DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Implementation

Mercurial (27a812186ff4)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
 * vim: sw=4 ts=4 et :
 */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef ipc_glue_MessageChannel_h
#define ipc_glue_MessageChannel_h 1

#include "base/basictypes.h"
#include "base/message_loop.h"

#include "mozilla/Monitor.h"
#include "mozilla/Vector.h"
#include "mozilla/WeakPtr.h"
#include "mozilla/ipc/Transport.h"
#include "MessageLink.h"
#include "nsAutoPtr.h"

#include <deque>
#include <stack>
#include <math.h>

namespace mozilla {
namespace ipc {

class MessageChannel;

class RefCountedMonitor : public Monitor
{
  public:
    RefCountedMonitor()
        : Monitor("mozilla.ipc.MessageChannel.mMonitor")
    {}

    NS_INLINE_DECL_THREADSAFE_REFCOUNTING(RefCountedMonitor)
};

class MessageChannel : HasResultCodes
{
    friend class ProcessLink;
    friend class ThreadLink;
    friend class AutoEnterRPCTransaction;

    class CxxStackFrame;
    class InterruptFrame;

    typedef mozilla::Monitor Monitor;

  public:
    static const int32_t kNoTimeout;

    typedef IPC::Message Message;
    typedef mozilla::ipc::Transport Transport;

    MessageChannel(MessageListener *aListener);
    ~MessageChannel();

    // "Open" from the perspective of the transport layer; the underlying
    // socketpair/pipe should already be created.
    //
    // Returns true iff the transport layer was successfully connected,
    // i.e., mChannelState == ChannelConnected.
    bool Open(Transport* aTransport, MessageLoop* aIOLoop=0, Side aSide=UnknownSide);

    // "Open" a connection to another thread in the same process.
    //
    // Returns true iff the transport layer was successfully connected,
    // i.e., mChannelState == ChannelConnected.
    //
    // For more details on the process of opening a channel between
    // threads, see the extended comment on this function
    // in MessageChannel.cpp.
    bool Open(MessageChannel *aTargetChan, MessageLoop *aTargetLoop, Side aSide);

    // Close the underlying transport channel.
    void Close();

    // Force the channel to behave as if a channel error occurred. Valid
    // for process links only, not thread links.
    void CloseWithError();

    void SetAbortOnError(bool abort)
    {
        mAbortOnError = true;
    }

    // Asynchronously send a message to the other side of the channel
    bool Send(Message* aMsg);

    // Asynchronously deliver a message back to this side of the
    // channel
    bool Echo(Message* aMsg);

    // Synchronously send |msg| (i.e., wait for |reply|)
    bool Send(Message* aMsg, Message* aReply);

    // Make an Interrupt call to the other side of the channel
    bool Call(Message* aMsg, Message* aReply);

    bool CanSend() const;

    void SetReplyTimeoutMs(int32_t aTimeoutMs);

    bool IsOnCxxStack() const {
        return !mCxxStackFrames.empty();
    }

    void FlushPendingInterruptQueue();

    // Unsound_IsClosed and Unsound_NumQueuedMessages are safe to call from any
    // thread, but they make no guarantees about whether you'll get an
    // up-to-date value; the values are written on one thread and read without
    // locking, on potentially different threads.  Thus you should only use
    // them when you don't particularly care about getting a recent value (e.g.
    // in a memory report).
    bool Unsound_IsClosed() const {
        return mLink ? mLink->Unsound_IsClosed() : true;
    }
    uint32_t Unsound_NumQueuedMessages() const {
        return mLink ? mLink->Unsound_NumQueuedMessages() : 0;
    }

    static bool IsPumpingMessages() {
        return sIsPumpingMessages;
    }
    static void SetIsPumpingMessages(bool aIsPumping) {
        sIsPumpingMessages = aIsPumping;
    }

#ifdef OS_WIN
    struct MOZ_STACK_CLASS SyncStackFrame
    {
        SyncStackFrame(MessageChannel* channel, bool interrupt);
        ~SyncStackFrame();

        bool mInterrupt;
        bool mSpinNestedEvents;
        bool mListenerNotified;
        MessageChannel* mChannel;

        // The previous stack frame for this channel.
        SyncStackFrame* mPrev;

        // The previous stack frame on any channel.
        SyncStackFrame* mStaticPrev;
    };
    friend struct MessageChannel::SyncStackFrame;

    static bool IsSpinLoopActive() {
        for (SyncStackFrame* frame = sStaticTopFrame; frame; frame = frame->mPrev) {
            if (frame->mSpinNestedEvents)
                return true;
        }
        return false;
    }

  protected:
    // The deepest sync stack frame for this channel.
    SyncStackFrame* mTopFrame;

    // The deepest sync stack frame on any channel.
    static SyncStackFrame* sStaticTopFrame;

  public:
    void ProcessNativeEventsInInterruptCall();
    static void NotifyGeckoEventDispatch();

  private:
    void SpinInternalEventLoop();
#endif

  private:
    void CommonThreadOpenInit(MessageChannel *aTargetChan, Side aSide);
    void OnOpenAsSlave(MessageChannel *aTargetChan, Side aSide);

    void PostErrorNotifyTask();
    void OnNotifyMaybeChannelError();
    void ReportConnectionError(const char* aChannelName) const;
    void ReportMessageRouteError(const char* channelName) const;
    bool MaybeHandleError(Result code, const char* channelName);

    void Clear();

    // Send OnChannelConnected notification to listeners.
    void DispatchOnChannelConnected(int32_t peer_pid);

    // Any protocol that requires blocking until a reply arrives, will send its
    // outgoing message through this function. Currently, two protocols do this:
    //
    //  sync, which can only initiate messages from child to parent.
    //  urgent, which can only initiate messages from parent to child.
    //
    // SendAndWait() expects that the worker thread owns the monitor, and that
    // the message has been prepared to be sent over the link. It returns as
    // soon as a reply has been received, or an error has occurred.
    //
    // Note that while the child is blocked waiting for a sync reply, it can wake
    // up to process urgent calls from the parent.
    bool SendAndWait(Message* aMsg, Message* aReply);

    bool RPCCall(Message* aMsg, Message* aReply);
    bool InterruptCall(Message* aMsg, Message* aReply);
    bool UrgentCall(Message* aMsg, Message* aReply);

    bool InterruptEventOccurred();

    bool ProcessPendingUrgentRequest();
    bool ProcessPendingRPCCall();

    void MaybeUndeferIncall();
    void EnqueuePendingMessages();

    // Executed on the worker thread. Dequeues one pending message.
    bool OnMaybeDequeueOne();
    bool DequeueOne(Message *recvd);

    // Dispatches an incoming message to its appropriate handler.
    void DispatchMessage(const Message &aMsg);

    // DispatchMessage will route to one of these functions depending on the
    // protocol type of the message.
    void DispatchSyncMessage(const Message &aMsg);
    void DispatchUrgentMessage(const Message &aMsg);
    void DispatchAsyncMessage(const Message &aMsg);
    void DispatchRPCMessage(const Message &aMsg);
    void DispatchInterruptMessage(const Message &aMsg, size_t aStackDepth);

    // Return true if the wait ended because a notification was received.
    //
    // Return false if the time elapsed from when we started the process of
    // waiting until afterwards exceeded the currently allotted timeout.
    // That *DOES NOT* mean false => "no event" (== timeout); there are many
    // circumstances that could cause the measured elapsed time to exceed the
    // timeout EVEN WHEN we were notified.
    //
    // So in sum: true is a meaningful return value; false isn't,
    // necessarily.
    bool WaitForSyncNotify();
    bool WaitForInterruptNotify();

    bool WaitResponse(bool aWaitTimedOut);

    bool ShouldContinueFromTimeout();

    // The "remote view of stack depth" can be different than the
    // actual stack depth when there are out-of-turn replies.  When we
    // receive one, our actual Interrupt stack depth doesn't decrease, but
    // the other side (that sent the reply) thinks it has.  So, the
    // "view" returned here is |stackDepth| minus the number of
    // out-of-turn replies.
    //
    // Only called from the worker thread.
    size_t RemoteViewOfStackDepth(size_t stackDepth) const {
        AssertWorkerThread();
        return stackDepth - mOutOfTurnReplies.size();
    }

    int32_t NextSeqno() {
        AssertWorkerThread();
        return (mSide == ChildSide) ? --mNextSeqno : ++mNextSeqno;
    }

    // This helper class manages mCxxStackDepth on behalf of MessageChannel.
    // When the stack depth is incremented from zero to non-zero, it invokes
    // a callback, and similarly for when the depth goes from non-zero to zero.
    void EnteredCxxStack() {
       mListener->OnEnteredCxxStack();
    }

    void ExitedCxxStack();

    void EnteredCall() {
        mListener->OnEnteredCall();
    }

    void ExitedCall() {
        mListener->OnExitedCall();
    }

    MessageListener *Listener() const {
        return mListener.get();
    }

    void DebugAbort(const char* file, int line, const char* cond,
                    const char* why,
                    bool reply=false) const;

    // This method is only safe to call on the worker thread, or in a
    // debugger with all threads paused.
    void DumpInterruptStack(const char* const pfx="") const;

  private:
    // Called from both threads
    size_t InterruptStackDepth() const {
        mMonitor->AssertCurrentThreadOwns();
        return mInterruptStack.size();
    }

    // Returns true if we're blocking waiting for a reply.
    bool AwaitingSyncReply() const {
        mMonitor->AssertCurrentThreadOwns();
        return mPendingSyncReplies > 0;
    }
    bool AwaitingUrgentReply() const {
        mMonitor->AssertCurrentThreadOwns();
        return mPendingUrgentReplies > 0;
    }
    bool AwaitingRPCReply() const {
        mMonitor->AssertCurrentThreadOwns();
        return mPendingRPCReplies > 0;
    }
    bool AwaitingInterruptReply() const {
        mMonitor->AssertCurrentThreadOwns();
        return !mInterruptStack.empty();
    }

    // Returns true if we're dispatching a sync message's callback.
    bool DispatchingSyncMessage() const {
        return mDispatchingSyncMessage;
    }

    // Returns true if we're dispatching an urgent message's callback.
    bool DispatchingUrgentMessage() const {
        return mDispatchingUrgentMessageCount > 0;
    }

    bool Connected() const;

  private:
    // Executed on the IO thread.
    void NotifyWorkerThread();

    // Return true if |aMsg| is a special message targeted at the IO
    // thread, in which case it shouldn't be delivered to the worker.
    bool MaybeInterceptSpecialIOMessage(const Message& aMsg);

    void OnChannelConnected(int32_t peer_id);

    // Tell the IO thread to close the channel and wait for it to ACK.
    void SynchronouslyClose();

    void OnMessageReceivedFromLink(const Message& aMsg);
    void OnChannelErrorFromLink();

  private:
    // Run on the not current thread.
    void NotifyChannelClosed();
    void NotifyMaybeChannelError();

  private:
    // Can be run on either thread
    void AssertWorkerThread() const
    {
        NS_ABORT_IF_FALSE(mWorkerLoopID == MessageLoop::current()->id(),
                          "not on worker thread!");
    }

    // The "link" thread is either the I/O thread (ProcessLink) or the
    // other actor's work thread (ThreadLink).  In either case, it is
    // NOT our worker thread.
    void AssertLinkThread() const
    {
        NS_ABORT_IF_FALSE(mWorkerLoopID != MessageLoop::current()->id(),
                          "on worker thread but should not be!");
    }

  private:
    typedef IPC::Message::msgid_t msgid_t;
    typedef std::deque<Message> MessageQueue;
    typedef std::map<size_t, Message> MessageMap;

    // All dequeuing tasks require a single point of cancellation,
    // which is handled via a reference-counted task.
    class RefCountedTask
    {
      public:
        RefCountedTask(CancelableTask* aTask)
          : mTask(aTask)
        { }
        ~RefCountedTask() { delete mTask; }
        void Run() { mTask->Run(); }
        void Cancel() { mTask->Cancel(); }

        NS_INLINE_DECL_THREADSAFE_REFCOUNTING(RefCountedTask)

      private:
        CancelableTask* mTask;
    };

    // Wrap an existing task which can be cancelled at any time
    // without the wrapper's knowledge.
    class DequeueTask : public Task
    {
      public:
        DequeueTask(RefCountedTask* aTask)
          : mTask(aTask)
        { }
        void Run() { mTask->Run(); }

      private:
        nsRefPtr<RefCountedTask> mTask;
    };

  private:
    mozilla::WeakPtr<MessageListener> mListener;
    ChannelState mChannelState;
    nsRefPtr<RefCountedMonitor> mMonitor;
    Side mSide;
    MessageLink* mLink;
    MessageLoop* mWorkerLoop;           // thread where work is done
    CancelableTask* mChannelErrorTask;  // NotifyMaybeChannelError runnable

    // id() of mWorkerLoop.  This persists even after mWorkerLoop is cleared
    // during channel shutdown.
    int mWorkerLoopID;

    // A task encapsulating dequeuing one pending message.
    nsRefPtr<RefCountedTask> mDequeueOneTask;

    // Timeout periods are broken up in two to prevent system suspension from
    // triggering an abort. This method (called by WaitForEvent with a 'did
    // timeout' flag) decides if we should wait again for half of mTimeoutMs
    // or give up.
    int32_t mTimeoutMs;
    bool mInTimeoutSecondHalf;

    // Worker-thread only; sequence numbers for messages that require
    // synchronous replies.
    int32_t mNextSeqno;

    static bool sIsPumpingMessages;

    class AutoEnterPendingReply {
      public:
        AutoEnterPendingReply(size_t &replyVar)
          : mReplyVar(replyVar)
        {
            mReplyVar++;
        }
        ~AutoEnterPendingReply() {
            mReplyVar--;
        }
      private:
        size_t& mReplyVar;
    };

    // Worker-thread only; type we're expecting for the reply to a sync
    // out-message. This will never be greater than 1.
    size_t mPendingSyncReplies;

    // Worker-thread only; Number of urgent and rpc replies we're waiting on.
    // These are mutually exclusive since one channel cannot have outcalls of
    // both kinds.
    size_t mPendingUrgentReplies;
    size_t mPendingRPCReplies;

    // When we send an urgent request from the parent process, we could race
    // with an RPC message that was issued by the child beforehand. In this
    // case, if the parent were to wake up while waiting for the urgent reply,
    // and process the RPC, it could send an additional urgent message. The
    // child would wake up to process the urgent message (as it always will),
    // then send a reply, which could be received by the parent out-of-order
    // with respect to the first urgent reply.
    //
    // To address this problem, urgent or RPC requests are associated with a
    // "transaction". Whenever one side of the channel wishes to start a
    // chain of RPC/urgent messages, it allocates a new transaction ID. Any
    // messages the parent receives, not apart of this transaction, are
    // deferred. When issuing RPC/urgent requests on top of a started
    // transaction, the initiating transaction ID is used.
    // 
    // To ensure IDs are unique, we use sequence numbers for transaction IDs,
    // which grow in opposite directions from child to parent.

    // The current transaction ID.
    int32_t mCurrentRPCTransaction;

    class AutoEnterRPCTransaction
    {
      public:
       AutoEnterRPCTransaction(MessageChannel *aChan)
        : mChan(aChan),
          mOldTransaction(mChan->mCurrentRPCTransaction)
       {
           mChan->mMonitor->AssertCurrentThreadOwns();
           if (mChan->mCurrentRPCTransaction == 0)
               mChan->mCurrentRPCTransaction = mChan->NextSeqno();
       }
       AutoEnterRPCTransaction(MessageChannel *aChan, Message *message)
        : mChan(aChan),
          mOldTransaction(mChan->mCurrentRPCTransaction)
       {
           mChan->mMonitor->AssertCurrentThreadOwns();

           if (!message->is_rpc() && !message->is_urgent())
               return;

           MOZ_ASSERT_IF(mChan->mSide == ParentSide,
                         !mOldTransaction || mOldTransaction == message->transaction_id());
           mChan->mCurrentRPCTransaction = message->transaction_id();
       }
       ~AutoEnterRPCTransaction() {
           mChan->mMonitor->AssertCurrentThreadOwns();
           mChan->mCurrentRPCTransaction = mOldTransaction;
       }

      private:
       MessageChannel *mChan;
       int32_t mOldTransaction;
    };

    // If waiting for the reply to a sync out-message, it will be saved here
    // on the I/O thread and then read and cleared by the worker thread.
    nsAutoPtr<Message> mRecvd;

    // Set while we are dispatching a synchronous message.
    bool mDispatchingSyncMessage;

    // Count of the recursion depth of dispatching urgent messages.
    size_t mDispatchingUrgentMessageCount;

    // Queue of all incoming messages, except for replies to sync and urgent
    // messages, which are delivered directly to mRecvd, and any pending urgent
    // incall, which is stored in mPendingUrgentRequest.
    //
    // If both this side and the other side are functioning correctly, the queue
    // can only be in certain configurations.  Let
    //
    //   |A<| be an async in-message,
    //   |S<| be a sync in-message,
    //   |C<| be an Interrupt in-call,
    //   |R<| be an Interrupt reply.
    //
    // The queue can only match this configuration
    //
    //  A<* (S< | C< | R< (?{mStack.size() == 1} A<* (S< | C<)))
    //
    // The other side can send as many async messages |A<*| as it wants before
    // sending us a blocking message.
    //
    // The first case is |S<|, a sync in-msg.  The other side must be blocked,
    // and thus can't send us any more messages until we process the sync
    // in-msg.
    //
    // The second case is |C<|, an Interrupt in-call; the other side must be blocked.
    // (There's a subtlety here: this in-call might have raced with an
    // out-call, but we detect that with the mechanism below,
    // |mRemoteStackDepth|, and races don't matter to the queue.)
    //
    // Final case, the other side replied to our most recent out-call |R<|.
    // If that was the *only* out-call on our stack, |?{mStack.size() == 1}|,
    // then other side "finished with us," and went back to its own business.
    // That business might have included sending any number of async message
    // |A<*| until sending a blocking message |(S< | C<)|.  If we had more than
    // one Interrupt call on our stack, the other side *better* not have sent us
    // another blocking message, because it's blocked on a reply from us.
    //
    MessageQueue mPending;

    // Note that these two pointers are mutually exclusive. One channel cannot
    // send both urgent requests (parent -> child) and RPC calls (child->parent).
    // Also note that since initiating either requires blocking, they cannot
    // queue up on the other side. One message slot is enough.
    //
    // Normally, all other message types are deferred into into mPending, and
    // only these two types have special treatment (since they wake up blocked
    // requests). However, when an RPC in-call races with an urgent out-call,
    // the RPC message will be put into mPending instead of its slot below.
    nsAutoPtr<Message> mPendingUrgentRequest;
    nsAutoPtr<Message> mPendingRPCCall;

    // Stack of all the out-calls on which this channel is awaiting responses.
    // Each stack refers to a different protocol and the stacks are mutually
    // exclusive: multiple outcalls of the same kind cannot be initiated while
    // another is active.
    std::stack<Message> mInterruptStack;

    // This is what we think the Interrupt stack depth is on the "other side" of this
    // Interrupt channel.  We maintain this variable so that we can detect racy Interrupt
    // calls.  With each Interrupt out-call sent, we send along what *we* think the
    // stack depth of the remote side is *before* it will receive the Interrupt call.
    //
    // After sending the out-call, our stack depth is "incremented" by pushing
    // that pending message onto mPending.
    //
    // Then when processing an in-call |c|, it must be true that
    //
    //   mStack.size() == c.remoteDepth
    //
    // I.e., my depth is actually the same as what the other side thought it
    // was when it sent in-call |c|.  If this fails to hold, we have detected
    // racy Interrupt calls.
    //
    // We then increment mRemoteStackDepth *just before* processing the
    // in-call, since we know the other side is waiting on it, and decrement
    // it *just after* finishing processing that in-call, since our response
    // will pop the top of the other side's |mPending|.
    //
    // One nice aspect of this race detection is that it is symmetric; if one
    // side detects a race, then the other side must also detect the same race.
    size_t mRemoteStackDepthGuess;

    // Approximation of code frames on the C++ stack. It can only be
    // interpreted as the implication:
    //
    //  !mCxxStackFrames.empty() => MessageChannel code on C++ stack
    //
    // This member is only accessed on the worker thread, and so is not
    // protected by mMonitor.  It is managed exclusively by the helper
    // |class CxxStackFrame|.
    mozilla::Vector<InterruptFrame> mCxxStackFrames;

    // Did we process an Interrupt out-call during this stack?  Only meaningful in
    // ExitedCxxStack(), from which this variable is reset.
    bool mSawInterruptOutMsg;

    // Map of replies received "out of turn", because of Interrupt
    // in-calls racing with replies to outstanding in-calls.  See
    // https://bugzilla.mozilla.org/show_bug.cgi?id=521929.
    MessageMap mOutOfTurnReplies;

    // Stack of Interrupt in-calls that were deferred because of race
    // conditions.
    std::stack<Message> mDeferred;

#ifdef OS_WIN
    HANDLE mEvent;
#endif

    // Should the channel abort the process from the I/O thread when
    // a channel error occurs?
    bool mAbortOnError;
};

} // namespace ipc
} // namespace mozilla

#endif  // ifndef ipc_glue_MessageChannel_h