DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (27a812186ff4)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
/*
 * Copyright © 2004 Carl Worth
 * Copyright © 2006 Red Hat, Inc.
 * Copyright © 2008 Chris Wilson
 *
 * This library is free software; you can redistribute it and/or
 * modify it either under the terms of the GNU Lesser General Public
 * License version 2.1 as published by the Free Software Foundation
 * (the "LGPL") or, at your option, under the terms of the Mozilla
 * Public License Version 1.1 (the "MPL"). If you do not alter this
 * notice, a recipient may use your version of this file under either
 * the MPL or the LGPL.
 *
 * You should have received a copy of the LGPL along with this library
 * in the file COPYING-LGPL-2.1; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
 * You should have received a copy of the MPL along with this library
 * in the file COPYING-MPL-1.1
 *
 * The contents of this file are subject to the Mozilla Public License
 * Version 1.1 (the "License"); you may not use this file except in
 * compliance with the License. You may obtain a copy of the License at
 * http://www.mozilla.org/MPL/
 *
 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
 * OF ANY KIND, either express or implied. See the LGPL or the MPL for
 * the specific language governing rights and limitations.
 *
 * The Original Code is the cairo graphics library.
 *
 * The Initial Developer of the Original Code is Carl Worth
 *
 * Contributor(s):
 *	Carl D. Worth <cworth@cworth.org>
 *	Chris Wilson <chris@chris-wilson.co.uk>
 */

/* Provide definitions for standalone compilation */
#include "cairoint.h"

#include "cairo-boxes-private.h"
#include "cairo-combsort-private.h"
#include "cairo-error-private.h"

typedef struct _cairo_bo_edge cairo_bo_edge_t;
typedef struct _cairo_bo_trap cairo_bo_trap_t;

/* A deferred trapezoid of an edge */
struct _cairo_bo_trap {
    cairo_bo_edge_t *right;
    int32_t top;
};

struct _cairo_bo_edge {
    cairo_edge_t edge;
    cairo_bo_edge_t *prev;
    cairo_bo_edge_t *next;
    cairo_bo_trap_t deferred_trap;
};

typedef enum {
    CAIRO_BO_EVENT_TYPE_START,
    CAIRO_BO_EVENT_TYPE_STOP
} cairo_bo_event_type_t;

typedef struct _cairo_bo_event {
    cairo_bo_event_type_t type;
    cairo_point_t point;
    cairo_bo_edge_t *edge;
} cairo_bo_event_t;

typedef struct _cairo_bo_sweep_line {
    cairo_bo_event_t **events;
    cairo_bo_edge_t *head;
    cairo_bo_edge_t *stopped;
    int32_t current_y;
    cairo_bo_edge_t *current_edge;
} cairo_bo_sweep_line_t;

static inline int
_cairo_point_compare (const cairo_point_t *a,
		      const cairo_point_t *b)
{
    int cmp;

    cmp = a->y - b->y;
    if (likely (cmp))
	return cmp;

    return a->x - b->x;
}

static inline int
_cairo_bo_edge_compare (const cairo_bo_edge_t	*a,
			const cairo_bo_edge_t	*b)
{
    int cmp;

    cmp = a->edge.line.p1.x - b->edge.line.p1.x;
    if (likely (cmp))
	return cmp;

    return b->edge.bottom - a->edge.bottom;
}

static inline int
cairo_bo_event_compare (const cairo_bo_event_t *a,
			const cairo_bo_event_t *b)
{
    int cmp;

    cmp = _cairo_point_compare (&a->point, &b->point);
    if (likely (cmp))
	return cmp;

    cmp = a->type - b->type;
    if (cmp)
	return cmp;

    return a - b;
}

static inline cairo_bo_event_t *
_cairo_bo_event_dequeue (cairo_bo_sweep_line_t *sweep_line)
{
    return *sweep_line->events++;
}

CAIRO_COMBSORT_DECLARE (_cairo_bo_event_queue_sort,
			cairo_bo_event_t *,
			cairo_bo_event_compare)

static void
_cairo_bo_sweep_line_init (cairo_bo_sweep_line_t *sweep_line,
			   cairo_bo_event_t	**events,
			   int			  num_events)
{
    _cairo_bo_event_queue_sort (events, num_events);
    events[num_events] = NULL;
    sweep_line->events = events;

    sweep_line->head = NULL;
    sweep_line->current_y = INT32_MIN;
    sweep_line->current_edge = NULL;
}

static void
_cairo_bo_sweep_line_insert (cairo_bo_sweep_line_t	*sweep_line,
			     cairo_bo_edge_t		*edge)
{
    if (sweep_line->current_edge != NULL) {
	cairo_bo_edge_t *prev, *next;
	int cmp;

	cmp = _cairo_bo_edge_compare (sweep_line->current_edge, edge);
	if (cmp < 0) {
	    prev = sweep_line->current_edge;
	    next = prev->next;
	    while (next != NULL && _cairo_bo_edge_compare (next, edge) < 0)
		prev = next, next = prev->next;

	    prev->next = edge;
	    edge->prev = prev;
	    edge->next = next;
	    if (next != NULL)
		next->prev = edge;
	} else if (cmp > 0) {
	    next = sweep_line->current_edge;
	    prev = next->prev;
	    while (prev != NULL && _cairo_bo_edge_compare (prev, edge) > 0)
		next = prev, prev = next->prev;

	    next->prev = edge;
	    edge->next = next;
	    edge->prev = prev;
	    if (prev != NULL)
		prev->next = edge;
	    else
		sweep_line->head = edge;
	} else {
	    prev = sweep_line->current_edge;
	    edge->prev = prev;
	    edge->next = prev->next;
	    if (prev->next != NULL)
		prev->next->prev = edge;
	    prev->next = edge;
	}
    } else {
	sweep_line->head = edge;
    }

    sweep_line->current_edge = edge;
}

static void
_cairo_bo_sweep_line_delete (cairo_bo_sweep_line_t	*sweep_line,
			     cairo_bo_edge_t	*edge)
{
    if (edge->prev != NULL)
	edge->prev->next = edge->next;
    else
	sweep_line->head = edge->next;

    if (edge->next != NULL)
	edge->next->prev = edge->prev;

    if (sweep_line->current_edge == edge)
	sweep_line->current_edge = edge->prev ? edge->prev : edge->next;
}

static inline cairo_bool_t
edges_collinear (const cairo_bo_edge_t *a, const cairo_bo_edge_t *b)
{
    return a->edge.line.p1.x == b->edge.line.p1.x;
}

static cairo_status_t
_cairo_bo_edge_end_trap (cairo_bo_edge_t	*left,
			 int32_t		 bot,
			 cairo_bool_t		 do_traps,
			 void			*container)
{
    cairo_bo_trap_t *trap = &left->deferred_trap;
    cairo_status_t status = CAIRO_STATUS_SUCCESS;

    /* Only emit (trivial) non-degenerate trapezoids with positive height. */
    if (likely (trap->top < bot)) {
	if (do_traps) {
	    _cairo_traps_add_trap (container,
				   trap->top, bot,
				   &left->edge.line, &trap->right->edge.line);
	    status =  _cairo_traps_status ((cairo_traps_t *) container);
	} else {
	    cairo_box_t box;

	    box.p1.x = left->edge.line.p1.x;
	    box.p1.y = trap->top;
	    box.p2.x = trap->right->edge.line.p1.x;
	    box.p2.y = bot;
	    status = _cairo_boxes_add (container, &box);
	}
    }

    trap->right = NULL;

    return status;
}

/* Start a new trapezoid at the given top y coordinate, whose edges
 * are `edge' and `edge->next'. If `edge' already has a trapezoid,
 * then either add it to the traps in `traps', if the trapezoid's
 * right edge differs from `edge->next', or do nothing if the new
 * trapezoid would be a continuation of the existing one. */
static inline cairo_status_t
_cairo_bo_edge_start_or_continue_trap (cairo_bo_edge_t	*left,
				       cairo_bo_edge_t  *right,
				       int               top,
				       cairo_bool_t	 do_traps,
				       void		*container)
{
    cairo_status_t status;

    if (left->deferred_trap.right == right)
	return CAIRO_STATUS_SUCCESS;

    if (left->deferred_trap.right != NULL) {
	if (right != NULL && edges_collinear (left->deferred_trap.right, right))
	{
	    /* continuation on right, so just swap edges */
	    left->deferred_trap.right = right;
	    return CAIRO_STATUS_SUCCESS;
	}

	status = _cairo_bo_edge_end_trap (left, top, do_traps, container);
	if (unlikely (status))
	    return status;
    }

    if (right != NULL && ! edges_collinear (left, right)) {
	left->deferred_trap.top = top;
	left->deferred_trap.right = right;
    }

    return CAIRO_STATUS_SUCCESS;
}

static inline cairo_status_t
_active_edges_to_traps (cairo_bo_edge_t		*left,
			int32_t			 top,
			cairo_fill_rule_t	 fill_rule,
			cairo_bool_t		 do_traps,
			void			*container)
{
    cairo_bo_edge_t *right;
    cairo_status_t status;

    if (fill_rule == CAIRO_FILL_RULE_WINDING) {
	while (left != NULL) {
	    int in_out;

	    /* Greedily search for the closing edge, so that we generate the
	     * maximal span width with the minimal number of trapezoids.
	     */
	    in_out = left->edge.dir;

	    /* Check if there is a co-linear edge with an existing trap */
	    right = left->next;
	    if (left->deferred_trap.right == NULL) {
		while (right != NULL && right->deferred_trap.right == NULL)
		    right = right->next;

		if (right != NULL && edges_collinear (left, right)) {
		    /* continuation on left */
		    left->deferred_trap = right->deferred_trap;
		    right->deferred_trap.right = NULL;
		}
	    }

	    /* End all subsumed traps */
	    right = left->next;
	    while (right != NULL) {
		if (right->deferred_trap.right != NULL) {
		    status = _cairo_bo_edge_end_trap (right, top, do_traps, container);
		    if (unlikely (status))
			return status;
		}

		in_out += right->edge.dir;
		if (in_out == 0) {
		    /* skip co-linear edges */
		    if (right->next == NULL ||
			! edges_collinear (right, right->next))
		    {
			break;
		    }
		}

		right = right->next;
	    }

	    status = _cairo_bo_edge_start_or_continue_trap (left, right, top,
							    do_traps, container);
	    if (unlikely (status))
		return status;

	    left = right;
	    if (left != NULL)
		left = left->next;
	}
    } else {
	while (left != NULL) {
	    int in_out = 0;

	    right = left->next;
	    while (right != NULL) {
		if (right->deferred_trap.right != NULL) {
		    status = _cairo_bo_edge_end_trap (right, top, do_traps, container);
		    if (unlikely (status))
			return status;
		}

		if ((in_out++ & 1) == 0) {
		    cairo_bo_edge_t *next;
		    cairo_bool_t skip = FALSE;

		    /* skip co-linear edges */
		    next = right->next;
		    if (next != NULL)
			skip = edges_collinear (right, next);

		    if (! skip)
			break;
		}

		right = right->next;
	    }

	    status = _cairo_bo_edge_start_or_continue_trap (left, right, top,
							    do_traps, container);
	    if (unlikely (status))
		return status;

	    left = right;
	    if (left != NULL)
		left = left->next;
	}
    }

    return CAIRO_STATUS_SUCCESS;
}

static cairo_status_t
_cairo_bentley_ottmann_tessellate_rectilinear (cairo_bo_event_t   **start_events,
					       int			 num_events,
					       cairo_fill_rule_t	 fill_rule,
					       cairo_bool_t		 do_traps,
					       void			*container)
{
    cairo_bo_sweep_line_t sweep_line;
    cairo_bo_event_t *event;
    cairo_status_t status;

    _cairo_bo_sweep_line_init (&sweep_line, start_events, num_events);

    while ((event = _cairo_bo_event_dequeue (&sweep_line))) {
	if (event->point.y != sweep_line.current_y) {
	    status = _active_edges_to_traps (sweep_line.head,
					     sweep_line.current_y,
					     fill_rule, do_traps, container);
	    if (unlikely (status))
		return status;

	    sweep_line.current_y = event->point.y;
	}

	switch (event->type) {
	case CAIRO_BO_EVENT_TYPE_START:
	    _cairo_bo_sweep_line_insert (&sweep_line, event->edge);
	    break;

	case CAIRO_BO_EVENT_TYPE_STOP:
	    _cairo_bo_sweep_line_delete (&sweep_line, event->edge);

	    if (event->edge->deferred_trap.right != NULL) {
		status = _cairo_bo_edge_end_trap (event->edge,
						  sweep_line.current_y,
						  do_traps, container);
		if (unlikely (status))
		    return status;
	    }

	    break;
	}
    }

    return CAIRO_STATUS_SUCCESS;
}

cairo_status_t
_cairo_bentley_ottmann_tessellate_rectilinear_polygon (cairo_traps_t	 *traps,
						       const cairo_polygon_t *polygon,
						       cairo_fill_rule_t	  fill_rule)
{
    cairo_status_t status;
    cairo_bo_event_t stack_events[CAIRO_STACK_ARRAY_LENGTH (cairo_bo_event_t)];
    cairo_bo_event_t *events;
    cairo_bo_event_t *stack_event_ptrs[ARRAY_LENGTH (stack_events) + 1];
    cairo_bo_event_t **event_ptrs;
    cairo_bo_edge_t stack_edges[ARRAY_LENGTH (stack_events)];
    cairo_bo_edge_t *edges;
    int num_events;
    int i, j;

    if (unlikely (polygon->num_edges == 0))
	return CAIRO_STATUS_SUCCESS;

    num_events = 2 * polygon->num_edges;

    events = stack_events;
    event_ptrs = stack_event_ptrs;
    edges = stack_edges;
    if (num_events > ARRAY_LENGTH (stack_events)) {
	events = _cairo_malloc_ab_plus_c (num_events,
					  sizeof (cairo_bo_event_t) +
					  sizeof (cairo_bo_edge_t) +
					  sizeof (cairo_bo_event_t *),
					  sizeof (cairo_bo_event_t *));
	if (unlikely (events == NULL))
	    return _cairo_error (CAIRO_STATUS_NO_MEMORY);

	event_ptrs = (cairo_bo_event_t **) (events + num_events);
	edges = (cairo_bo_edge_t *) (event_ptrs + num_events + 1);
    }

    for (i = j = 0; i < polygon->num_edges; i++) {
	edges[i].edge = polygon->edges[i];
	edges[i].deferred_trap.right = NULL;
	edges[i].prev = NULL;
	edges[i].next = NULL;

	event_ptrs[j] = &events[j];
	events[j].type = CAIRO_BO_EVENT_TYPE_START;
	events[j].point.y = polygon->edges[i].top;
	events[j].point.x = polygon->edges[i].line.p1.x;
	events[j].edge = &edges[i];
	j++;

	event_ptrs[j] = &events[j];
	events[j].type = CAIRO_BO_EVENT_TYPE_STOP;
	events[j].point.y = polygon->edges[i].bottom;
	events[j].point.x = polygon->edges[i].line.p1.x;
	events[j].edge = &edges[i];
	j++;
    }

    status = _cairo_bentley_ottmann_tessellate_rectilinear (event_ptrs, j,
							    fill_rule,
							    TRUE, traps);
    if (events != stack_events)
	free (events);

    traps->is_rectilinear = TRUE;

    return status;
}

cairo_status_t
_cairo_bentley_ottmann_tessellate_rectilinear_polygon_to_boxes (const cairo_polygon_t *polygon,
								cairo_fill_rule_t	  fill_rule,
								cairo_boxes_t *boxes)
{
    cairo_status_t status;
    cairo_bo_event_t stack_events[CAIRO_STACK_ARRAY_LENGTH (cairo_bo_event_t)];
    cairo_bo_event_t *events;
    cairo_bo_event_t *stack_event_ptrs[ARRAY_LENGTH (stack_events) + 1];
    cairo_bo_event_t **event_ptrs;
    cairo_bo_edge_t stack_edges[ARRAY_LENGTH (stack_events)];
    cairo_bo_edge_t *edges;
    int num_events;
    int i, j;

    if (unlikely (polygon->num_edges == 0))
	return CAIRO_STATUS_SUCCESS;

    num_events = 2 * polygon->num_edges;

    events = stack_events;
    event_ptrs = stack_event_ptrs;
    edges = stack_edges;
    if (num_events > ARRAY_LENGTH (stack_events)) {
	events = _cairo_malloc_ab_plus_c (num_events,
					  sizeof (cairo_bo_event_t) +
					  sizeof (cairo_bo_edge_t) +
					  sizeof (cairo_bo_event_t *),
					  sizeof (cairo_bo_event_t *));
	if (unlikely (events == NULL))
	    return _cairo_error (CAIRO_STATUS_NO_MEMORY);

	event_ptrs = (cairo_bo_event_t **) (events + num_events);
	edges = (cairo_bo_edge_t *) (event_ptrs + num_events + 1);
    }

    for (i = j = 0; i < polygon->num_edges; i++) {
	edges[i].edge = polygon->edges[i];
	edges[i].deferred_trap.right = NULL;
	edges[i].prev = NULL;
	edges[i].next = NULL;

	event_ptrs[j] = &events[j];
	events[j].type = CAIRO_BO_EVENT_TYPE_START;
	events[j].point.y = polygon->edges[i].top;
	events[j].point.x = polygon->edges[i].line.p1.x;
	events[j].edge = &edges[i];
	j++;

	event_ptrs[j] = &events[j];
	events[j].type = CAIRO_BO_EVENT_TYPE_STOP;
	events[j].point.y = polygon->edges[i].bottom;
	events[j].point.x = polygon->edges[i].line.p1.x;
	events[j].edge = &edges[i];
	j++;
    }

    status = _cairo_bentley_ottmann_tessellate_rectilinear (event_ptrs, j,
							    fill_rule,
							    FALSE, boxes);
    if (events != stack_events)
	free (events);

    return status;
}

cairo_status_t
_cairo_bentley_ottmann_tessellate_rectilinear_traps (cairo_traps_t *traps,
						     cairo_fill_rule_t fill_rule)
{
    cairo_bo_event_t stack_events[CAIRO_STACK_ARRAY_LENGTH (cairo_bo_event_t)];
    cairo_bo_event_t *events;
    cairo_bo_event_t *stack_event_ptrs[ARRAY_LENGTH (stack_events) + 1];
    cairo_bo_event_t **event_ptrs;
    cairo_bo_edge_t stack_edges[ARRAY_LENGTH (stack_events)];
    cairo_bo_edge_t *edges;
    cairo_status_t status;
    int i, j, k;

    if (unlikely (traps->num_traps == 0))
	return CAIRO_STATUS_SUCCESS;

    assert (traps->is_rectilinear);

    i = 4 * traps->num_traps;

    events = stack_events;
    event_ptrs = stack_event_ptrs;
    edges = stack_edges;
    if (i > ARRAY_LENGTH (stack_events)) {
	events = _cairo_malloc_ab_plus_c (i,
					  sizeof (cairo_bo_event_t) +
					  sizeof (cairo_bo_edge_t) +
					  sizeof (cairo_bo_event_t *),
					  sizeof (cairo_bo_event_t *));
	if (unlikely (events == NULL))
	    return _cairo_error (CAIRO_STATUS_NO_MEMORY);

	event_ptrs = (cairo_bo_event_t **) (events + i);
	edges = (cairo_bo_edge_t *) (event_ptrs + i + 1);
    }

    for (i = j = k = 0; i < traps->num_traps; i++) {
	edges[k].edge.top = traps->traps[i].top;
	edges[k].edge.bottom = traps->traps[i].bottom;
	edges[k].edge.line = traps->traps[i].left;
	edges[k].edge.dir = 1;
	edges[k].deferred_trap.right = NULL;
	edges[k].prev = NULL;
	edges[k].next = NULL;

	event_ptrs[j] = &events[j];
	events[j].type = CAIRO_BO_EVENT_TYPE_START;
	events[j].point.y = traps->traps[i].top;
	events[j].point.x = traps->traps[i].left.p1.x;
	events[j].edge = &edges[k];
	j++;

	event_ptrs[j] = &events[j];
	events[j].type = CAIRO_BO_EVENT_TYPE_STOP;
	events[j].point.y = traps->traps[i].bottom;
	events[j].point.x = traps->traps[i].left.p1.x;
	events[j].edge = &edges[k];
	j++;
	k++;

	edges[k].edge.top = traps->traps[i].top;
	edges[k].edge.bottom = traps->traps[i].bottom;
	edges[k].edge.line = traps->traps[i].right;
	edges[k].edge.dir = -1;
	edges[k].deferred_trap.right = NULL;
	edges[k].prev = NULL;
	edges[k].next = NULL;

	event_ptrs[j] = &events[j];
	events[j].type = CAIRO_BO_EVENT_TYPE_START;
	events[j].point.y = traps->traps[i].top;
	events[j].point.x = traps->traps[i].right.p1.x;
	events[j].edge = &edges[k];
	j++;

	event_ptrs[j] = &events[j];
	events[j].type = CAIRO_BO_EVENT_TYPE_STOP;
	events[j].point.y = traps->traps[i].bottom;
	events[j].point.x = traps->traps[i].right.p1.x;
	events[j].edge = &edges[k];
	j++;
	k++;
    }

    _cairo_traps_clear (traps);
    status = _cairo_bentley_ottmann_tessellate_rectilinear (event_ptrs, j,
							    fill_rule,
							    TRUE, traps);
    traps->is_rectilinear = TRUE;

    if (events != stack_events)
	free (events);

    return status;
}