DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (27a812186ff4)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
/* cairo - a vector graphics library with display and print output
 *
 * Copyright © 2004 Red Hat, Inc.
 * Copyright © 2005 Red Hat, Inc.
 *
 * This library is free software; you can redistribute it and/or
 * modify it either under the terms of the GNU Lesser General Public
 * License version 2.1 as published by the Free Software Foundation
 * (the "LGPL") or, at your option, under the terms of the Mozilla
 * Public License Version 1.1 (the "MPL"). If you do not alter this
 * notice, a recipient may use your version of this file under either
 * the MPL or the LGPL.
 *
 * You should have received a copy of the LGPL along with this library
 * in the file COPYING-LGPL-2.1; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
 * You should have received a copy of the MPL along with this library
 * in the file COPYING-MPL-1.1
 *
 * The contents of this file are subject to the Mozilla Public License
 * Version 1.1 (the "License"); you may not use this file except in
 * compliance with the License. You may obtain a copy of the License at
 * http://www.mozilla.org/MPL/
 *
 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
 * OF ANY KIND, either express or implied. See the LGPL or the MPL for
 * the specific language governing rights and limitations.
 *
 * The Original Code is the cairo graphics library.
 *
 * The Initial Developer of the Original Code is Red Hat, Inc.
 *
 * Contributor(s):
 *      Keith Packard <keithp@keithp.com>
 *	Graydon Hoare <graydon@redhat.com>
 *	Carl Worth <cworth@cworth.org>
 */

#include "cairoint.h"
#include "cairo-error-private.h"

/*
 * An entry can be in one of three states:
 *
 * FREE: Entry has never been used, terminates all searches.
 *       Appears in the table as a %NULL pointer.
 *
 * DEAD: Entry had been live in the past. A dead entry can be reused
 *       but does not terminate a search for an exact entry.
 *       Appears in the table as a pointer to DEAD_ENTRY.
 *
 * LIVE: Entry is currently being used.
 *       Appears in the table as any non-%NULL, non-DEAD_ENTRY pointer.
 */

#define DEAD_ENTRY ((cairo_hash_entry_t *) 0x1)

#define ENTRY_IS_FREE(entry) ((entry) == NULL)
#define ENTRY_IS_DEAD(entry) ((entry) == DEAD_ENTRY)
#define ENTRY_IS_LIVE(entry) ((entry) >  DEAD_ENTRY)

/* We expect keys will not be destroyed frequently, so our table does not
 * contain any explicit shrinking code nor any chain-coalescing code for
 * entries randomly deleted by memory pressure (except during rehashing, of
 * course). These assumptions are potentially bad, but they make the
 * implementation straightforward.
 *
 * Revisit later if evidence appears that we're using excessive memory from
 * a mostly-dead table.
 *
 * This table is open-addressed with double hashing. Each table size is a
 * prime chosen to be a little more than double the high water mark for a
 * given arrangement, so the tables should remain < 50% full. The table
 * size makes for the "first" hash modulus; a second prime (2 less than the
 * first prime) serves as the "second" hash modulus, which is co-prime and
 * thus guarantees a complete permutation of table indices.
 *
 * This structure, and accompanying table, is borrowed/modified from the
 * file xserver/render/glyph.c in the freedesktop.org x server, with
 * permission (and suggested modification of doubling sizes) by Keith
 * Packard.
 */

typedef struct _cairo_hash_table_arrangement {
    unsigned long high_water_mark;
    unsigned long size;
    unsigned long rehash;
} cairo_hash_table_arrangement_t;

static const cairo_hash_table_arrangement_t hash_table_arrangements [] = {
    { 16,		43,		41		},
    { 32,		73,		71		},
    { 64,		151,		149		},
    { 128,		283,		281		},
    { 256,		571,		569		},
    { 512,		1153,		1151		},
    { 1024,		2269,		2267		},
    { 2048,		4519,		4517		},
    { 4096,		9013,		9011		},
    { 8192,		18043,		18041		},
    { 16384,		36109,		36107		},
    { 32768,		72091,		72089		},
    { 65536,		144409,		144407		},
    { 131072,		288361,		288359		},
    { 262144,		576883,		576881		},
    { 524288,		1153459,	1153457		},
    { 1048576,		2307163,	2307161		},
    { 2097152,		4613893,	4613891		},
    { 4194304,		9227641,	9227639		},
    { 8388608,		18455029,	18455027	},
    { 16777216,		36911011,	36911009	},
    { 33554432,		73819861,	73819859	},
    { 67108864,		147639589,	147639587	},
    { 134217728,	295279081,	295279079	},
    { 268435456,	590559793,	590559791	}
};

#define NUM_HASH_TABLE_ARRANGEMENTS ARRAY_LENGTH (hash_table_arrangements)

struct _cairo_hash_table {
    cairo_hash_keys_equal_func_t keys_equal;

    const cairo_hash_table_arrangement_t *arrangement;
    cairo_hash_entry_t **entries;

    unsigned long live_entries;
    unsigned long iterating;   /* Iterating, no insert, no resize */
};

/**
 * _cairo_hash_table_create:
 * @keys_equal: a function to return %TRUE if two keys are equal
 *
 * Creates a new hash table which will use the keys_equal() function
 * to compare hash keys. Data is provided to the hash table in the
 * form of user-derived versions of #cairo_hash_entry_t. A hash entry
 * must be able to hold both a key (including a hash code) and a
 * value. Sometimes only the key will be necessary, (as in
 * _cairo_hash_table_remove), and other times both a key and a value
 * will be necessary, (as in _cairo_hash_table_insert).
 *
 * See #cairo_hash_entry_t for more details.
 *
 * Return value: the new hash table or %NULL if out of memory.
 **/
cairo_hash_table_t *
_cairo_hash_table_create (cairo_hash_keys_equal_func_t keys_equal)
{
    cairo_hash_table_t *hash_table;

    hash_table = malloc (sizeof (cairo_hash_table_t));
    if (unlikely (hash_table == NULL)) {
	_cairo_error_throw (CAIRO_STATUS_NO_MEMORY);
	return NULL;
    }

    hash_table->keys_equal = keys_equal;

    hash_table->arrangement = &hash_table_arrangements[0];

    hash_table->entries = calloc (hash_table->arrangement->size,
				  sizeof(cairo_hash_entry_t *));
    if (unlikely (hash_table->entries == NULL)) {
	_cairo_error_throw (CAIRO_STATUS_NO_MEMORY);
	free (hash_table);
	return NULL;
    }

    hash_table->live_entries = 0;
    hash_table->iterating = 0;

    return hash_table;
}

/**
 * _cairo_hash_table_destroy:
 * @hash_table: an empty hash table to destroy
 *
 * Immediately destroys the given hash table, freeing all resources
 * associated with it.
 *
 * WARNING: The hash_table must have no live entries in it before
 * _cairo_hash_table_destroy is called. It is a fatal error otherwise,
 * and this function will halt. The rationale for this behavior is to
 * avoid memory leaks and to avoid needless complication of the API
 * with destroy notifiy callbacks.
 *
 * WARNING: The hash_table must have no running iterators in it when
 * _cairo_hash_table_destroy is called. It is a fatal error otherwise,
 * and this function will halt.
 **/
void
_cairo_hash_table_destroy (cairo_hash_table_t *hash_table)
{
    /* The hash table must be empty. Otherwise, halt. */
    assert (hash_table->live_entries == 0);
    /* No iterators can be running. Otherwise, halt. */
    assert (hash_table->iterating == 0);

    free (hash_table->entries);
    hash_table->entries = NULL;

    free (hash_table);
}

static cairo_hash_entry_t **
_cairo_hash_table_lookup_unique_key (cairo_hash_table_t *hash_table,
				     cairo_hash_entry_t *key)
{
    unsigned long table_size, i, idx, step;
    cairo_hash_entry_t **entry;

    table_size = hash_table->arrangement->size;
    idx = key->hash % table_size;

    entry = &hash_table->entries[idx];
    if (! ENTRY_IS_LIVE (*entry))
	return entry;

    i = 1;
    step = key->hash % hash_table->arrangement->rehash;
    if (step == 0)
	step = 1;
    do {
	idx += step;
	if (idx >= table_size)
	    idx -= table_size;

	entry = &hash_table->entries[idx];
	if (! ENTRY_IS_LIVE (*entry))
	    return entry;
    } while (++i < table_size);

    ASSERT_NOT_REACHED;
    return NULL;
}

/**
 * _cairo_hash_table_resize:
 * @hash_table: a hash table
 *
 * Resize the hash table if the number of entries has gotten much
 * bigger or smaller than the ideal number of entries for the current
 * size.
 *
 * Return value: %CAIRO_STATUS_SUCCESS if successful or
 * %CAIRO_STATUS_NO_MEMORY if out of memory.
 **/
static cairo_status_t
_cairo_hash_table_resize (cairo_hash_table_t *hash_table)
{
    cairo_hash_table_t tmp;
    unsigned long new_size, i;

    /* This keeps the hash table between 25% and 50% full. */
    unsigned long high = hash_table->arrangement->high_water_mark;
    unsigned long low = high >> 2;

    if (hash_table->live_entries >= low && hash_table->live_entries <= high)
	return CAIRO_STATUS_SUCCESS;

    tmp = *hash_table;

    if (hash_table->live_entries > high)
    {
	tmp.arrangement = hash_table->arrangement + 1;
	/* This code is being abused if we can't make a table big enough. */
	assert (tmp.arrangement - hash_table_arrangements <
		NUM_HASH_TABLE_ARRANGEMENTS);
    }
    else /* hash_table->live_entries < low */
    {
	/* Can't shrink if we're at the smallest size */
	if (hash_table->arrangement == &hash_table_arrangements[0])
	    return CAIRO_STATUS_SUCCESS;
	tmp.arrangement = hash_table->arrangement - 1;
    }

    new_size = tmp.arrangement->size;
    tmp.entries = calloc (new_size, sizeof (cairo_hash_entry_t*));
    if (unlikely (tmp.entries == NULL))
	return _cairo_error (CAIRO_STATUS_NO_MEMORY);

    for (i = 0; i < hash_table->arrangement->size; ++i) {
	if (ENTRY_IS_LIVE (hash_table->entries[i])) {
	    *_cairo_hash_table_lookup_unique_key (&tmp, hash_table->entries[i])
		= hash_table->entries[i];
	}
    }

    free (hash_table->entries);
    hash_table->entries = tmp.entries;
    hash_table->arrangement = tmp.arrangement;

    return CAIRO_STATUS_SUCCESS;
}

/**
 * _cairo_hash_table_lookup:
 * @hash_table: a hash table
 * @key: the key of interest
 *
 * Performs a lookup in @hash_table looking for an entry which has a
 * key that matches @key, (as determined by the keys_equal() function
 * passed to _cairo_hash_table_create).
 *
 * Return value: the matching entry, of %NULL if no match was found.
 **/
void *
_cairo_hash_table_lookup (cairo_hash_table_t *hash_table,
			  cairo_hash_entry_t *key)
{
    cairo_hash_entry_t *entry;
    unsigned long table_size, i, idx, step;

    table_size = hash_table->arrangement->size;
    idx = key->hash % table_size;

    entry = hash_table->entries[idx];
    if (ENTRY_IS_LIVE (entry)) {
	if (hash_table->keys_equal (key, entry))
	    return entry;
    } else if (ENTRY_IS_FREE (entry))
	return NULL;

    i = 1;
    step = key->hash % hash_table->arrangement->rehash;
    if (step == 0)
	step = 1;
    do {
	idx += step;
	if (idx >= table_size)
	    idx -= table_size;

	entry = hash_table->entries[idx];
	if (ENTRY_IS_LIVE (entry)) {
	    if (hash_table->keys_equal (key, entry))
		return entry;
	} else if (ENTRY_IS_FREE (entry))
	    return NULL;
    } while (++i < table_size);

    return NULL;
}

/**
 * _cairo_hash_table_random_entry:
 * @hash_table: a hash table
 * @predicate: a predicate function.
 *
 * Find a random entry in the hash table satisfying the given
 * @predicate.
 *
 * We use the same algorithm as the lookup algorithm to walk over the
 * entries in the hash table in a pseudo-random order. Walking
 * linearly would favor entries following gaps in the hash table. We
 * could also call rand() repeatedly, which works well for almost-full
 * tables, but degrades when the table is almost empty, or predicate
 * returns %TRUE for most entries.
 *
 * Return value: a random live entry or %NULL if there are no entries
 * that match the given predicate. In particular, if predicate is
 * %NULL, a %NULL return value indicates that the table is empty.
 **/
void *
_cairo_hash_table_random_entry (cairo_hash_table_t	   *hash_table,
				cairo_hash_predicate_func_t predicate)
{
    cairo_hash_entry_t *entry;
    unsigned long hash;
    unsigned long table_size, i, idx, step;

    assert (predicate != NULL);

    table_size = hash_table->arrangement->size;
    hash = rand ();
    idx = hash % table_size;

    entry = hash_table->entries[idx];
    if (ENTRY_IS_LIVE (entry) && predicate (entry))
	return entry;

    i = 1;
    step = hash % hash_table->arrangement->rehash;
    if (step == 0)
	step = 1;
    do {
	idx += step;
	if (idx >= table_size)
	    idx -= table_size;

	entry = hash_table->entries[idx];
	if (ENTRY_IS_LIVE (entry) && predicate (entry))
	    return entry;
    } while (++i < table_size);

    return NULL;
}

/**
 * _cairo_hash_table_insert:
 * @hash_table: a hash table
 * @key_and_value: an entry to be inserted
 *
 * Insert the entry #key_and_value into the hash table.
 *
 * WARNING: There must not be an existing entry in the hash table
 * with a matching key.
 *
 * WARNING: It is a fatal error to insert an element while
 * an iterator is running
 *
 * Instead of using insert to replace an entry, consider just editing
 * the entry obtained with _cairo_hash_table_lookup. Or if absolutely
 * necessary, use _cairo_hash_table_remove first.
 *
 * Return value: %CAIRO_STATUS_SUCCESS if successful or
 * %CAIRO_STATUS_NO_MEMORY if insufficient memory is available.
 **/
cairo_status_t
_cairo_hash_table_insert (cairo_hash_table_t *hash_table,
			  cairo_hash_entry_t *key_and_value)
{
    cairo_status_t status;

    /* Insert is illegal while an iterator is running. */
    assert (hash_table->iterating == 0);

    hash_table->live_entries++;
    status = _cairo_hash_table_resize (hash_table);
    if (unlikely (status)) {
	/* abort the insert... */
	hash_table->live_entries--;
	return status;
    }

    *_cairo_hash_table_lookup_unique_key (hash_table,
					  key_and_value) = key_and_value;

    return CAIRO_STATUS_SUCCESS;
}

static cairo_hash_entry_t **
_cairo_hash_table_lookup_exact_key (cairo_hash_table_t *hash_table,
				    cairo_hash_entry_t *key)
{
    unsigned long table_size, i, idx, step;
    cairo_hash_entry_t **entry;

    table_size = hash_table->arrangement->size;
    idx = key->hash % table_size;

    entry = &hash_table->entries[idx];
    if (*entry == key)
	return entry;

    i = 1;
    step = key->hash % hash_table->arrangement->rehash;
    if (step == 0)
	step = 1;
    do {
	idx += step;
	if (idx >= table_size)
	    idx -= table_size;

	entry = &hash_table->entries[idx];
	if (*entry == key)
	    return entry;
    } while (++i < table_size);

    ASSERT_NOT_REACHED;
    return NULL;
}
/**
 * _cairo_hash_table_remove:
 * @hash_table: a hash table
 * @key: key of entry to be removed
 *
 * Remove an entry from the hash table which points to @key.
 *
 * Return value: %CAIRO_STATUS_SUCCESS if successful or
 * %CAIRO_STATUS_NO_MEMORY if out of memory.
 **/
void
_cairo_hash_table_remove (cairo_hash_table_t *hash_table,
			  cairo_hash_entry_t *key)
{
    *_cairo_hash_table_lookup_exact_key (hash_table, key) = DEAD_ENTRY;
    hash_table->live_entries--;

    /* Check for table resize. Don't do this when iterating as this will
     * reorder elements of the table and cause the iteration to potentially
     * skip some elements. */
    if (hash_table->iterating == 0) {
	/* This call _can_ fail, but only in failing to allocate new
	 * memory to shrink the hash table. It does leave the table in a
	 * consistent state, and we've already succeeded in removing the
	 * entry, so we don't examine the failure status of this call. */
	_cairo_hash_table_resize (hash_table);
    }
}

/**
 * _cairo_hash_table_foreach:
 * @hash_table: a hash table
 * @hash_callback: function to be called for each live entry
 * @closure: additional argument to be passed to @hash_callback
 *
 * Call @hash_callback for each live entry in the hash table, in a
 * non-specified order.
 *
 * Entries in @hash_table may be removed by code executed from @hash_callback.
 *
 * Entries may not be inserted to @hash_table, nor may @hash_table
 * be destroyed by code executed from @hash_callback. The relevant
 * functions will halt in these cases.
 **/
void
_cairo_hash_table_foreach (cairo_hash_table_t	      *hash_table,
			   cairo_hash_callback_func_t  hash_callback,
			   void			      *closure)
{
    unsigned long i;
    cairo_hash_entry_t *entry;

    /* Mark the table for iteration */
    ++hash_table->iterating;
    for (i = 0; i < hash_table->arrangement->size; i++) {
	entry = hash_table->entries[i];
	if (ENTRY_IS_LIVE(entry))
	    hash_callback (entry, closure);
    }
    /* If some elements were deleted during the iteration,
     * the table may need resizing. Just do this every time
     * as the check is inexpensive.
     */
    if (--hash_table->iterating == 0) {
	/* Should we fail to shrink the hash table, it is left unaltered,
	 * and we don't need to propagate the error status. */
	_cairo_hash_table_resize (hash_table);
    }
}