DXR will be turned off on Tuesday, December 29th. It will redirect to Searchfox.
See the announcement on Discourse.

DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
 * vim: set ts=8 sts=4 et sw=4 tw=99:
 *
 * Copyright (C) 2009 Apple Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
 */

#include "yarr/YarrJIT.h"

#include "assembler/assembler/LinkBuffer.h"
#include "yarr/Yarr.h"
#include "yarr/YarrCanonicalizeUCS2.h"

#if ENABLE_YARR_JIT

using namespace WTF;

namespace JSC { namespace Yarr {

template<YarrJITCompileMode compileMode>
class YarrGenerator : private MacroAssembler {
    friend void jitCompile(JSGlobalData*, YarrCodeBlock& jitObject, const String& pattern, unsigned& numSubpatterns, const char*& error, bool ignoreCase, bool multiline);

#if WTF_CPU_ARM
    static const RegisterID input = ARMRegisters::r0;
    static const RegisterID index = ARMRegisters::r1;
    static const RegisterID length = ARMRegisters::r2;
    static const RegisterID output = ARMRegisters::r4;

    static const RegisterID regT0 = ARMRegisters::r5;
    static const RegisterID regT1 = ARMRegisters::r6;

    static const RegisterID returnRegister = ARMRegisters::r0;
    static const RegisterID returnRegister2 = ARMRegisters::r1;
#elif WTF_CPU_MIPS
    static const RegisterID input = MIPSRegisters::a0;
    static const RegisterID index = MIPSRegisters::a1;
    static const RegisterID length = MIPSRegisters::a2;
    static const RegisterID output = MIPSRegisters::a3;

    static const RegisterID regT0 = MIPSRegisters::t4;
    static const RegisterID regT1 = MIPSRegisters::t5;

    static const RegisterID returnRegister = MIPSRegisters::v0;
    static const RegisterID returnRegister2 = MIPSRegisters::v1;
#elif WTF_CPU_SH4
    static const RegisterID input = SH4Registers::r4;
    static const RegisterID index = SH4Registers::r5;
    static const RegisterID length = SH4Registers::r6;
    static const RegisterID output = SH4Registers::r7;

    static const RegisterID regT0 = SH4Registers::r0;
    static const RegisterID regT1 = SH4Registers::r1;

    static const RegisterID returnRegister = SH4Registers::r0;
    static const RegisterID returnRegister2 = SH4Registers::r1;
#elif WTF_CPU_SPARC
    static const RegisterID input = SparcRegisters::i0;
    static const RegisterID index = SparcRegisters::i1;
    static const RegisterID length = SparcRegisters::i2;
    static const RegisterID output = SparcRegisters::i3;

    static const RegisterID regT0 = SparcRegisters::i4;
    static const RegisterID regT1 = SparcRegisters::i5;

    static const RegisterID returnRegister = SparcRegisters::i0;
#elif WTF_CPU_X86
    static const RegisterID input = X86Registers::eax;
    static const RegisterID index = X86Registers::edx;
    static const RegisterID length = X86Registers::ecx;
    static const RegisterID output = X86Registers::edi;

    static const RegisterID regT0 = X86Registers::ebx;
    static const RegisterID regT1 = X86Registers::esi;

    static const RegisterID returnRegister = X86Registers::eax;
    static const RegisterID returnRegister2 = X86Registers::edx;
#elif WTF_CPU_X86_64
# if WTF_PLATFORM_WIN
    static const RegisterID input = X86Registers::ecx;
    static const RegisterID index = X86Registers::edx;
    static const RegisterID length = X86Registers::r8;
    static const RegisterID output = X86Registers::r9;
# else
    static const RegisterID input = X86Registers::edi;
    static const RegisterID index = X86Registers::esi;
    static const RegisterID length = X86Registers::edx;
    static const RegisterID output = X86Registers::ecx;
# endif

    static const RegisterID regT0 = X86Registers::eax;
    static const RegisterID regT1 = X86Registers::ebx;

    static const RegisterID returnRegister = X86Registers::eax;

# if !WTF_PLATFORM_WIN
    // no way to use int128_t as return value on Win64 ABI
    static const RegisterID returnRegister2 = X86Registers::edx;
# endif
#endif

    void optimizeAlternative(PatternAlternative* alternative)
    {
        if (!alternative->m_terms.size())
            return;

        for (unsigned i = 0; i < alternative->m_terms.size() - 1; ++i) {
            PatternTerm& term = alternative->m_terms[i];
            PatternTerm& nextTerm = alternative->m_terms[i + 1];

            if ((term.type == PatternTerm::TypeCharacterClass)
                && (term.quantityType == QuantifierFixedCount)
                && (nextTerm.type == PatternTerm::TypePatternCharacter)
                && (nextTerm.quantityType == QuantifierFixedCount)) {
                PatternTerm termCopy = term;
                alternative->m_terms[i] = nextTerm;
                alternative->m_terms[i + 1] = termCopy;
            }
        }
    }

    void matchCharacterClassRange(RegisterID character, JumpList& failures, JumpList& matchDest, const CharacterRange* ranges, unsigned count, unsigned* matchIndex, const UChar* matches, unsigned matchCount)
    {
        do {
            // pick which range we're going to generate
            int which = count >> 1;
            char lo = ranges[which].begin;
            char hi = ranges[which].end;

            // check if there are any ranges or matches below lo.  If not, just jl to failure -
            // if there is anything else to check, check that first, if it falls through jmp to failure.
            if ((*matchIndex < matchCount) && (matches[*matchIndex] < lo)) {
                Jump loOrAbove = branch32(GreaterThanOrEqual, character, Imm32((unsigned short)lo));

                // generate code for all ranges before this one
                if (which)
                    matchCharacterClassRange(character, failures, matchDest, ranges, which, matchIndex, matches, matchCount);

                while ((*matchIndex < matchCount) && (matches[*matchIndex] < lo)) {
                    matchDest.append(branch32(Equal, character, Imm32((unsigned short)matches[*matchIndex])));
                    ++*matchIndex;
                }
                failures.append(jump());

                loOrAbove.link(this);
            } else if (which) {
                Jump loOrAbove = branch32(GreaterThanOrEqual, character, Imm32((unsigned short)lo));

                matchCharacterClassRange(character, failures, matchDest, ranges, which, matchIndex, matches, matchCount);
                failures.append(jump());

                loOrAbove.link(this);
            } else
                failures.append(branch32(LessThan, character, Imm32((unsigned short)lo)));

            while ((*matchIndex < matchCount) && (matches[*matchIndex] <= hi))
                ++*matchIndex;

            matchDest.append(branch32(LessThanOrEqual, character, Imm32((unsigned short)hi)));
            // fall through to here, the value is above hi.

            // shuffle along & loop around if there are any more matches to handle.
            unsigned next = which + 1;
            ranges += next;
            count -= next;
        } while (count);
    }

    void matchCharacterClass(RegisterID character, JumpList& matchDest, const CharacterClass* charClass)
    {
        if (charClass->m_table) {
            ExtendedAddress tableEntry(character, reinterpret_cast<intptr_t>(charClass->m_table));
            matchDest.append(branchTest8(charClass->m_tableInverted ? Zero : NonZero, tableEntry));
            return;
        }
        Jump unicodeFail;
        if (charClass->m_matchesUnicode.size() || charClass->m_rangesUnicode.size()) {
            Jump isAscii = branch32(LessThanOrEqual, character, TrustedImm32(0x7f));

            if (charClass->m_matchesUnicode.size()) {
                for (unsigned i = 0; i < charClass->m_matchesUnicode.size(); ++i) {
                    UChar ch = charClass->m_matchesUnicode[i];
                    matchDest.append(branch32(Equal, character, Imm32(ch)));
                }
            }

            if (charClass->m_rangesUnicode.size()) {
                for (unsigned i = 0; i < charClass->m_rangesUnicode.size(); ++i) {
                    UChar lo = charClass->m_rangesUnicode[i].begin;
                    UChar hi = charClass->m_rangesUnicode[i].end;

                    Jump below = branch32(LessThan, character, Imm32(lo));
                    matchDest.append(branch32(LessThanOrEqual, character, Imm32(hi)));
                    below.link(this);
                }
            }

            unicodeFail = jump();
            isAscii.link(this);
        }

        if (charClass->m_ranges.size()) {
            unsigned matchIndex = 0;
            JumpList failures;
            matchCharacterClassRange(character, failures, matchDest, charClass->m_ranges.begin(), charClass->m_ranges.size(), &matchIndex, charClass->m_matches.begin(), charClass->m_matches.size());
            while (matchIndex < charClass->m_matches.size())
                matchDest.append(branch32(Equal, character, Imm32((unsigned short)charClass->m_matches[matchIndex++])));

            failures.link(this);
        } else if (charClass->m_matches.size()) {
            // optimization: gather 'a','A' etc back together, can mask & test once.
            Vector<char> matchesAZaz;

            for (unsigned i = 0; i < charClass->m_matches.size(); ++i) {
                char ch = charClass->m_matches[i];
                if (m_pattern.m_ignoreCase) {
                    if (isASCIILower(ch)) {
                        matchesAZaz.append(ch);
                        continue;
                    }
                    if (isASCIIUpper(ch))
                        continue;
                }
                matchDest.append(branch32(Equal, character, Imm32((unsigned short)ch)));
            }

            if (unsigned countAZaz = matchesAZaz.size()) {
                or32(TrustedImm32(32), character);
                for (unsigned i = 0; i < countAZaz; ++i)
                    matchDest.append(branch32(Equal, character, TrustedImm32(matchesAZaz[i])));
            }
        }

        if (charClass->m_matchesUnicode.size() || charClass->m_rangesUnicode.size())
            unicodeFail.link(this);
    }

    // Jumps if input not available; will have (incorrectly) incremented already!
    Jump jumpIfNoAvailableInput(unsigned countToCheck = 0)
    {
        if (countToCheck)
            add32(Imm32(countToCheck), index);
        return branch32(Above, index, length);
    }

    Jump jumpIfAvailableInput(unsigned countToCheck)
    {
        add32(Imm32(countToCheck), index);
        return branch32(BelowOrEqual, index, length);
    }

    Jump checkInput()
    {
        return branch32(BelowOrEqual, index, length);
    }

    Jump atEndOfInput()
    {
        return branch32(Equal, index, length);
    }

    Jump notAtEndOfInput()
    {
        return branch32(NotEqual, index, length);
    }

    Jump jumpIfCharNotEquals(UChar ch, int inputPosition, RegisterID character)
    {
        readCharacter(inputPosition, character);

        // For case-insesitive compares, non-ascii characters that have different
        // upper & lower case representations are converted to a character class.
        ASSERT(!m_pattern.m_ignoreCase || isASCIIAlpha(ch) || isCanonicallyUnique(ch));
        if (m_pattern.m_ignoreCase && isASCIIAlpha(ch)) {
            or32(TrustedImm32(0x20), character);
            ch |= 0x20;
        }

        return branch32(NotEqual, character, Imm32(ch));
    }

    void readCharacter(int inputPosition, RegisterID reg)
    {
        if (m_charSize == Char8)
            load8(BaseIndex(input, index, TimesOne, inputPosition * sizeof(char)), reg);
        else
            load16(BaseIndex(input, index, TimesTwo, inputPosition * sizeof(UChar)), reg);
    }

    void storeToFrame(RegisterID reg, unsigned frameLocation)
    {
        poke(reg, frameLocation);
    }

    void storeToFrame(TrustedImm32 imm, unsigned frameLocation)
    {
        poke(imm, frameLocation);
    }

    DataLabelPtr storeToFrameWithPatch(unsigned frameLocation)
    {
        return storePtrWithPatch(TrustedImmPtr(0), Address(stackPointerRegister, frameLocation * sizeof(void*)));
    }

    void loadFromFrame(unsigned frameLocation, RegisterID reg)
    {
        peek(reg, frameLocation);
    }

    void loadFromFrameAndJump(unsigned frameLocation)
    {
        jump(Address(stackPointerRegister, frameLocation * sizeof(void*)));
    }

    void initCallFrame()
    {
        unsigned callFrameSize = m_pattern.m_body->m_callFrameSize;
        if (callFrameSize)
            subPtr(Imm32(callFrameSize * sizeof(void*)), stackPointerRegister);
    }
    void removeCallFrame()
    {
        unsigned callFrameSize = m_pattern.m_body->m_callFrameSize;
        if (callFrameSize)
            addPtr(Imm32(callFrameSize * sizeof(void*)), stackPointerRegister);
    }

    // Used to record subpatters, should only be called if compileMode is IncludeSubpatterns.
    void setSubpatternStart(RegisterID reg, unsigned subpattern)
    {
        ASSERT(subpattern);
        // FIXME: should be able to ASSERT(compileMode == IncludeSubpatterns), but then this function is conditionally NORETURN. :-(
        store32(reg, Address(output, (subpattern << 1) * sizeof(int)));
    }
    void setSubpatternEnd(RegisterID reg, unsigned subpattern)
    {
        ASSERT(subpattern);
        // FIXME: should be able to ASSERT(compileMode == IncludeSubpatterns), but then this function is conditionally NORETURN. :-(
        store32(reg, Address(output, ((subpattern << 1) + 1) * sizeof(int)));
    }
    void clearSubpatternStart(unsigned subpattern)
    {
        ASSERT(subpattern);
        // FIXME: should be able to ASSERT(compileMode == IncludeSubpatterns), but then this function is conditionally NORETURN. :-(
        store32(TrustedImm32(-1), Address(output, (subpattern << 1) * sizeof(int)));
    }

    // We use one of three different strategies to track the start of the current match,
    // while matching.
    // 1) If the pattern has a fixed size, do nothing! - we calculate the value lazily
    //    at the end of matching. This is irrespective of compileMode, and in this case
    //    these methods should never be called.
    // 2) If we're compiling IncludeSubpatterns, 'output' contains a pointer to an output
    //    vector, store the match start in the output vector.
    // 3) If we're compiling MatchOnly, 'output' is unused, store the match start directly
    //    in this register.
    void setMatchStart(RegisterID reg)
    {
        ASSERT(!m_pattern.m_body->m_hasFixedSize);
        if (compileMode == IncludeSubpatterns)
            store32(reg, output);
        else
            move(reg, output);
    }
    void getMatchStart(RegisterID reg)
    {
        ASSERT(!m_pattern.m_body->m_hasFixedSize);
        if (compileMode == IncludeSubpatterns)
            load32(output, reg);
        else
            move(output, reg);
    }

    enum YarrOpCode {
        // These nodes wrap body alternatives - those in the main disjunction,
        // rather than subpatterns or assertions. These are chained together in
        // a doubly linked list, with a 'begin' node for the first alternative,
        // a 'next' node for each subsequent alternative, and an 'end' node at
        // the end. In the case of repeating alternatives, the 'end' node also
        // has a reference back to 'begin'.
        OpBodyAlternativeBegin,
        OpBodyAlternativeNext,
        OpBodyAlternativeEnd,
        // Similar to the body alternatives, but used for subpatterns with two
        // or more alternatives.
        OpNestedAlternativeBegin,
        OpNestedAlternativeNext,
        OpNestedAlternativeEnd,
        // Used for alternatives in subpatterns where there is only a single
        // alternative (backtrackingis easier in these cases), or for alternatives
        // which never need to be backtracked (those in parenthetical assertions,
        // terminal subpatterns).
        OpSimpleNestedAlternativeBegin,
        OpSimpleNestedAlternativeNext,
        OpSimpleNestedAlternativeEnd,
        // Used to wrap 'Once' subpattern matches (quantityCount == 1).
        OpParenthesesSubpatternOnceBegin,
        OpParenthesesSubpatternOnceEnd,
        // Used to wrap 'Terminal' subpattern matches (at the end of the regexp).
        OpParenthesesSubpatternTerminalBegin,
        OpParenthesesSubpatternTerminalEnd,
        // Used to wrap parenthetical assertions.
        OpParentheticalAssertionBegin,
        OpParentheticalAssertionEnd,
        // Wraps all simple terms (pattern characters, character classes).
        OpTerm,
        // Where an expression contains only 'once through' body alternatives
        // and no repeating ones, this op is used to return match failure.
        OpMatchFailed
    };

    // This structure is used to hold the compiled opcode information,
    // including reference back to the original PatternTerm/PatternAlternatives,
    // and JIT compilation data structures.
    struct YarrOp {
        explicit YarrOp(PatternTerm* term)
            : m_op(OpTerm)
            , m_term(term)
            , m_isDeadCode(false)
        {
        }

        explicit YarrOp(YarrOpCode op)
            : m_op(op)
            , m_isDeadCode(false)
        {
        }

        // The operation, as a YarrOpCode, and also a reference to the PatternTerm.
        YarrOpCode m_op;
        PatternTerm* m_term;

        // For alternatives, this holds the PatternAlternative and doubly linked
        // references to this alternative's siblings. In the case of the
        // OpBodyAlternativeEnd node at the end of a section of repeating nodes,
        // m_nextOp will reference the OpBodyAlternativeBegin node of the first
        // repeating alternative.
        PatternAlternative* m_alternative;
        size_t m_previousOp;
        size_t m_nextOp;

        // Used to record a set of Jumps out of the generated code, typically
        // used for jumps out to backtracking code, and a single reentry back
        // into the code for a node (likely where a backtrack will trigger
        // rematching).
        Label m_reentry;
        JumpList m_jumps;

        // Used for backtracking when the prior alternative did not consume any
        // characters but matched.
        Jump m_zeroLengthMatch;

        // This flag is used to null out the second pattern character, when
        // two are fused to match a pair together.
        bool m_isDeadCode;

        // Currently used in the case of some of the more complex management of
        // 'm_checked', to cache the offset used in this alternative, to avoid
        // recalculating it.
        int m_checkAdjust;

        // Used by OpNestedAlternativeNext/End to hold the pointer to the
        // value that will be pushed into the pattern's frame to return to,
        // upon backtracking back into the disjunction.
        DataLabelPtr m_returnAddress;
    };

    // BacktrackingState
    // This class encapsulates information about the state of code generation
    // whilst generating the code for backtracking, when a term fails to match.
    // Upon entry to code generation of the backtracking code for a given node,
    // the Backtracking state will hold references to all control flow sources
    // that are outputs in need of further backtracking from the prior node
    // generated (which is the subsequent operation in the regular expression,
    // and in the m_ops Vector, since we generated backtracking backwards).
    // These references to control flow take the form of:
    //  - A jump list of jumps, to be linked to code that will backtrack them
    //    further.
    //  - A set of DataLabelPtr values, to be populated with values to be
    //    treated effectively as return addresses backtracking into complex
    //    subpatterns.
    //  - A flag indicating that the current sequence of generated code up to
    //    this point requires backtracking.
    class BacktrackingState {
    public:
        BacktrackingState()
            : m_pendingFallthrough(false)
        {
        }

        // Add a jump or jumps, a return address, or set the flag indicating
        // that the current 'fallthrough' control flow requires backtracking.
        void append(const Jump& jump)
        {
            m_laterFailures.append(jump);
        }
        void append(JumpList& jumpList)
        {
            m_laterFailures.append(jumpList);
        }
        void append(const DataLabelPtr& returnAddress)
        {
            m_pendingReturns.append(returnAddress);
        }
        void fallthrough()
        {
            ASSERT(!m_pendingFallthrough);
            m_pendingFallthrough = true;
        }

        // These methods clear the backtracking state, either linking to the
        // current location, a provided label, or copying the backtracking out
        // to a JumpList. All actions may require code generation to take place,
        // and as such are passed a pointer to the assembler.
        void link(MacroAssembler* assembler)
        {
            if (m_pendingReturns.size()) {
                Label here(assembler);
                for (unsigned i = 0; i < m_pendingReturns.size(); ++i)
                    m_backtrackRecords.append(ReturnAddressRecord(m_pendingReturns[i], here));
                m_pendingReturns.clear();
            }
            m_laterFailures.link(assembler);
            m_laterFailures.clear();
            m_pendingFallthrough = false;
        }
        void linkTo(Label label, MacroAssembler* assembler)
        {
            if (m_pendingReturns.size()) {
                for (unsigned i = 0; i < m_pendingReturns.size(); ++i)
                    m_backtrackRecords.append(ReturnAddressRecord(m_pendingReturns[i], label));
                m_pendingReturns.clear();
            }
            if (m_pendingFallthrough)
                assembler->jump(label);
            m_laterFailures.linkTo(label, assembler);
            m_laterFailures.clear();
            m_pendingFallthrough = false;
        }
        void takeBacktracksToJumpList(JumpList& jumpList, MacroAssembler* assembler)
        {
            if (m_pendingReturns.size()) {
                Label here(assembler);
                for (unsigned i = 0; i < m_pendingReturns.size(); ++i)
                    m_backtrackRecords.append(ReturnAddressRecord(m_pendingReturns[i], here));
                m_pendingReturns.clear();
                m_pendingFallthrough = true;
            }
            if (m_pendingFallthrough)
                jumpList.append(assembler->jump());
            jumpList.append(m_laterFailures);
            m_laterFailures.clear();
            m_pendingFallthrough = false;
        }

        bool isEmpty()
        {
            return m_laterFailures.empty() && m_pendingReturns.isEmpty() && !m_pendingFallthrough;
        }

        // Called at the end of code generation to link all return addresses.
        void linkDataLabels(LinkBuffer& linkBuffer)
        {
            ASSERT(isEmpty());
            for (unsigned i = 0; i < m_backtrackRecords.size(); ++i)
                linkBuffer.patch(m_backtrackRecords[i].m_dataLabel, linkBuffer.locationOf(m_backtrackRecords[i].m_backtrackLocation));
        }

    private:
        struct ReturnAddressRecord {
            ReturnAddressRecord(DataLabelPtr dataLabel, Label backtrackLocation)
                : m_dataLabel(dataLabel)
                , m_backtrackLocation(backtrackLocation)
            {
            }

            DataLabelPtr m_dataLabel;
            Label m_backtrackLocation;
        };

        JumpList m_laterFailures;
        bool m_pendingFallthrough;
        Vector<DataLabelPtr, 4> m_pendingReturns;
        Vector<ReturnAddressRecord, 4> m_backtrackRecords;
    };

    // Generation methods:
    // ===================

    // This method provides a default implementation of backtracking common
    // to many terms; terms commonly jump out of the forwards  matching path
    // on any failed conditions, and add these jumps to the m_jumps list. If
    // no special handling is required we can often just backtrack to m_jumps.
    void backtrackTermDefault(size_t opIndex)
    {
        YarrOp& op = m_ops[opIndex];
        m_backtrackingState.append(op.m_jumps);
    }

    void generateAssertionBOL(size_t opIndex)
    {
        YarrOp& op = m_ops[opIndex];
        PatternTerm* term = op.m_term;

        if (m_pattern.m_multiline) {
            const RegisterID character = regT0;

            JumpList matchDest;
            if (!term->inputPosition)
                matchDest.append(branch32(Equal, index, Imm32(m_checked)));

            readCharacter((term->inputPosition - m_checked) - 1, character);
            matchCharacterClass(character, matchDest, m_pattern.newlineCharacterClass());
            op.m_jumps.append(jump());

            matchDest.link(this);
        } else {
            // Erk, really should poison out these alternatives early. :-/
            if (term->inputPosition)
                op.m_jumps.append(jump());
            else
                op.m_jumps.append(branch32(NotEqual, index, Imm32(m_checked)));
        }
    }
    void backtrackAssertionBOL(size_t opIndex)
    {
        backtrackTermDefault(opIndex);
    }

    void generateAssertionEOL(size_t opIndex)
    {
        YarrOp& op = m_ops[opIndex];
        PatternTerm* term = op.m_term;

        if (m_pattern.m_multiline) {
            const RegisterID character = regT0;

            JumpList matchDest;
            if (term->inputPosition == m_checked)
                matchDest.append(atEndOfInput());

            readCharacter(term->inputPosition - m_checked, character);
            matchCharacterClass(character, matchDest, m_pattern.newlineCharacterClass());
            op.m_jumps.append(jump());

            matchDest.link(this);
        } else {
            if (term->inputPosition == m_checked)
                op.m_jumps.append(notAtEndOfInput());
            // Erk, really should poison out these alternatives early. :-/
            else
                op.m_jumps.append(jump());
        }
    }
    void backtrackAssertionEOL(size_t opIndex)
    {
        backtrackTermDefault(opIndex);
    }

    // Also falls though on nextIsNotWordChar.
    void matchAssertionWordchar(size_t opIndex, JumpList& nextIsWordChar, JumpList& nextIsNotWordChar)
    {
        YarrOp& op = m_ops[opIndex];
        PatternTerm* term = op.m_term;

        const RegisterID character = regT0;

        if (term->inputPosition == m_checked)
            nextIsNotWordChar.append(atEndOfInput());

        readCharacter((term->inputPosition - m_checked), character);
        matchCharacterClass(character, nextIsWordChar, m_pattern.wordcharCharacterClass());
    }

    void generateAssertionWordBoundary(size_t opIndex)
    {
        YarrOp& op = m_ops[opIndex];
        PatternTerm* term = op.m_term;

        const RegisterID character = regT0;

        Jump atBegin;
        JumpList matchDest;
        if (!term->inputPosition)
            atBegin = branch32(Equal, index, Imm32(m_checked));
        readCharacter((term->inputPosition - m_checked) - 1, character);
        matchCharacterClass(character, matchDest, m_pattern.wordcharCharacterClass());
        if (!term->inputPosition)
            atBegin.link(this);

        // We fall through to here if the last character was not a wordchar.
        JumpList nonWordCharThenWordChar;
        JumpList nonWordCharThenNonWordChar;
        if (term->invert()) {
            matchAssertionWordchar(opIndex, nonWordCharThenNonWordChar, nonWordCharThenWordChar);
            nonWordCharThenWordChar.append(jump());
        } else {
            matchAssertionWordchar(opIndex, nonWordCharThenWordChar, nonWordCharThenNonWordChar);
            nonWordCharThenNonWordChar.append(jump());
        }
        op.m_jumps.append(nonWordCharThenNonWordChar);

        // We jump here if the last character was a wordchar.
        matchDest.link(this);
        JumpList wordCharThenWordChar;
        JumpList wordCharThenNonWordChar;
        if (term->invert()) {
            matchAssertionWordchar(opIndex, wordCharThenNonWordChar, wordCharThenWordChar);
            wordCharThenWordChar.append(jump());
        } else {
            matchAssertionWordchar(opIndex, wordCharThenWordChar, wordCharThenNonWordChar);
            // This can fall-though!
        }

        op.m_jumps.append(wordCharThenWordChar);

        nonWordCharThenWordChar.link(this);
        wordCharThenNonWordChar.link(this);
    }
    void backtrackAssertionWordBoundary(size_t opIndex)
    {
        backtrackTermDefault(opIndex);
    }

    void generatePatternCharacterOnce(size_t opIndex)
    {
        YarrOp& op = m_ops[opIndex];

        if (op.m_isDeadCode)
            return;
        
        // m_ops always ends with a OpBodyAlternativeEnd or OpMatchFailed
        // node, so there must always be at least one more node.
        ASSERT(opIndex + 1 < m_ops.size());
        YarrOp* nextOp = &m_ops[opIndex + 1];

        PatternTerm* term = op.m_term;
        UChar ch = term->patternCharacter;

        if ((ch > 0xff) && (m_charSize == Char8)) {
            // Have a 16 bit pattern character and an 8 bit string - short circuit
            op.m_jumps.append(jump());
            return;
        }

        const RegisterID character = regT0;
        int maxCharactersAtOnce = m_charSize == Char8 ? 4 : 2;
        unsigned ignoreCaseMask = 0;
#if CPU(BIG_ENDIAN)
        int allCharacters = ch << (m_charSize == Char8 ? 24 : 16);
#else
        int allCharacters = ch;
#endif
        int numberCharacters;
        int startTermPosition = term->inputPosition;

        // For case-insesitive compares, non-ascii characters that have different
        // upper & lower case representations are converted to a character class.
        ASSERT(!m_pattern.m_ignoreCase || isASCIIAlpha(ch) || isCanonicallyUnique(ch));

        if (m_pattern.m_ignoreCase && isASCIIAlpha(ch))
#if CPU(BIG_ENDIAN)
            ignoreCaseMask |= 32 << (m_charSize == Char8 ? 24 : 16);
#else
            ignoreCaseMask |= 32;
#endif

        for (numberCharacters = 1; numberCharacters < maxCharactersAtOnce && nextOp->m_op == OpTerm; ++numberCharacters, nextOp = &m_ops[opIndex + numberCharacters]) {
            PatternTerm* nextTerm = nextOp->m_term;
            
            if (nextTerm->type != PatternTerm::TypePatternCharacter
                || nextTerm->quantityType != QuantifierFixedCount
                || nextTerm->quantityCount != 1
                || nextTerm->inputPosition != (startTermPosition + numberCharacters))
                break;

            nextOp->m_isDeadCode = true;

#if CPU(BIG_ENDIAN)
            int shiftAmount = (m_charSize == Char8 ? 24 : 16) - ((m_charSize == Char8 ? 8 : 16) * numberCharacters);
#else
            int shiftAmount = (m_charSize == Char8 ? 8 : 16) * numberCharacters;
#endif

            UChar currentCharacter = nextTerm->patternCharacter;

            if ((currentCharacter > 0xff) && (m_charSize == Char8)) {
                // Have a 16 bit pattern character and an 8 bit string - short circuit
                op.m_jumps.append(jump());
                return;
            }

            // For case-insesitive compares, non-ascii characters that have different
            // upper & lower case representations are converted to a character class.
            ASSERT(!m_pattern.m_ignoreCase || isASCIIAlpha(currentCharacter) || isCanonicallyUnique(currentCharacter));

            allCharacters |= (currentCharacter << shiftAmount);

            if ((m_pattern.m_ignoreCase) && (isASCIIAlpha(currentCharacter)))
                ignoreCaseMask |= 32 << shiftAmount;                    
        }

        if (m_charSize == Char8) {
            switch (numberCharacters) {
            case 1:
                op.m_jumps.append(jumpIfCharNotEquals(ch, startTermPosition - m_checked, character));
                return;
            case 2: {
                BaseIndex address(input, index, TimesOne, (startTermPosition - m_checked) * sizeof(LChar));
                load16Unaligned(address, character);
                break;
            }
            case 3: {
                BaseIndex highAddress(input, index, TimesOne, (startTermPosition - m_checked) * sizeof(LChar));
                load16Unaligned(highAddress, character);
                if (ignoreCaseMask)
                    or32(Imm32(ignoreCaseMask), character);
                op.m_jumps.append(branch32(NotEqual, character, Imm32((allCharacters & 0xffff) | ignoreCaseMask)));
                op.m_jumps.append(jumpIfCharNotEquals(allCharacters >> 16, startTermPosition + 2 - m_checked, character));
                return;
            }
            case 4: {
                BaseIndex address(input, index, TimesOne, (startTermPosition - m_checked) * sizeof(LChar));
                load32WithUnalignedHalfWords(address, character);
                break;
            }
            }
        } else {
            switch (numberCharacters) {
            case 1:
                op.m_jumps.append(jumpIfCharNotEquals(ch, term->inputPosition - m_checked, character));
                return;
            case 2:
                BaseIndex address(input, index, TimesTwo, (term->inputPosition - m_checked) * sizeof(UChar));
                load32WithUnalignedHalfWords(address, character);
                break;
            }
        }

        if (ignoreCaseMask)
            or32(Imm32(ignoreCaseMask), character);
        op.m_jumps.append(branch32(NotEqual, character, Imm32(allCharacters | ignoreCaseMask)));
        return;
    }
    void backtrackPatternCharacterOnce(size_t opIndex)
    {
        backtrackTermDefault(opIndex);
    }

    void generatePatternCharacterFixed(size_t opIndex)
    {
        YarrOp& op = m_ops[opIndex];
        PatternTerm* term = op.m_term;
        UChar ch = term->patternCharacter;

        const RegisterID character = regT0;
        const RegisterID countRegister = regT1;

        move(index, countRegister);
        sub32(Imm32(term->quantityCount.unsafeGet()), countRegister);

        Label loop(this);
        BaseIndex address(input, countRegister, m_charScale, (Checked<int>(term->inputPosition - m_checked + Checked<int64_t>(term->quantityCount)) * static_cast<int>(m_charSize == Char8 ? sizeof(char) : sizeof(UChar))).unsafeGet());

        if (m_charSize == Char8)
            load8(address, character);
        else
            load16(address, character);

        // For case-insesitive compares, non-ascii characters that have different
        // upper & lower case representations are converted to a character class.
        ASSERT(!m_pattern.m_ignoreCase || isASCIIAlpha(ch) || isCanonicallyUnique(ch));
        if (m_pattern.m_ignoreCase && isASCIIAlpha(ch)) {
            or32(TrustedImm32(0x20), character);
            ch |= 0x20;
        }

        op.m_jumps.append(branch32(NotEqual, character, Imm32(ch)));
        add32(TrustedImm32(1), countRegister);
        branch32(NotEqual, countRegister, index).linkTo(loop, this);
    }
    void backtrackPatternCharacterFixed(size_t opIndex)
    {
        backtrackTermDefault(opIndex);
    }

    void generatePatternCharacterGreedy(size_t opIndex)
    {
        YarrOp& op = m_ops[opIndex];
        PatternTerm* term = op.m_term;
        UChar ch = term->patternCharacter;

        const RegisterID character = regT0;
        const RegisterID countRegister = regT1;

        move(TrustedImm32(0), countRegister);

        // Unless have a 16 bit pattern character and an 8 bit string - short circuit
        if (!((ch > 0xff) && (m_charSize == Char8))) {
            JumpList failures;
            Label loop(this);
            failures.append(atEndOfInput());
            failures.append(jumpIfCharNotEquals(ch, term->inputPosition - m_checked, character));

            add32(TrustedImm32(1), countRegister);
            add32(TrustedImm32(1), index);
            if (term->quantityCount == quantifyInfinite)
                jump(loop);
            else
                branch32(NotEqual, countRegister, Imm32(term->quantityCount.unsafeGet())).linkTo(loop, this);

            failures.link(this);
        }
        op.m_reentry = label();

        storeToFrame(countRegister, term->frameLocation);
    }
    void backtrackPatternCharacterGreedy(size_t opIndex)
    {
        YarrOp& op = m_ops[opIndex];
        PatternTerm* term = op.m_term;

        const RegisterID countRegister = regT1;

        m_backtrackingState.link(this);

        loadFromFrame(term->frameLocation, countRegister);
        m_backtrackingState.append(branchTest32(Zero, countRegister));
        sub32(TrustedImm32(1), countRegister);
        sub32(TrustedImm32(1), index);
        jump(op.m_reentry);
    }

    void generatePatternCharacterNonGreedy(size_t opIndex)
    {
        YarrOp& op = m_ops[opIndex];
        PatternTerm* term = op.m_term;

        const RegisterID countRegister = regT1;

        move(TrustedImm32(0), countRegister);
        op.m_reentry = label();
        storeToFrame(countRegister, term->frameLocation);
    }
    void backtrackPatternCharacterNonGreedy(size_t opIndex)
    {
        YarrOp& op = m_ops[opIndex];
        PatternTerm* term = op.m_term;
        UChar ch = term->patternCharacter;

        const RegisterID character = regT0;
        const RegisterID countRegister = regT1;

        m_backtrackingState.link(this);

        loadFromFrame(term->frameLocation, countRegister);

        // Unless have a 16 bit pattern character and an 8 bit string - short circuit
        if (!((ch > 0xff) && (m_charSize == Char8))) {
            JumpList nonGreedyFailures;
            nonGreedyFailures.append(atEndOfInput());
            if (term->quantityCount != quantifyInfinite)
                nonGreedyFailures.append(branch32(Equal, countRegister, Imm32(term->quantityCount.unsafeGet())));
            nonGreedyFailures.append(jumpIfCharNotEquals(ch, term->inputPosition - m_checked, character));

            add32(TrustedImm32(1), countRegister);
            add32(TrustedImm32(1), index);

            jump(op.m_reentry);
            nonGreedyFailures.link(this);
        }

        sub32(countRegister, index);
        m_backtrackingState.fallthrough();
    }

    void generateCharacterClassOnce(size_t opIndex)
    {
        YarrOp& op = m_ops[opIndex];
        PatternTerm* term = op.m_term;

        const RegisterID character = regT0;

        JumpList matchDest;
        readCharacter(term->inputPosition - m_checked, character);
        matchCharacterClass(character, matchDest, term->characterClass);

        if (term->invert())
            op.m_jumps.append(matchDest);
        else {
            op.m_jumps.append(jump());
            matchDest.link(this);
        }
    }
    void backtrackCharacterClassOnce(size_t opIndex)
    {
        backtrackTermDefault(opIndex);
    }

    void generateCharacterClassFixed(size_t opIndex)
    {
        YarrOp& op = m_ops[opIndex];
        PatternTerm* term = op.m_term;

        const RegisterID character = regT0;
        const RegisterID countRegister = regT1;

        move(index, countRegister);
        sub32(Imm32(term->quantityCount.unsafeGet()), countRegister);

        Label loop(this);
        JumpList matchDest;
        if (m_charSize == Char8)
            load8(BaseIndex(input, countRegister, TimesOne, (Checked<int>(term->inputPosition - m_checked + Checked<int64_t>(term->quantityCount)) * static_cast<int>(sizeof(char))).unsafeGet()), character);
        else
            load16(BaseIndex(input, countRegister, TimesTwo, (Checked<int>(term->inputPosition - m_checked + Checked<int64_t>(term->quantityCount)) * static_cast<int>(sizeof(UChar))).unsafeGet()), character);
        matchCharacterClass(character, matchDest, term->characterClass);

        if (term->invert())
            op.m_jumps.append(matchDest);
        else {
            op.m_jumps.append(jump());
            matchDest.link(this);
        }

        add32(TrustedImm32(1), countRegister);
        branch32(NotEqual, countRegister, index).linkTo(loop, this);
    }
    void backtrackCharacterClassFixed(size_t opIndex)
    {
        backtrackTermDefault(opIndex);
    }

    void generateCharacterClassGreedy(size_t opIndex)
    {
        YarrOp& op = m_ops[opIndex];
        PatternTerm* term = op.m_term;

        const RegisterID character = regT0;
        const RegisterID countRegister = regT1;

        move(TrustedImm32(0), countRegister);

        JumpList failures;
        Label loop(this);
        failures.append(atEndOfInput());

        if (term->invert()) {
            readCharacter(term->inputPosition - m_checked, character);
            matchCharacterClass(character, failures, term->characterClass);
        } else {
            JumpList matchDest;
            readCharacter(term->inputPosition - m_checked, character);
            matchCharacterClass(character, matchDest, term->characterClass);
            failures.append(jump());
            matchDest.link(this);
        }

        add32(TrustedImm32(1), countRegister);
        add32(TrustedImm32(1), index);
        if (term->quantityCount != quantifyInfinite) {
            branch32(NotEqual, countRegister, Imm32(term->quantityCount.unsafeGet())).linkTo(loop, this);
            failures.append(jump());
        } else
            jump(loop);

        failures.link(this);
        op.m_reentry = label();

        storeToFrame(countRegister, term->frameLocation);
    }
    void backtrackCharacterClassGreedy(size_t opIndex)
    {
        YarrOp& op = m_ops[opIndex];
        PatternTerm* term = op.m_term;

        const RegisterID countRegister = regT1;

        m_backtrackingState.link(this);

        loadFromFrame(term->frameLocation, countRegister);
        m_backtrackingState.append(branchTest32(Zero, countRegister));
        sub32(TrustedImm32(1), countRegister);
        sub32(TrustedImm32(1), index);
        jump(op.m_reentry);
    }

    void generateCharacterClassNonGreedy(size_t opIndex)
    {
        YarrOp& op = m_ops[opIndex];
        PatternTerm* term = op.m_term;

        const RegisterID countRegister = regT1;

        move(TrustedImm32(0), countRegister);
        op.m_reentry = label();
        storeToFrame(countRegister, term->frameLocation);
    }
    void backtrackCharacterClassNonGreedy(size_t opIndex)
    {
        YarrOp& op = m_ops[opIndex];
        PatternTerm* term = op.m_term;

        const RegisterID character = regT0;
        const RegisterID countRegister = regT1;

        JumpList nonGreedyFailures;

        m_backtrackingState.link(this);

        loadFromFrame(term->frameLocation, countRegister);

        nonGreedyFailures.append(atEndOfInput());
        nonGreedyFailures.append(branch32(Equal, countRegister, Imm32(term->quantityCount.unsafeGet())));

        JumpList matchDest;
        readCharacter(term->inputPosition - m_checked, character);
        matchCharacterClass(character, matchDest, term->characterClass);

        if (term->invert())
            nonGreedyFailures.append(matchDest);
        else {
            nonGreedyFailures.append(jump());
            matchDest.link(this);
        }

        add32(TrustedImm32(1), countRegister);
        add32(TrustedImm32(1), index);

        jump(op.m_reentry);

        nonGreedyFailures.link(this);
        sub32(countRegister, index);
        m_backtrackingState.fallthrough();
    }

    void generateDotStarEnclosure(size_t opIndex)
    {
        YarrOp& op = m_ops[opIndex];
        PatternTerm* term = op.m_term;

        const RegisterID character = regT0;
        const RegisterID matchPos = regT1;

        JumpList foundBeginningNewLine;
        JumpList saveStartIndex;
        JumpList foundEndingNewLine;

        ASSERT(!m_pattern.m_body->m_hasFixedSize);
        getMatchStart(matchPos);

        saveStartIndex.append(branchTest32(Zero, matchPos));
        Label findBOLLoop(this);
        sub32(TrustedImm32(1), matchPos);
        if (m_charSize == Char8)
            load8(BaseIndex(input, matchPos, TimesOne, 0), character);
        else
            load16(BaseIndex(input, matchPos, TimesTwo, 0), character);
        matchCharacterClass(character, foundBeginningNewLine, m_pattern.newlineCharacterClass());
        branchTest32(NonZero, matchPos).linkTo(findBOLLoop, this);
        saveStartIndex.append(jump());

        foundBeginningNewLine.link(this);
        add32(TrustedImm32(1), matchPos); // Advance past newline
        saveStartIndex.link(this);

        if (!m_pattern.m_multiline && term->anchors.bolAnchor)
            op.m_jumps.append(branchTest32(NonZero, matchPos));

        ASSERT(!m_pattern.m_body->m_hasFixedSize);
        setMatchStart(matchPos);

        move(index, matchPos);

        Label findEOLLoop(this);        
        foundEndingNewLine.append(branch32(Equal, matchPos, length));
        if (m_charSize == Char8)
            load8(BaseIndex(input, matchPos, TimesOne, 0), character);
        else
            load16(BaseIndex(input, matchPos, TimesTwo, 0), character);
        matchCharacterClass(character, foundEndingNewLine, m_pattern.newlineCharacterClass());
        add32(TrustedImm32(1), matchPos);
        jump(findEOLLoop);

        foundEndingNewLine.link(this);

        if (!m_pattern.m_multiline && term->anchors.eolAnchor)
            op.m_jumps.append(branch32(NotEqual, matchPos, length));

        move(matchPos, index);
    }

    void backtrackDotStarEnclosure(size_t opIndex)
    {
        backtrackTermDefault(opIndex);
    }
    
    // Code generation/backtracking for simple terms
    // (pattern characters, character classes, and assertions).
    // These methods farm out work to the set of functions above.
    void generateTerm(size_t opIndex)
    {
        YarrOp& op = m_ops[opIndex];
        PatternTerm* term = op.m_term;

        switch (term->type) {
        case PatternTerm::TypePatternCharacter:
            switch (term->quantityType) {
            case QuantifierFixedCount:
                if (term->quantityCount == 1)
                    generatePatternCharacterOnce(opIndex);
                else
                    generatePatternCharacterFixed(opIndex);
                break;
            case QuantifierGreedy:
                generatePatternCharacterGreedy(opIndex);
                break;
            case QuantifierNonGreedy:
                generatePatternCharacterNonGreedy(opIndex);
                break;
            }
            break;

        case PatternTerm::TypeCharacterClass:
            switch (term->quantityType) {
            case QuantifierFixedCount:
                if (term->quantityCount == 1)
                    generateCharacterClassOnce(opIndex);
                else
                    generateCharacterClassFixed(opIndex);
                break;
            case QuantifierGreedy:
                generateCharacterClassGreedy(opIndex);
                break;
            case QuantifierNonGreedy:
                generateCharacterClassNonGreedy(opIndex);
                break;
            }
            break;

        case PatternTerm::TypeAssertionBOL:
            generateAssertionBOL(opIndex);
            break;

        case PatternTerm::TypeAssertionEOL:
            generateAssertionEOL(opIndex);
            break;

        case PatternTerm::TypeAssertionWordBoundary:
            generateAssertionWordBoundary(opIndex);
            break;

        case PatternTerm::TypeForwardReference:
            break;

        case PatternTerm::TypeParenthesesSubpattern:
        case PatternTerm::TypeParentheticalAssertion:
            ASSERT_NOT_REACHED();
        case PatternTerm::TypeBackReference:
            m_shouldFallBack = true;
            break;
        case PatternTerm::TypeDotStarEnclosure:
            generateDotStarEnclosure(opIndex);
            break;
        }
    }
    void backtrackTerm(size_t opIndex)
    {
        YarrOp& op = m_ops[opIndex];
        PatternTerm* term = op.m_term;

        switch (term->type) {
        case PatternTerm::TypePatternCharacter:
            switch (term->quantityType) {
            case QuantifierFixedCount:
                if (term->quantityCount == 1)
                    backtrackPatternCharacterOnce(opIndex);
                else
                    backtrackPatternCharacterFixed(opIndex);
                break;
            case QuantifierGreedy:
                backtrackPatternCharacterGreedy(opIndex);
                break;
            case QuantifierNonGreedy:
                backtrackPatternCharacterNonGreedy(opIndex);
                break;
            }
            break;

        case PatternTerm::TypeCharacterClass:
            switch (term->quantityType) {
            case QuantifierFixedCount:
                if (term->quantityCount == 1)
                    backtrackCharacterClassOnce(opIndex);
                else
                    backtrackCharacterClassFixed(opIndex);
                break;
            case QuantifierGreedy:
                backtrackCharacterClassGreedy(opIndex);
                break;
            case QuantifierNonGreedy:
                backtrackCharacterClassNonGreedy(opIndex);
                break;
            }
            break;

        case PatternTerm::TypeAssertionBOL:
            backtrackAssertionBOL(opIndex);
            break;

        case PatternTerm::TypeAssertionEOL:
            backtrackAssertionEOL(opIndex);
            break;

        case PatternTerm::TypeAssertionWordBoundary:
            backtrackAssertionWordBoundary(opIndex);
            break;

        case PatternTerm::TypeForwardReference:
            break;

        case PatternTerm::TypeParenthesesSubpattern:
        case PatternTerm::TypeParentheticalAssertion:
            ASSERT_NOT_REACHED();

        case PatternTerm::TypeDotStarEnclosure:
            backtrackDotStarEnclosure(opIndex);
            break;

        case PatternTerm::TypeBackReference:
            m_shouldFallBack = true;
            break;
        }
    }

    void generate()
    {
        // Forwards generate the matching code.
        ASSERT(m_ops.size());
        size_t opIndex = 0;

        do {
            YarrOp& op = m_ops[opIndex];
            switch (op.m_op) {

            case OpTerm:
                generateTerm(opIndex);
                break;

            // OpBodyAlternativeBegin/Next/End
            //
            // These nodes wrap the set of alternatives in the body of the regular expression.
            // There may be either one or two chains of OpBodyAlternative nodes, one representing
            // the 'once through' sequence of alternatives (if any exist), and one representing
            // the repeating alternatives (again, if any exist).
            //
            // Upon normal entry to the Begin alternative, we will check that input is available.
            // Reentry to the Begin alternative will take place after the check has taken place,
            // and will assume that the input position has already been progressed as appropriate.
            //
            // Entry to subsequent Next/End alternatives occurs when the prior alternative has
            // successfully completed a match - return a success state from JIT code.
            //
            // Next alternatives allow for reentry optimized to suit backtracking from its
            // preceding alternative. It expects the input position to still be set to a position
            // appropriate to its predecessor, and it will only perform an input check if the
            // predecessor had a minimum size less than its own.
            //
            // In the case 'once through' expressions, the End node will also have a reentry
            // point to jump to when the last alternative fails. Again, this expects the input
            // position to still reflect that expected by the prior alternative.
            case OpBodyAlternativeBegin: {
                PatternAlternative* alternative = op.m_alternative;

                // Upon entry at the head of the set of alternatives, check if input is available
                // to run the first alternative. (This progresses the input position).
                op.m_jumps.append(jumpIfNoAvailableInput(alternative->m_minimumSize));
                // We will reenter after the check, and assume the input position to have been
                // set as appropriate to this alternative.
                op.m_reentry = label();

                m_checked += alternative->m_minimumSize;
                break;
            }
            case OpBodyAlternativeNext:
            case OpBodyAlternativeEnd: {
                PatternAlternative* priorAlternative = m_ops[op.m_previousOp].m_alternative;
                PatternAlternative* alternative = op.m_alternative;

                // If we get here, the prior alternative matched - return success.
                
                // Adjust the stack pointer to remove the pattern's frame.
#if !WTF_CPU_SPARC
                removeCallFrame();
#endif

                // Load appropriate values into the return register and the first output
                // slot, and return. In the case of pattern with a fixed size, we will
                // not have yet set the value in the first 
                ASSERT(index != returnRegister);
                if (m_pattern.m_body->m_hasFixedSize) {
                    move(index, returnRegister);
                    if (priorAlternative->m_minimumSize)
                        sub32(Imm32(priorAlternative->m_minimumSize), returnRegister);
                    if (compileMode == IncludeSubpatterns)
                        store32(returnRegister, output);
                } else
                    getMatchStart(returnRegister);
                if (compileMode == IncludeSubpatterns)
                    store32(index, Address(output, 4));
#if WTF_CPU_X86_64
                // upper 32bit to 0
                move32(returnRegister, returnRegister);
                lshiftPtr(Imm32(32), index);
                orPtr(index, returnRegister);
#else
                move(index, returnRegister2);
#endif

                generateReturn();

                // This is the divide between the tail of the prior alternative, above, and
                // the head of the subsequent alternative, below.

                if (op.m_op == OpBodyAlternativeNext) {
                    // This is the reentry point for the Next alternative. We expect any code
                    // that jumps here to do so with the input position matching that of the
                    // PRIOR alteranative, and we will only check input availability if we
                    // need to progress it forwards.
                    op.m_reentry = label();
                    if (alternative->m_minimumSize > priorAlternative->m_minimumSize) {
                        add32(Imm32(alternative->m_minimumSize - priorAlternative->m_minimumSize), index);
                        op.m_jumps.append(jumpIfNoAvailableInput());
                    } else if (priorAlternative->m_minimumSize > alternative->m_minimumSize)
                        sub32(Imm32(priorAlternative->m_minimumSize - alternative->m_minimumSize), index);
                } else if (op.m_nextOp == notFound) {
                    // This is the reentry point for the End of 'once through' alternatives,
                    // jumped to when the last alternative fails to match.
                    op.m_reentry = label();
                    sub32(Imm32(priorAlternative->m_minimumSize), index);
                }

                if (op.m_op == OpBodyAlternativeNext)
                    m_checked += alternative->m_minimumSize;
                m_checked -= priorAlternative->m_minimumSize;
                break;
            }

            // OpSimpleNestedAlternativeBegin/Next/End
            // OpNestedAlternativeBegin/Next/End
            //
            // These nodes are used to handle sets of alternatives that are nested within
            // subpatterns and parenthetical assertions. The 'simple' forms are used where
            // we do not need to be able to backtrack back into any alternative other than
            // the last, the normal forms allow backtracking into any alternative.
            //
            // Each Begin/Next node is responsible for planting an input check to ensure
            // sufficient input is available on entry. Next nodes additionally need to
            // jump to the end - Next nodes use the End node's m_jumps list to hold this
            // set of jumps.
            //
            // In the non-simple forms, successful alternative matches must store a
            // 'return address' using a DataLabelPtr, used to store the address to jump
            // to when backtracking, to get to the code for the appropriate alternative.
            case OpSimpleNestedAlternativeBegin:
            case OpNestedAlternativeBegin: {
                PatternTerm* term = op.m_term;
                PatternAlternative* alternative = op.m_alternative;
                PatternDisjunction* disjunction = term->parentheses.disjunction;

                // Calculate how much input we need to check for, and if non-zero check.
                op.m_checkAdjust = alternative->m_minimumSize;
                if ((term->quantityType == QuantifierFixedCount) && (term->type != PatternTerm::TypeParentheticalAssertion))
                    op.m_checkAdjust -= disjunction->m_minimumSize;
                if (op.m_checkAdjust)
                    op.m_jumps.append(jumpIfNoAvailableInput(op.m_checkAdjust));

                m_checked += op.m_checkAdjust;
                break;
            }
            case OpSimpleNestedAlternativeNext:
            case OpNestedAlternativeNext: {
                PatternTerm* term = op.m_term;
                PatternAlternative* alternative = op.m_alternative;
                PatternDisjunction* disjunction = term->parentheses.disjunction;

                // In the non-simple case, store a 'return address' so we can backtrack correctly.
                if (op.m_op == OpNestedAlternativeNext) {
                    unsigned parenthesesFrameLocation = term->frameLocation;
                    unsigned alternativeFrameLocation = parenthesesFrameLocation;
                    if (term->quantityType != QuantifierFixedCount)
                        alternativeFrameLocation += YarrStackSpaceForBackTrackInfoParenthesesOnce;
                    op.m_returnAddress = storeToFrameWithPatch(alternativeFrameLocation);
                }

                if (term->quantityType != QuantifierFixedCount && !m_ops[op.m_previousOp].m_alternative->m_minimumSize) {
                    // If the previous alternative matched without consuming characters then
                    // backtrack to try to match while consumming some input.
                    op.m_zeroLengthMatch = branch32(Equal, index, Address(stackPointerRegister, term->frameLocation * sizeof(void*)));
                }

                // If we reach here then the last alternative has matched - jump to the
                // End node, to skip over any further alternatives.
                //
                // FIXME: this is logically O(N^2) (though N can be expected to be very
                // small). We could avoid this either by adding an extra jump to the JIT
                // data structures, or by making backtracking code that jumps to Next
                // alternatives are responsible for checking that input is available (if
                // we didn't need to plant the input checks, then m_jumps would be free).
                YarrOp* endOp = &m_ops[op.m_nextOp];
                while (endOp->m_nextOp != notFound) {
                    ASSERT(endOp->m_op == OpSimpleNestedAlternativeNext || endOp->m_op == OpNestedAlternativeNext);
                    endOp = &m_ops[endOp->m_nextOp];
                }
                ASSERT(endOp->m_op == OpSimpleNestedAlternativeEnd || endOp->m_op == OpNestedAlternativeEnd);
                endOp->m_jumps.append(jump());

                // This is the entry point for the next alternative.
                op.m_reentry = label();

                // Calculate how much input we need to check for, and if non-zero check.
                op.m_checkAdjust = alternative->m_minimumSize;
                if ((term->quantityType == QuantifierFixedCount) && (term->type != PatternTerm::TypeParentheticalAssertion))
                    op.m_checkAdjust -= disjunction->m_minimumSize;
                if (op.m_checkAdjust)
                    op.m_jumps.append(jumpIfNoAvailableInput(op.m_checkAdjust));

                YarrOp& lastOp = m_ops[op.m_previousOp];
                m_checked -= lastOp.m_checkAdjust;
                m_checked += op.m_checkAdjust;
                break;
            }
            case OpSimpleNestedAlternativeEnd:
            case OpNestedAlternativeEnd: {
                PatternTerm* term = op.m_term;

                // In the non-simple case, store a 'return address' so we can backtrack correctly.
                if (op.m_op == OpNestedAlternativeEnd) {
                    unsigned parenthesesFrameLocation = term->frameLocation;
                    unsigned alternativeFrameLocation = parenthesesFrameLocation;
                    if (term->quantityType != QuantifierFixedCount)
                        alternativeFrameLocation += YarrStackSpaceForBackTrackInfoParenthesesOnce;
                    op.m_returnAddress = storeToFrameWithPatch(alternativeFrameLocation);
                }

                if (term->quantityType != QuantifierFixedCount && !m_ops[op.m_previousOp].m_alternative->m_minimumSize) {
                    // If the previous alternative matched without consuming characters then
                    // backtrack to try to match while consumming some input.
                    op.m_zeroLengthMatch = branch32(Equal, index, Address(stackPointerRegister, term->frameLocation * sizeof(void*)));
                }

                // If this set of alternatives contains more than one alternative,
                // then the Next nodes will have planted jumps to the End, and added
                // them to this node's m_jumps list.
                op.m_jumps.link(this);
                op.m_jumps.clear();

                YarrOp& lastOp = m_ops[op.m_previousOp];
                m_checked -= lastOp.m_checkAdjust;
                break;
            }

            // OpParenthesesSubpatternOnceBegin/End
            //
            // These nodes support (optionally) capturing subpatterns, that have a
            // quantity count of 1 (this covers fixed once, and ?/?? quantifiers). 
            case OpParenthesesSubpatternOnceBegin: {
                PatternTerm* term = op.m_term;
                unsigned parenthesesFrameLocation = term->frameLocation;
                const RegisterID indexTemporary = regT0;
                ASSERT(term->quantityCount == 1);

                // Upon entry to a Greedy quantified set of parenthese store the index.
                // We'll use this for two purposes:
                //  - To indicate which iteration we are on of mathing the remainder of
                //    the expression after the parentheses - the first, including the
                //    match within the parentheses, or the second having skipped over them.
                //  - To check for empty matches, which must be rejected.
                //
                // At the head of a NonGreedy set of parentheses we'll immediately set the
                // value on the stack to -1 (indicating a match skipping the subpattern),
                // and plant a jump to the end. We'll also plant a label to backtrack to
                // to reenter the subpattern later, with a store to set up index on the
                // second iteration.
                //
                // FIXME: for capturing parens, could use the index in the capture array?
                if (term->quantityType == QuantifierGreedy)
                    storeToFrame(index, parenthesesFrameLocation);
                else if (term->quantityType == QuantifierNonGreedy) {
                    storeToFrame(TrustedImm32(-1), parenthesesFrameLocation);
                    op.m_jumps.append(jump());
                    op.m_reentry = label();
                    storeToFrame(index, parenthesesFrameLocation);
                }

                // If the parenthese are capturing, store the starting index value to the
                // captures array, offsetting as necessary.
                //
                // FIXME: could avoid offsetting this value in JIT code, apply
                // offsets only afterwards, at the point the results array is
                // being accessed.
                if (term->capture() && compileMode == IncludeSubpatterns) {
                    int inputOffset = term->inputPosition - m_checked;
                    if (term->quantityType == QuantifierFixedCount)
                        inputOffset -= term->parentheses.disjunction->m_minimumSize;
                    if (inputOffset) {
                        move(index, indexTemporary);
                        add32(Imm32(inputOffset), indexTemporary);
                        setSubpatternStart(indexTemporary, term->parentheses.subpatternId);
                    } else
                        setSubpatternStart(index, term->parentheses.subpatternId);
                }
                break;
            }
            case OpParenthesesSubpatternOnceEnd: {
                PatternTerm* term = op.m_term;
                const RegisterID indexTemporary = regT0;
                ASSERT(term->quantityCount == 1);

#ifndef NDEBUG
                // Runtime ASSERT to make sure that the nested alternative handled the
                // "no input consumed" check.
                if (term->quantityType != QuantifierFixedCount && !term->parentheses.disjunction->m_minimumSize) {
                    Jump pastBreakpoint;
                    pastBreakpoint = branch32(NotEqual, index, Address(stackPointerRegister, term->frameLocation * sizeof(void*)));
                    breakpoint();
                    pastBreakpoint.link(this);
                }
#endif

                // If the parenthese are capturing, store the ending index value to the
                // captures array, offsetting as necessary.
                //
                // FIXME: could avoid offsetting this value in JIT code, apply
                // offsets only afterwards, at the point the results array is
                // being accessed.
                if (term->capture() && compileMode == IncludeSubpatterns) {
                    int inputOffset = term->inputPosition - m_checked;
                    if (inputOffset) {
                        move(index, indexTemporary);
                        add32(Imm32(inputOffset), indexTemporary);
                        setSubpatternEnd(indexTemporary, term->parentheses.subpatternId);
                    } else
                        setSubpatternEnd(index, term->parentheses.subpatternId);
                }

                // If the parentheses are quantified Greedy then add a label to jump back
                // to if get a failed match from after the parentheses. For NonGreedy
                // parentheses, link the jump from before the subpattern to here.
                if (term->quantityType == QuantifierGreedy)
                    op.m_reentry = label();
                else if (term->quantityType == QuantifierNonGreedy) {
                    YarrOp& beginOp = m_ops[op.m_previousOp];
                    beginOp.m_jumps.link(this);
                }
                break;
            }

            // OpParenthesesSubpatternTerminalBegin/End
            case OpParenthesesSubpatternTerminalBegin: {
                PatternTerm* term = op.m_term;
                ASSERT(term->quantityType == QuantifierGreedy);
                ASSERT(term->quantityCount == quantifyInfinite);
                ASSERT(!term->capture());

                // Upon entry set a label to loop back to.
                op.m_reentry = label();

                // Store the start index of the current match; we need to reject zero
                // length matches.
                storeToFrame(index, term->frameLocation);
                break;
            }
            case OpParenthesesSubpatternTerminalEnd: {
                YarrOp& beginOp = m_ops[op.m_previousOp];
#ifndef NDEBUG
                PatternTerm* term = op.m_term;

                // Runtime ASSERT to make sure that the nested alternative handled the
                // "no input consumed" check.
                Jump pastBreakpoint;
                pastBreakpoint = branch32(NotEqual, index, Address(stackPointerRegister, term->frameLocation * sizeof(void*)));
                breakpoint();
                pastBreakpoint.link(this);
#endif

                // We know that the match is non-zero, we can accept it  and
                // loop back up to the head of the subpattern.
                jump(beginOp.m_reentry);

                // This is the entry point to jump to when we stop matching - we will
                // do so once the subpattern cannot match any more.
                op.m_reentry = label();
                break;
            }

            // OpParentheticalAssertionBegin/End
            case OpParentheticalAssertionBegin: {
                PatternTerm* term = op.m_term;

                // Store the current index - assertions should not update index, so
                // we will need to restore it upon a successful match.
                unsigned parenthesesFrameLocation = term->frameLocation;
                storeToFrame(index, parenthesesFrameLocation);

                // Check 
                op.m_checkAdjust = m_checked - term->inputPosition;
                if (op.m_checkAdjust)
                    sub32(Imm32(op.m_checkAdjust), index);

                m_checked -= op.m_checkAdjust;
                break;
            }
            case OpParentheticalAssertionEnd: {
                PatternTerm* term = op.m_term;

                // Restore the input index value.
                unsigned parenthesesFrameLocation = term->frameLocation;
                loadFromFrame(parenthesesFrameLocation, index);

                // If inverted, a successful match of the assertion must be treated
                // as a failure, so jump to backtracking.
                if (term->invert()) {
                    op.m_jumps.append(jump());
                    op.m_reentry = label();
                }

                YarrOp& lastOp = m_ops[op.m_previousOp];
                m_checked += lastOp.m_checkAdjust;
                break;
            }

            case OpMatchFailed:
#if !WTF_CPU_SPARC
                removeCallFrame();
#endif
#if WTF_CPU_X86_64
                move(TrustedImm32(int(WTF::notFound)), returnRegister);
#else
                move(TrustedImmPtr((void*)WTF::notFound), returnRegister);
                move(TrustedImm32(0), returnRegister2);
#endif
                generateReturn();
                break;
            }

            ++opIndex;
        } while (opIndex < m_ops.size());
    }

    void backtrack()
    {
        // Backwards generate the backtracking code.
        size_t opIndex = m_ops.size();
        ASSERT(opIndex);

        do {
            --opIndex;
            YarrOp& op = m_ops[opIndex];
            switch (op.m_op) {

            case OpTerm:
                backtrackTerm(opIndex);
                break;

            // OpBodyAlternativeBegin/Next/End
            //
            // For each Begin/Next node representing an alternative, we need to decide what to do
            // in two circumstances:
            //  - If we backtrack back into this node, from within the alternative.
            //  - If the input check at the head of the alternative fails (if this exists).
            //
            // We treat these two cases differently since in the former case we have slightly
            // more information - since we are backtracking out of a prior alternative we know
            // that at least enough input was available to run it. For example, given the regular
            // expression /a|b/, if we backtrack out of the first alternative (a failed pattern
            // character match of 'a'), then we need not perform an additional input availability
            // check before running the second alternative.
            //
            // Backtracking required differs for the last alternative, which in the case of the
            // repeating set of alternatives must loop. The code generated for the last alternative
            // will also be used to handle all input check failures from any prior alternatives -
            // these require similar functionality, in seeking the next available alternative for
            // which there is sufficient input.
            //
            // Since backtracking of all other alternatives simply requires us to link backtracks
            // to the reentry point for the subsequent alternative, we will only be generating any
            // code when backtracking the last alternative.
            case OpBodyAlternativeBegin:
            case OpBodyAlternativeNext: {
                PatternAlternative* alternative = op.m_alternative;

                if (op.m_op == OpBodyAlternativeNext) {
                    PatternAlternative* priorAlternative = m_ops[op.m_previousOp].m_alternative;
                    m_checked += priorAlternative->m_minimumSize;
                }
                m_checked -= alternative->m_minimumSize;

                // Is this the last alternative? If not, then if we backtrack to this point we just
                // need to jump to try to match the next alternative.
                if (m_ops[op.m_nextOp].m_op != OpBodyAlternativeEnd) {
                    m_backtrackingState.linkTo(m_ops[op.m_nextOp].m_reentry, this);
                    break;
                }
                YarrOp& endOp = m_ops[op.m_nextOp];

                YarrOp* beginOp = &op;
                while (beginOp->m_op != OpBodyAlternativeBegin) {
                    ASSERT(beginOp->m_op == OpBodyAlternativeNext);
                    beginOp = &m_ops[beginOp->m_previousOp];
                }

                bool onceThrough = endOp.m_nextOp == notFound;

                // First, generate code to handle cases where we backtrack out of an attempted match
                // of the last alternative. If this is a 'once through' set of alternatives then we
                // have nothing to do - link this straight through to the End.
                if (onceThrough)
                    m_backtrackingState.linkTo(endOp.m_reentry, this);
                else {
                    // If we don't need to move the input poistion, and the pattern has a fixed size
                    // (in which case we omit the store of the start index until the pattern has matched)
                    // then we can just link the backtrack out of the last alternative straight to the
                    // head of the first alternative.
                    if (m_pattern.m_body->m_hasFixedSize
                        && (alternative->m_minimumSize > beginOp->m_alternative->m_minimumSize)
                        && (alternative->m_minimumSize - beginOp->m_alternative->m_minimumSize == 1))
                        m_backtrackingState.linkTo(beginOp->m_reentry, this);
                    else {
                        // We need to generate a trampoline of code to execute before looping back
                        // around to the first alternative.
                        m_backtrackingState.link(this);

                        // If the pattern size is not fixed, then store the start index, for use if we match.
                        if (!m_pattern.m_body->m_hasFixedSize) {
                            if (alternative->m_minimumSize == 1)
                                setMatchStart(index);
                            else {
                                move(index, regT0);
                                if (alternative->m_minimumSize)
                                    sub32(Imm32(alternative->m_minimumSize - 1), regT0);
                                else
                                    add32(TrustedImm32(1), regT0);
                                setMatchStart(regT0);
                            }
                        }

                        // Generate code to loop. Check whether the last alternative is longer than the
                        // first (e.g. /a|xy/ or /a|xyz/).
                        if (alternative->m_minimumSize > beginOp->m_alternative->m_minimumSize) {
                            // We want to loop, and increment input position. If the delta is 1, it is
                            // already correctly incremented, if more than one then decrement as appropriate.
                            unsigned delta = alternative->m_minimumSize - beginOp->m_alternative->m_minimumSize;
                            ASSERT(delta);
                            if (delta != 1)
                                sub32(Imm32(delta - 1), index);
                            jump(beginOp->m_reentry);
                        } else {
                            // If the first alternative has minimum size 0xFFFFFFFFu, then there cannot
                            // be sufficent input available to handle this, so just fall through.
                            unsigned delta = beginOp->m_alternative->m_minimumSize - alternative->m_minimumSize;
                            if (delta != 0xFFFFFFFFu) {
                                // We need to check input because we are incrementing the input.
                                add32(Imm32(delta + 1), index);
                                checkInput().linkTo(beginOp->m_reentry, this);
                            }
                        }
                    }
                }

                // We can reach this point in the code in two ways:
                //  - Fallthrough from the code above (a repeating alternative backtracked out of its
                //    last alternative, and did not have sufficent input to run the first).
                //  - We will loop back up to the following label when a releating alternative loops,
                //    following a failed input check.
                //
                // Either way, we have just failed the input check for the first alternative.
                Label firstInputCheckFailed(this);

                // Generate code to handle input check failures from alternatives except the last.
                // prevOp is the alternative we're handling a bail out from (initially Begin), and
                // nextOp is the alternative we will be attempting to reenter into.
                // 
                // We will link input check failures from the forwards matching path back to the code
                // that can handle them.
                YarrOp* prevOp = beginOp;
                YarrOp* nextOp = &m_ops[beginOp->m_nextOp];
                while (nextOp->m_op != OpBodyAlternativeEnd) {
                    prevOp->m_jumps.link(this);

                    // We only get here if an input check fails, it is only worth checking again
                    // if the next alternative has a minimum size less than the last.
                    if (prevOp->m_alternative->m_minimumSize > nextOp->m_alternative->m_minimumSize) {
                        // FIXME: if we added an extra label to YarrOp, we could avoid needing to
                        // subtract delta back out, and reduce this code. Should performance test
                        // the benefit of this.
                        unsigned delta = prevOp->m_alternative->m_minimumSize - nextOp->m_alternative->m_minimumSize;
                        sub32(Imm32(delta), index);
                        Jump fail = jumpIfNoAvailableInput();
                        add32(Imm32(delta), index);
                        jump(nextOp->m_reentry);
                        fail.link(this);
                    } else if (prevOp->m_alternative->m_minimumSize < nextOp->m_alternative->m_minimumSize)
                        add32(Imm32(nextOp->m_alternative->m_minimumSize - prevOp->m_alternative->m_minimumSize), index);
                    prevOp = nextOp;
                    nextOp = &m_ops[nextOp->m_nextOp];
                }

                // We fall through to here if there is insufficient input to run the last alternative.

                // If there is insufficient input to run the last alternative, then for 'once through'
                // alternatives we are done - just jump back up into the forwards matching path at the End.
                if (onceThrough) {
                    op.m_jumps.linkTo(endOp.m_reentry, this);
                    jump(endOp.m_reentry);
                    break;
                }

                // For repeating alternatives, link any input check failure from the last alternative to
                // this point.
                op.m_jumps.link(this);

                bool needsToUpdateMatchStart = !m_pattern.m_body->m_hasFixedSize;

                // Check for cases where input position is already incremented by 1 for the last
                // alternative (this is particularly useful where the minimum size of the body
                // disjunction is 0, e.g. /a*|b/).
                if (needsToUpdateMatchStart && alternative->m_minimumSize == 1) {
                    // index is already incremented by 1, so just store it now!
                    setMatchStart(index);
                    needsToUpdateMatchStart = false;
                }

                // Check whether there is sufficient input to loop. Increment the input position by
                // one, and check. Also add in the minimum disjunction size before checking - there
                // is no point in looping if we're just going to fail all the input checks around
                // the next iteration.
                ASSERT(alternative->m_minimumSize >= m_pattern.m_body->m_minimumSize);
                if (alternative->m_minimumSize == m_pattern.m_body->m_minimumSize) {
                    // If the last alternative had the same minimum size as the disjunction,
                    // just simply increment input pos by 1, no adjustment based on minimum size.
                    add32(TrustedImm32(1), index);
                } else {
                    // If the minumum for the last alternative was one greater than than that
                    // for the disjunction, we're already progressed by 1, nothing to do!
                    unsigned delta = (alternative->m_minimumSize - m_pattern.m_body->m_minimumSize) - 1;
                    if (delta)
                        sub32(Imm32(delta), index);
                }
                Jump matchFailed = jumpIfNoAvailableInput();

                if (needsToUpdateMatchStart) {
                    if (!m_pattern.m_body->m_minimumSize)
                        setMatchStart(index);
                    else {
                        move(index, regT0);
                        sub32(Imm32(m_pattern.m_body->m_minimumSize), regT0);
                        setMatchStart(regT0);
                    }
                }

                // Calculate how much more input the first alternative requires than the minimum
                // for the body as a whole. If no more is needed then we dont need an additional
                // input check here - jump straight back up to the start of the first alternative.
                if (beginOp->m_alternative->m_minimumSize == m_pattern.m_body->m_minimumSize)
                    jump(beginOp->m_reentry);
                else {
                    if (beginOp->m_alternative->m_minimumSize > m_pattern.m_body->m_minimumSize)
                        add32(Imm32(beginOp->m_alternative->m_minimumSize - m_pattern.m_body->m_minimumSize), index);
                    else
                        sub32(Imm32(m_pattern.m_body->m_minimumSize - beginOp->m_alternative->m_minimumSize), index);
                    checkInput().linkTo(beginOp->m_reentry, this);
                    jump(firstInputCheckFailed);
                }

                // We jump to here if we iterate to the point that there is insufficient input to
                // run any matches, and need to return a failure state from JIT code.
                matchFailed.link(this);

#if !WTF_CPU_SPARC
                removeCallFrame();
#endif
#if WTF_CPU_X86_64
                move(TrustedImm32(int(WTF::notFound)), returnRegister);
#else
                move(TrustedImmPtr((void*)WTF::notFound), returnRegister);
                move(TrustedImm32(0), returnRegister2);
#endif
                generateReturn();
                break;
            }
            case OpBodyAlternativeEnd: {
                // We should never backtrack back into a body disjunction.
                ASSERT(m_backtrackingState.isEmpty());

                PatternAlternative* priorAlternative = m_ops[op.m_previousOp].m_alternative;
                m_checked += priorAlternative->m_minimumSize;
                break;
            }

            // OpSimpleNestedAlternativeBegin/Next/End
            // OpNestedAlternativeBegin/Next/End
            //
            // Generate code for when we backtrack back out of an alternative into
            // a Begin or Next node, or when the entry input count check fails. If
            // there are more alternatives we need to jump to the next alternative,
            // if not we backtrack back out of the current set of parentheses.
            //
            // In the case of non-simple nested assertions we need to also link the
            // 'return address' appropriately to backtrack back out into the correct
            // alternative.
            case OpSimpleNestedAlternativeBegin:
            case OpSimpleNestedAlternativeNext:
            case OpNestedAlternativeBegin:
            case OpNestedAlternativeNext: {
                YarrOp& nextOp = m_ops[op.m_nextOp];
                bool isBegin = op.m_previousOp == notFound;
                bool isLastAlternative = nextOp.m_nextOp == notFound;
                ASSERT(isBegin == (op.m_op == OpSimpleNestedAlternativeBegin || op.m_op == OpNestedAlternativeBegin));
                ASSERT(isLastAlternative == (nextOp.m_op == OpSimpleNestedAlternativeEnd || nextOp.m_op == OpNestedAlternativeEnd));

                // Treat an input check failure the same as a failed match.
                m_backtrackingState.append(op.m_jumps);

                // Set the backtracks to jump to the appropriate place. We may need
                // to link the backtracks in one of three different way depending on
                // the type of alternative we are dealing with:
                //  - A single alternative, with no simplings.
                //  - The last alternative of a set of two or more.
                //  - An alternative other than the last of a set of two or more.
                //
                // In the case of a single alternative on its own, we don't need to
                // jump anywhere - if the alternative fails to match we can just
                // continue to backtrack out of the parentheses without jumping.
                //
                // In the case of the last alternative in a set of more than one, we
                // need to jump to return back out to the beginning. We'll do so by
                // adding a jump to the End node's m_jumps list, and linking this
                // when we come to generate the Begin node. For alternatives other
                // than the last, we need to jump to the next alternative.
                //
                // If the alternative had adjusted the input position we must link
                // backtracking to here, correct, and then jump on. If not we can
                // link the backtracks directly to their destination.
                if (op.m_checkAdjust) {
                    // Handle the cases where we need to link the backtracks here.
                    m_backtrackingState.link(this);
                    sub32(Imm32(op.m_checkAdjust), index);
                    if (!isLastAlternative) {
                        // An alternative that is not the last should jump to its successor.
                        jump(nextOp.m_reentry);
                    } else if (!isBegin) {
                        // The last of more than one alternatives must jump back to the beginning.
                        nextOp.m_jumps.append(jump());
                    } else {
                        // A single alternative on its own can fall through.
                        m_backtrackingState.fallthrough();
                    }
                } else {
                    // Handle the cases where we can link the backtracks directly to their destinations.
                    if (!isLastAlternative) {
                        // An alternative that is not the last should jump to its successor.
                        m_backtrackingState.linkTo(nextOp.m_reentry, this);
                    } else if (!isBegin) {
                        // The last of more than one alternatives must jump back to the beginning.
                        m_backtrackingState.takeBacktracksToJumpList(nextOp.m_jumps, this);
                    }
                    // In the case of a single alternative on its own do nothing - it can fall through.
                }

                // If there is a backtrack jump from a zero length match link it here.
                if (op.m_zeroLengthMatch.isSet())
                    m_backtrackingState.append(op.m_zeroLengthMatch);

                // At this point we've handled the backtracking back into this node.
                // Now link any backtracks that need to jump to here.

                // For non-simple alternatives, link the alternative's 'return address'
                // so that we backtrack back out into the previous alternative.
                if (op.m_op == OpNestedAlternativeNext)
                    m_backtrackingState.append(op.m_returnAddress);

                // If there is more than one alternative, then the last alternative will
                // have planted a jump to be linked to the end. This jump was added to the
                // End node's m_jumps list. If we are back at the beginning, link it here.
                if (isBegin) {
                    YarrOp* endOp = &m_ops[op.m_nextOp];
                    while (endOp->m_nextOp != notFound) {
                        ASSERT(endOp->m_op == OpSimpleNestedAlternativeNext || endOp->m_op == OpNestedAlternativeNext);
                        endOp = &m_ops[endOp->m_nextOp];
                    }
                    ASSERT(endOp->m_op == OpSimpleNestedAlternativeEnd || endOp->m_op == OpNestedAlternativeEnd);
                    m_backtrackingState.append(endOp->m_jumps);
                }

                if (!isBegin) {
                    YarrOp& lastOp = m_ops[op.m_previousOp];
                    m_checked += lastOp.m_checkAdjust;
                }
                m_checked -= op.m_checkAdjust;
                break;
            }
            case OpSimpleNestedAlternativeEnd:
            case OpNestedAlternativeEnd: {
                PatternTerm* term = op.m_term;

                // If there is a backtrack jump from a zero length match link it here.
                if (op.m_zeroLengthMatch.isSet())
                    m_backtrackingState.append(op.m_zeroLengthMatch);

                // If we backtrack into the end of a simple subpattern do nothing;
                // just continue through into the last alternative. If we backtrack
                // into the end of a non-simple set of alterntives we need to jump
                // to the backtracking return address set up during generation.
                if (op.m_op == OpNestedAlternativeEnd) {
                    m_backtrackingState.link(this);

                    // Plant a jump to the return address.
                    unsigned parenthesesFrameLocation = term->frameLocation;
                    unsigned alternativeFrameLocation = parenthesesFrameLocation;
                    if (term->quantityType != QuantifierFixedCount)
                        alternativeFrameLocation += YarrStackSpaceForBackTrackInfoParenthesesOnce;
                    loadFromFrameAndJump(alternativeFrameLocation);

                    // Link the DataLabelPtr associated with the end of the last
                    // alternative to this point.
                    m_backtrackingState.append(op.m_returnAddress);
                }

                YarrOp& lastOp = m_ops[op.m_previousOp];
                m_checked += lastOp.m_checkAdjust;
                break;
            }

            // OpParenthesesSubpatternOnceBegin/End
            //
            // When we are backtracking back out of a capturing subpattern we need
            // to clear the start index in the matches output array, to record that
            // this subpattern has not been captured.
            //
            // When backtracking back out of a Greedy quantified subpattern we need
            // to catch this, and try running the remainder of the alternative after
            // the subpattern again, skipping the parentheses.
            //
            // Upon backtracking back into a quantified set of parentheses we need to
            // check whether we were currently skipping the subpattern. If not, we
            // can backtrack into them, if we were we need to either backtrack back
            // out of the start of the parentheses, or jump back to the forwards
            // matching start, depending of whether the match is Greedy or NonGreedy.
            case OpParenthesesSubpatternOnceBegin: {
                PatternTerm* term = op.m_term;
                ASSERT(term->quantityCount == 1);

                // We only need to backtrack to thispoint if capturing or greedy.
                if ((term->capture() && compileMode == IncludeSubpatterns) || term->quantityType == QuantifierGreedy) {
                    m_backtrackingState.link(this);

                    // If capturing, clear the capture (we only need to reset start).
                    if (term->capture() && compileMode == IncludeSubpatterns)
                        clearSubpatternStart(term->parentheses.subpatternId);

                    // If Greedy, jump to the end.
                    if (term->quantityType == QuantifierGreedy) {
                        // Clear the flag in the stackframe indicating we ran through the subpattern.
                        unsigned parenthesesFrameLocation = term->frameLocation;
                        storeToFrame(TrustedImm32(-1), parenthesesFrameLocation);
                        // Jump to after the parentheses, skipping the subpattern.
                        jump(m_ops[op.m_nextOp].m_reentry);
                        // A backtrack from after the parentheses, when skipping the subpattern,
                        // will jump back to here.
                        op.m_jumps.link(this);
                    }

                    m_backtrackingState.fallthrough();
                }
                break;
            }
            case OpParenthesesSubpatternOnceEnd: {
                PatternTerm* term = op.m_term;

                if (term->quantityType != QuantifierFixedCount) {
                    m_backtrackingState.link(this);

                    // Check whether we should backtrack back into the parentheses, or if we
                    // are currently in a state where we had skipped over the subpattern
                    // (in which case the flag value on the stack will be -1).
                    unsigned parenthesesFrameLocation = term->frameLocation;
                    Jump hadSkipped = branch32(Equal, Address(stackPointerRegister, parenthesesFrameLocation * sizeof(void*)), TrustedImm32(-1));

                    if (term->quantityType == QuantifierGreedy) {
                        // For Greedy parentheses, we skip after having already tried going
                        // through the subpattern, so if we get here we're done.
                        YarrOp& beginOp = m_ops[op.m_previousOp];
                        beginOp.m_jumps.append(hadSkipped);
                    } else {
                        // For NonGreedy parentheses, we try skipping the subpattern first,
                        // so if we get here we need to try running through the subpattern
                        // next. Jump back to the start of the parentheses in the forwards
                        // matching path.
                        ASSERT(term->quantityType == QuantifierNonGreedy);
                        YarrOp& beginOp = m_ops[op.m_previousOp];
                        hadSkipped.linkTo(beginOp.m_reentry, this);
                    }

                    m_backtrackingState.fallthrough();
                }

                m_backtrackingState.append(op.m_jumps);
                break;
            }

            // OpParenthesesSubpatternTerminalBegin/End
            //
            // Terminal subpatterns will always match - there is nothing after them to
            // force a backtrack, and they have a minimum count of 0, and as such will
            // always produce an acceptable result.
            case OpParenthesesSubpatternTerminalBegin: {
                // We will backtrack to this point once the subpattern cannot match any
                // more. Since no match is accepted as a successful match (we are Greedy
                // quantified with a minimum of zero) jump back to the forwards matching
                // path at the end.
                YarrOp& endOp = m_ops[op.m_nextOp];
                m_backtrackingState.linkTo(endOp.m_reentry, this);
                break;
            }
            case OpParenthesesSubpatternTerminalEnd:
                // We should never be backtracking to here (hence the 'terminal' in the name).
                ASSERT(m_backtrackingState.isEmpty());
                m_backtrackingState.append(op.m_jumps);
                break;

            // OpParentheticalAssertionBegin/End
            case OpParentheticalAssertionBegin: {
                PatternTerm* term = op.m_term;
                YarrOp& endOp = m_ops[op.m_nextOp];

                // We need to handle the backtracks upon backtracking back out
                // of a parenthetical assertion if either we need to correct
                // the input index, or the assertion was inverted.
                if (op.m_checkAdjust || term->invert()) {
                     m_backtrackingState.link(this);

                    if (op.m_checkAdjust)
                        add32(Imm32(op.m_checkAdjust), index);

                    // In an inverted assertion failure to match the subpattern
                    // is treated as a successful match - jump to the end of the
                    // subpattern. We already have adjusted the input position
                    // back to that before the assertion, which is correct.
                    if (term->invert())
                        jump(endOp.m_reentry);

                    m_backtrackingState.fallthrough();
                }

                // The End node's jump list will contain any backtracks into
                // the end of the assertion. Also, if inverted, we will have
                // added the failure caused by a successful match to this.
                m_backtrackingState.append(endOp.m_jumps);

                m_checked += op.m_checkAdjust;
                break;
            }
            case OpParentheticalAssertionEnd: {
                // FIXME: We should really be clearing any nested subpattern
                // matches on bailing out from after the pattern. Firefox has
                // this bug too (presumably because they use YARR!)

                // Never backtrack into an assertion; later failures bail to before the begin.
                m_backtrackingState.takeBacktracksToJumpList(op.m_jumps, this);

                YarrOp& lastOp = m_ops[op.m_previousOp];
                m_checked -= lastOp.m_checkAdjust;
                break;
            }

            case OpMatchFailed:
                break;
            }

        } while (opIndex);
    }

    // Compilation methods:
    // ====================

    // opCompileParenthesesSubpattern
    // Emits ops for a subpattern (set of parentheses). These consist
    // of a set of alternatives wrapped in an outer set of nodes for
    // the parentheses.
    // Supported types of parentheses are 'Once' (quantityCount == 1)
    // and 'Terminal' (non-capturing parentheses quantified as greedy
    // and infinite).
    // Alternatives will use the 'Simple' set of ops if either the
    // subpattern is terminal (in which case we will never need to
    // backtrack), or if the subpattern only contains one alternative.
    void opCompileParenthesesSubpattern(PatternTerm* term)
    {
        YarrOpCode parenthesesBeginOpCode;
        YarrOpCode parenthesesEndOpCode;
        YarrOpCode alternativeBeginOpCode = OpSimpleNestedAlternativeBegin;
        YarrOpCode alternativeNextOpCode = OpSimpleNestedAlternativeNext;
        YarrOpCode alternativeEndOpCode = OpSimpleNestedAlternativeEnd;

        // We can currently only compile quantity 1 subpatterns that are
        // not copies. We generate a copy in the case of a range quantifier,
        // e.g. /(?:x){3,9}/, or /(?:x)+/ (These are effectively expanded to
        // /(?:x){3,3}(?:x){0,6}/ and /(?:x)(?:x)*/ repectively). The problem
        // comes where the subpattern is capturing, in which case we would
        // need to restore the capture from the first subpattern upon a
        // failure in the second.
        if (term->quantityCount == 1 && !term->parentheses.isCopy) {
            // Select the 'Once' nodes.
            parenthesesBeginOpCode = OpParenthesesSubpatternOnceBegin;
            parenthesesEndOpCode = OpParenthesesSubpatternOnceEnd;

            // If there is more than one alternative we cannot use the 'simple' nodes.
            if (term->parentheses.disjunction->m_alternatives.size() != 1) {
                alternativeBeginOpCode = OpNestedAlternativeBegin;
                alternativeNextOpCode = OpNestedAlternativeNext;
                alternativeEndOpCode = OpNestedAlternativeEnd;
            }
        } else if (term->parentheses.isTerminal) {
            // Terminal groups are optimized on the assumption that matching will never
            // backtrack into the terminal group. But this is false if there is more
            // than one alternative and one of the alternatives can match empty. In that
            // case, the empty match is counted as a failure, so we would need to backtrack.
            // The backtracking code doesn't handle this case correctly, so we fall back
            // to the interpreter.
            Vector<PatternAlternative*>& alternatives = term->parentheses.disjunction->m_alternatives;
            if (alternatives.size() != 1) {
                for (unsigned i = 0; i < alternatives.size(); ++i) {
                    if (alternatives[i]->m_minimumSize == 0) {
                        m_shouldFallBack = true;
                        return;
                    }
                }
            }

            // Select the 'Terminal' nodes.
            parenthesesBeginOpCode = OpParenthesesSubpatternTerminalBegin;
            parenthesesEndOpCode = OpParenthesesSubpatternTerminalEnd;
        } else {
            // This subpattern is not supported by the JIT.
            m_shouldFallBack = true;
            return;
        }

        size_t parenBegin = m_ops.size();
        m_ops.append(parenthesesBeginOpCode);

        m_ops.append(alternativeBeginOpCode);
        m_ops.last().m_previousOp = notFound;
        m_ops.last().m_term = term;
        Vector<PatternAlternative*>& alternatives =  term->parentheses.disjunction->m_alternatives;
        for (unsigned i = 0; i < alternatives.size(); ++i) {
            size_t lastOpIndex = m_ops.size() - 1;

            PatternAlternative* nestedAlternative = alternatives[i];
            opCompileAlternative(nestedAlternative);

            size_t thisOpIndex = m_ops.size();
            m_ops.append(YarrOp(alternativeNextOpCode));

            YarrOp& lastOp = m_ops[lastOpIndex];
            YarrOp& thisOp = m_ops[thisOpIndex];

            lastOp.m_alternative = nestedAlternative;
            lastOp.m_nextOp = thisOpIndex;
            thisOp.m_previousOp = lastOpIndex;
            thisOp.m_term = term;
        }
        YarrOp& lastOp = m_ops.last();
        ASSERT(lastOp.m_op == alternativeNextOpCode);
        lastOp.m_op = alternativeEndOpCode;
        lastOp.m_alternative = 0;
        lastOp.m_nextOp = notFound;

        size_t parenEnd = m_ops.size();
        m_ops.append(parenthesesEndOpCode);

        m_ops[parenBegin].m_term = term;
        m_ops[parenBegin].m_previousOp = notFound;
        m_ops[parenBegin].m_nextOp = parenEnd;
        m_ops[parenEnd].m_term = term;
        m_ops[parenEnd].m_previousOp = parenBegin;
        m_ops[parenEnd].m_nextOp = notFound;
    }

    // opCompileParentheticalAssertion
    // Emits ops for a parenthetical assertion. These consist of an
    // OpSimpleNestedAlternativeBegin/Next/End set of nodes wrapping
    // the alternatives, with these wrapped by an outer pair of
    // OpParentheticalAssertionBegin/End nodes.
    // We can always use the OpSimpleNestedAlternative nodes in the
    // case of parenthetical assertions since these only ever match
    // once, and will never backtrack back into the assertion.
    void opCompileParentheticalAssertion(PatternTerm* term)
    {
        size_t parenBegin = m_ops.size();
        m_ops.append(OpParentheticalAssertionBegin);

        m_ops.append(OpSimpleNestedAlternativeBegin);
        m_ops.last().m_previousOp = notFound;
        m_ops.last().m_term = term;
        Vector<PatternAlternative*>& alternatives =  term->parentheses.disjunction->m_alternatives;
        for (unsigned i = 0; i < alternatives.size(); ++i) {
            size_t lastOpIndex = m_ops.size() - 1;

            PatternAlternative* nestedAlternative = alternatives[i];
            opCompileAlternative(nestedAlternative);

            size_t thisOpIndex = m_ops.size();
            m_ops.append(YarrOp(OpSimpleNestedAlternativeNext));

            YarrOp& lastOp = m_ops[lastOpIndex];
            YarrOp& thisOp = m_ops[thisOpIndex];

            lastOp.m_alternative = nestedAlternative;
            lastOp.m_nextOp = thisOpIndex;
            thisOp.m_previousOp = lastOpIndex;
            thisOp.m_term = term;
        }
        YarrOp& lastOp = m_ops.last();
        ASSERT(lastOp.m_op == OpSimpleNestedAlternativeNext);
        lastOp.m_op = OpSimpleNestedAlternativeEnd;
        lastOp.m_alternative = 0;
        lastOp.m_nextOp = notFound;

        size_t parenEnd = m_ops.size();
        m_ops.append(OpParentheticalAssertionEnd);

        m_ops[parenBegin].m_term = term;
        m_ops[parenBegin].m_previousOp = notFound;
        m_ops[parenBegin].m_nextOp = parenEnd;
        m_ops[parenEnd].m_term = term;
        m_ops[parenEnd].m_previousOp = parenBegin;
        m_ops[parenEnd].m_nextOp = notFound;
    }

    // opCompileAlternative
    // Called to emit nodes for all terms in an alternative.
    void opCompileAlternative(PatternAlternative* alternative)
    {
        optimizeAlternative(alternative);

        for (unsigned i = 0; i < alternative->m_terms.size(); ++i) {
            PatternTerm* term = &alternative->m_terms[i];

            switch (term->type) {
            case PatternTerm::TypeParenthesesSubpattern:
                opCompileParenthesesSubpattern(term);
                break;

            case PatternTerm::TypeParentheticalAssertion:
                opCompileParentheticalAssertion(term);
                break;

            default:
                m_ops.append(term);
            }
        }
    }

    // opCompileBody
    // This method compiles the body disjunction of the regular expression.
    // The body consists of two sets of alternatives - zero or more 'once
    // through' (BOL anchored) alternatives, followed by zero or more
    // repeated alternatives.
    // For each of these two sets of alteratives, if not empty they will be
    // wrapped in a set of OpBodyAlternativeBegin/Next/End nodes (with the
    // 'begin' node referencing the first alternative, and 'next' nodes
    // referencing any further alternatives. The begin/next/end nodes are
    // linked together in a doubly linked list. In the case of repeating
    // alternatives, the end node is also linked back to the beginning.
    // If no repeating alternatives exist, then a OpMatchFailed node exists
    // to return the failing result.
    void opCompileBody(PatternDisjunction* disjunction)
    {
        Vector<PatternAlternative*>& alternatives =  disjunction->m_alternatives;
        size_t currentAlternativeIndex = 0;

        // Emit the 'once through' alternatives.
        if (alternatives.size() && alternatives[0]->onceThrough()) {
            m_ops.append(YarrOp(OpBodyAlternativeBegin));
            m_ops.last().m_previousOp = notFound;

            do {
                size_t lastOpIndex = m_ops.size() - 1;
                PatternAlternative* alternative = alternatives[currentAlternativeIndex];
                opCompileAlternative(alternative);

                size_t thisOpIndex = m_ops.size();
                m_ops.append(YarrOp(OpBodyAlternativeNext));

                YarrOp& lastOp = m_ops[lastOpIndex];
                YarrOp& thisOp = m_ops[thisOpIndex];

                lastOp.m_alternative = alternative;
                lastOp.m_nextOp = thisOpIndex;
                thisOp.m_previousOp = lastOpIndex;
                
                ++currentAlternativeIndex;
            } while (currentAlternativeIndex < alternatives.size() && alternatives[currentAlternativeIndex]->onceThrough());

            YarrOp& lastOp = m_ops.last();

            ASSERT(lastOp.m_op == OpBodyAlternativeNext);
            lastOp.m_op = OpBodyAlternativeEnd;
            lastOp.m_alternative = 0;
            lastOp.m_nextOp = notFound;
        }

        if (currentAlternativeIndex == alternatives.size()) {
            m_ops.append(YarrOp(OpMatchFailed));
            return;
        }

        // Emit the repeated alternatives.
        size_t repeatLoop = m_ops.size();
        m_ops.append(YarrOp(OpBodyAlternativeBegin));
        m_ops.last().m_previousOp = notFound;
        do {
            size_t lastOpIndex = m_ops.size() - 1;
            PatternAlternative* alternative = alternatives[currentAlternativeIndex];
            ASSERT(!alternative->onceThrough());
            opCompileAlternative(alternative);

            size_t thisOpIndex = m_ops.size();
            m_ops.append(YarrOp(OpBodyAlternativeNext));

            YarrOp& lastOp = m_ops[lastOpIndex];
            YarrOp& thisOp = m_ops[thisOpIndex];

            lastOp.m_alternative = alternative;
            lastOp.m_nextOp = thisOpIndex;
            thisOp.m_previousOp = lastOpIndex;
            
            ++currentAlternativeIndex;
        } while (currentAlternativeIndex < alternatives.size());
        YarrOp& lastOp = m_ops.last();
        ASSERT(lastOp.m_op == OpBodyAlternativeNext);
        lastOp.m_op = OpBodyAlternativeEnd;
        lastOp.m_alternative = 0;
        lastOp.m_nextOp = repeatLoop;
    }

    void generateEnter()
    {
#if WTF_CPU_X86_64
        push(X86Registers::ebp);
        move(stackPointerRegister, X86Registers::ebp);
        push(X86Registers::ebx);
        // The ABI doesn't guarantee the upper bits are zero on unsigned arguments, so clear them ourselves.
        zeroExtend32ToPtr(index, index);
        zeroExtend32ToPtr(length, length);
#elif WTF_CPU_X86
        push(X86Registers::ebp);
        move(stackPointerRegister, X86Registers::ebp);
        // TODO: do we need spill registers to fill the output pointer if there are no sub captures?
        push(X86Registers::ebx);
        push(X86Registers::edi);
        push(X86Registers::esi);
        // load output into edi (2 = saved ebp + return address).
# if WTF_COMPILER_MSVC || WTF_COMPILER_SUNCC
        loadPtr(Address(X86Registers::ebp, 2 * sizeof(void*)), input);
        loadPtr(Address(X86Registers::ebp, 3 * sizeof(void*)), index);
        loadPtr(Address(X86Registers::ebp, 4 * sizeof(void*)), length);
        if (compileMode == IncludeSubpatterns)
            loadPtr(Address(X86Registers::ebp, 5 * sizeof(void*)), output);
# else
        if (compileMode == IncludeSubpatterns)
            loadPtr(Address(X86Registers::ebp, 2 * sizeof(void*)), output);
# endif
#elif WTF_CPU_ARM
        push(ARMRegisters::r4);
        push(ARMRegisters::r5);
        push(ARMRegisters::r6);
# if WTF_CPU_ARM_TRADITIONAL
        push(ARMRegisters::r8); // scratch register
# endif
        if (compileMode == IncludeSubpatterns)
            move(ARMRegisters::r3, output);
#elif WTF_CPU_SH4
        push(SH4Registers::r11);
        push(SH4Registers::r13);
#elif WTF_CPU_SPARC
        save(Imm32(-m_pattern.m_body->m_callFrameSize * sizeof(void*)));
#elif WTF_CPU_MIPS
        // Do nothing.
#endif
    }

    void generateReturn()
    {
#if WTF_CPU_X86_64
        pop(X86Registers::ebx);
        pop(X86Registers::ebp);
#elif WTF_CPU_X86
        pop(X86Registers::esi);
        pop(X86Registers::edi);
        pop(X86Registers::ebx);
        pop(X86Registers::ebp);
#elif WTF_CPU_ARM
# if WTF_CPU_ARM_TRADITIONAL
        pop(ARMRegisters::r8); // scratch register
# endif
        pop(ARMRegisters::r6);
        pop(ARMRegisters::r5);
        pop(ARMRegisters::r4);
#elif WTF_CPU_SH4
        pop(SH4Registers::r13);
        pop(SH4Registers::r11);
#elif WTF_CPU_SPARC
        ret_and_restore();
        return;
#elif WTF_CPU_MIPS
        // Do nothing
#endif
        ret();
    }

public:
    YarrGenerator(YarrPattern& pattern, YarrCharSize charSize)
        : m_pattern(pattern)
        , m_charSize(charSize)
        , m_charScale(m_charSize == Char8 ? TimesOne: TimesTwo)
        , m_shouldFallBack(false)
        , m_checked(0)
    {
    }

    void compile(JSGlobalData* globalData, YarrCodeBlock& jitObject)
    {
        generateEnter();

        Jump hasInput = checkInput();
#if WTF_CPU_X86_64
        move(TrustedImm32(int(WTF::notFound)), returnRegister);
#else
        move(TrustedImmPtr((void*)WTF::notFound), returnRegister);
        move(TrustedImm32(0), returnRegister2);
#endif
        generateReturn();
        hasInput.link(this);

        if (compileMode == IncludeSubpatterns) {
            for (unsigned i = 0; i < m_pattern.m_numSubpatterns + 1; ++i)
                store32(TrustedImm32(-1), Address(output, (i << 1) * sizeof(int)));
        }

        if (!m_pattern.m_body->m_hasFixedSize)
            setMatchStart(index);

        initCallFrame();

        // Compile the pattern to the internal 'YarrOp' representation.
        opCompileBody(m_pattern.m_body);

        // If we encountered anything we can't handle in the JIT code
        // (e.g. backreferences) then return early.
        if (m_shouldFallBack) {
            jitObject.setFallBack(true);
            return;
        }

        generate();
        backtrack();

        // Link & finalize the code.
        ExecutablePool* pool;
        bool ok;
        LinkBuffer linkBuffer(this, globalData->regexAllocator, &pool, &ok, REGEXP_CODE);

        // Attempt to detect OOM during linkBuffer creation.
        if (linkBuffer.unsafeCode() == nullptr) {
            jitObject.setFallBack(true);
            return;
        }

        m_backtrackingState.linkDataLabels(linkBuffer);

        if (compileMode == MatchOnly) {
#if YARR_8BIT_CHAR_SUPPORT
            if (m_charSize == Char8)
                jitObject.set8BitCodeMatchOnly(linkBuffer.finalizeCode());
            else
#endif
                jitObject.set16BitCodeMatchOnly(linkBuffer.finalizeCode());
        } else {
#if YARR_8BIT_CHAR_SUPPORT
            if (m_charSize == Char8)
                jitObject.set8BitCode(linkBuffer.finalizeCode());
            else
#endif
                jitObject.set16BitCode(linkBuffer.finalizeCode());
        }
        jitObject.setFallBack(m_shouldFallBack);
    }

private:
    YarrPattern& m_pattern;

    YarrCharSize m_charSize;

    Scale m_charScale;

    // Used to detect regular expression constructs that are not currently
    // supported in the JIT; fall back to the interpreter when this is detected.
    bool m_shouldFallBack;

    // The regular expression expressed as a linear sequence of operations.
    Vector<YarrOp, 128> m_ops;

    // This records the current input offset being applied due to the current
    // set of alternatives we are nested within. E.g. when matching the
    // character 'b' within the regular expression /abc/, we will know that
    // the minimum size for the alternative is 3, checked upon entry to the
    // alternative, and that 'b' is at offset 1 from the start, and as such
    // when matching 'b' we need to apply an offset of -2 to the load.
    //
    // FIXME: This should go away. Rather than tracking this value throughout
    // code generation, we should gather this information up front & store it
    // on the YarrOp structure.
    int m_checked;

    // This class records state whilst generating the backtracking path of code.
    BacktrackingState m_backtrackingState;
};

void jitCompile(YarrPattern& pattern, YarrCharSize charSize, JSGlobalData* globalData, YarrCodeBlock& jitObject, YarrJITCompileMode mode)
{
    if (mode == MatchOnly)
        YarrGenerator<MatchOnly>(pattern, charSize).compile(globalData, jitObject);
    else
        YarrGenerator<IncludeSubpatterns>(pattern, charSize).compile(globalData, jitObject);
}

}}

#endif