operator UnspecifiedBoolType*() const
    {
        if (this->hasOverflowed())
            CRASH();
        return (m_value) ? reinterpret_cast<UnspecifiedBoolType*>(1) : 0;
    }

    // Value accessors. unsafeGet() will crash if there's been an overflow.
    T unsafeGet() const
    {
        if (this->hasOverflowed())
            CRASH();
        return m_value;
    }
    
    bool safeGet(T& value) const WARN_UNUSED_RETURN
    {
        value = m_value;
        return this->hasOverflowed();
    }

    // Mutating assignment
    template <typename U> const Checked operator+=(U rhs)
    {
        if (!safeAdd(m_value, rhs, m_value))
            this->overflowed();
        return *this;
    }

    template <typename U> const Checked operator-=(U rhs)
    {
        if (!safeSub(m_value, rhs, m_value))
            this->overflowed();
        return *this;
    }

    template <typename U> const Checked operator*=(U rhs)
    {
        if (!safeMultiply(m_value, rhs, m_value))
            this->overflowed();
        return *this;
    }

    const Checked operator*=(double rhs)
    {
        double result = rhs * m_value;
        // Handle +/- infinity and NaN
        if (!(::std::numeric_limits<T>::min() <= result && ::std::numeric_limits<T>::max() >= result))
            this->overflowed();
        m_value = (T)result;
        return *this;
    }

    const Checked operator*=(float rhs)
    {
        return *this *= (double)rhs;
    }
    
    template <typename U, typename V> const Checked operator+=(Checked<U, V> rhs)
    {
        if (rhs.hasOverflowed())
            this->overflowed();
        return *this += rhs.m_value;
    }

    template <typename U, typename V> const Checked operator-=(Checked<U, V> rhs)
    {
        if (rhs.hasOverflowed())
            this->overflowed();
        return *this -= rhs.m_value;
    }

    template <typename U, typename V> const Checked operator*=(Checked<U, V> rhs)
    {
        if (rhs.hasOverflowed())
            this->overflowed();
        return *this *= rhs.m_value;
    }

    // Equality comparisons
    template <typename V> bool operator==(Checked<T, V> rhs)
    {
        return unsafeGet() == rhs.unsafeGet();
    }

    template <typename U> bool operator==(U rhs)
    {
        if (this->hasOverflowed())
            this->overflowed();
        return safeEquals(m_value, rhs);
    }
    
    template <typename U, typename V> const Checked operator==(Checked<U, V> rhs)
    {
        return unsafeGet() == Checked(rhs.unsafeGet());
    }

    template <typename U> bool operator!=(U rhs)
    {
        return !(*this == rhs);
    }

private:
    // Disallow implicit conversion of floating point to integer types
    Checked(float);
    Checked(double);
    void operator=(float);
    void operator=(double);
    void operator+=(float);
    void operator+=(double);
    void operator-=(float);
    void operator-=(double);
    T m_value;
};

template <typename U, typename V, typename OverflowHandler> static inline Checked<typename Result<U, V>::ResultType, OverflowHandler> operator+(Checked<U, OverflowHandler> lhs, Checked<V, OverflowHandler> rhs)
{
    U x = 0;
    V y = 0;
    bool overflowed = lhs.safeGet(x) || rhs.safeGet(y);
    typename Result<U, V>::ResultType result = 0;
    overflowed |= !safeAdd(x, y, result);
    if (overflowed)
        return ResultOverflowed;
    return result;
}

template <typename U, typename V, typename OverflowHandler> static inline Checked<typename Result<U, V>::ResultType, OverflowHandler> operator-(Checked<U, OverflowHandler> lhs, Checked<V, OverflowHandler> rhs)
{
    U x = 0;
    V y = 0;
    bool overflowed = lhs.safeGet(x) || rhs.safeGet(y);
    typename Result<U, V>::ResultType result = 0;
    overflowed |= !safeSub(x, y, result);
    if (overflowed)
        return ResultOverflowed;
    return result;
}

template <typename U, typename V, typename OverflowHandler> static inline Checked<typename Result<U, V>::ResultType, OverflowHandler> operator*(Checked<U, OverflowHandler> lhs, Checked<V, OverflowHandler> rhs)
{
    U x = 0;
    V y = 0;
    bool overflowed = lhs.safeGet(x) || rhs.safeGet(y);
    typename Result<U, V>::ResultType result = 0;
    overflowed |= !safeMultiply(x, y, result);
    if (overflowed)
        return ResultOverflowed;
    return result;
}

template <typename U, typename V, typename OverflowHandler> static inline Checked<typename Result<U, V>::ResultType, OverflowHandler> operator+(Checked<U, OverflowHandler> lhs, V rhs)
{
    return lhs + Checked<V, OverflowHandler>(rhs);
}

template <typename U, typename V, typename OverflowHandler> static inline Checked<typename Result<U, V>::ResultType, OverflowHandler> operator-(Checked<U, OverflowHandler> lhs, V rhs)
{
    return lhs - Checked<V, OverflowHandler>(rhs);
}

template <typename U, typename V, typename OverflowHandler> static inline Checked<typename Result<U, V>::ResultType, OverflowHandler> operator*(Checked<U, OverflowHandler> lhs, V rhs)
{
    return lhs * Checked<V, OverflowHandler>(rhs);
}

template <typename U, typename V, typename OverflowHandler> static inline Checked<typename Result<U, V>::ResultType, OverflowHandler> operator+(U lhs, Checked<V, OverflowHandler> rhs)
{
    return Checked<U, OverflowHandler>(lhs) + rhs;
}

template <typename U, typename V, typename OverflowHandler> static inline Checked<typename Result<U, V>::ResultType, OverflowHandler> operator-(U lhs, Checked<V, OverflowHandler> rhs)
{
    return Checked<U, OverflowHandler>(lhs) - rhs;
}

template <typename U, typename V, typename OverflowHandler> static inline Checked<typename Result<U, V>::ResultType, OverflowHandler> operator*(U lhs, Checked<V, OverflowHandler> rhs)
{
    return Checked<U, OverflowHandler>(lhs) * rhs;
}

}

using WTF::Checked;
using WTF::RecordOverflow;

#endif /* yarr_CheckedArithmetic_h */