DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (31ec81b5d7bb)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
/*
   LZ4 - Fast LZ compression algorithm
   Copyright (C) 2011-2013, Yann Collet.
   BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)

   Redistribution and use in source and binary forms, with or without
   modification, are permitted provided that the following conditions are
   met:

       * Redistributions of source code must retain the above copyright
   notice, this list of conditions and the following disclaimer.
       * Redistributions in binary form must reproduce the above
   copyright notice, this list of conditions and the following disclaimer
   in the documentation and/or other materials provided with the
   distribution.

   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

   You can contact the author at :
   - LZ4 homepage : http://fastcompression.blogspot.com/p/lz4.html
   - LZ4 source repository : http://code.google.com/p/lz4/
*/

/*
Note : this source file requires "lz4_encoder.h"
*/

//**************************************
// Tuning parameters
//**************************************
// MEMORY_USAGE :
// Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.)
// Increasing memory usage improves compression ratio
// Reduced memory usage can improve speed, due to cache effect
// Default value is 14, for 16KB, which nicely fits into Intel x86 L1 cache
#define MEMORY_USAGE 14

// HEAPMODE :
// Select how default compression function will allocate memory for its hash table,
// in memory stack (0:default, fastest), or in memory heap (1:requires memory allocation (malloc)).
// Default allocation strategy is to use stack (HEAPMODE 0)
// Note : explicit functions *_stack* and *_heap* are unaffected by this setting
#define HEAPMODE 0

// BIG_ENDIAN_NATIVE_BUT_INCOMPATIBLE :
// This will provide a small boost to performance for big endian cpu, but the resulting compressed stream will be incompatible with little-endian CPU.
// You can set this option to 1 in situations where data will remain within closed environment
// This option is useless on Little_Endian CPU (such as x86)
//#define BIG_ENDIAN_NATIVE_BUT_INCOMPATIBLE 1



//**************************************
// CPU Feature Detection
//**************************************
// 32 or 64 bits ?
#if (defined(__x86_64__) || defined(_M_X64) || defined(_WIN64) \
  || defined(__powerpc64__) || defined(__ppc64__) || defined(__PPC64__) \
  || defined(__64BIT__) || defined(_LP64) || defined(__LP64__) \
  || defined(__ia64) || defined(__itanium__) || defined(_M_IA64) )   // Detects 64 bits mode
#  define LZ4_ARCH64 1
#else
#  define LZ4_ARCH64 0
#endif

// Little Endian or Big Endian ?
// Overwrite the #define below if you know your architecture endianess
#if defined (__GLIBC__)
#  include <endian.h>
#  if (__BYTE_ORDER == __BIG_ENDIAN)
#     define LZ4_BIG_ENDIAN 1
#  endif
#elif (defined(__BIG_ENDIAN__) || defined(__BIG_ENDIAN) || defined(_BIG_ENDIAN)) && !(defined(__LITTLE_ENDIAN__) || defined(__LITTLE_ENDIAN) || defined(_LITTLE_ENDIAN))
#  define LZ4_BIG_ENDIAN 1
#elif defined(__sparc) || defined(__sparc__) \
   || defined(__powerpc__) || defined(__ppc__) || defined(__PPC__) \
   || defined(__hpux)  || defined(__hppa) \
   || defined(_MIPSEB) || defined(__s390__)
#  define LZ4_BIG_ENDIAN 1
#else
// Little Endian assumed. PDP Endian and other very rare endian format are unsupported.
#endif

// Unaligned memory access is automatically enabled for "common" CPU, such as x86.
// For others CPU, the compiler will be more cautious, and insert extra code to ensure aligned access is respected
// If you know your target CPU supports unaligned memory access, you want to force this option manually to improve performance
#if defined(__ARM_FEATURE_UNALIGNED)
#  define LZ4_FORCE_UNALIGNED_ACCESS 1
#endif

// Define this parameter if your target system or compiler does not support hardware bit count
#if defined(_MSC_VER) && defined(_WIN32_WCE)            // Visual Studio for Windows CE does not support Hardware bit count
#  define LZ4_FORCE_SW_BITCOUNT
#endif


//**************************************
// Compiler Options
//**************************************
#if defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L   // C99
/* "restrict" is a known keyword */
#else
#  define restrict // Disable restrict
#endif

#define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)

#ifdef _MSC_VER    // Visual Studio
#  include <intrin.h>   // For Visual 2005
#  if LZ4_ARCH64   // 64-bit
#    pragma intrinsic(_BitScanForward64) // For Visual 2005
#    pragma intrinsic(_BitScanReverse64) // For Visual 2005
#  else
#    pragma intrinsic(_BitScanForward)   // For Visual 2005
#    pragma intrinsic(_BitScanReverse)   // For Visual 2005
#  endif
#  pragma warning(disable : 4127)        // disable: C4127: conditional expression is constant
#endif

#ifdef _MSC_VER
#  define lz4_bswap16(x) _byteswap_ushort(x)
#else
#  define lz4_bswap16(x) ((unsigned short int) ((((x) >> 8) & 0xffu) | (((x) & 0xffu) << 8)))
#endif

#if (GCC_VERSION >= 302) || (__INTEL_COMPILER >= 800) || defined(__clang__)
#  define expect(expr,value)    (__builtin_expect ((expr),(value)) )
#else
#  define expect(expr,value)    (expr)
#endif

#define likely(expr)     expect((expr) != 0, 1)
#define unlikely(expr)   expect((expr) != 0, 0)


//**************************************
// Includes
//**************************************
#include <stdlib.h>   // for malloc
#include <string.h>   // for memset
#include "lz4.h"


//**************************************
// Basic Types
//**************************************
#if defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L   // C99
# include <stdint.h>
  typedef uint8_t  BYTE;
  typedef uint16_t U16;
  typedef uint32_t U32;
  typedef  int32_t S32;
  typedef uint64_t U64;
#else
  typedef unsigned char       BYTE;
  typedef unsigned short      U16;
  typedef unsigned int        U32;
  typedef   signed int        S32;
  typedef unsigned long long  U64;
#endif

#if defined(__GNUC__)  && !defined(LZ4_FORCE_UNALIGNED_ACCESS)
#  define _PACKED __attribute__ ((packed))
#else
#  define _PACKED
#endif

#if !defined(LZ4_FORCE_UNALIGNED_ACCESS) && !defined(__GNUC__)
#  pragma pack(push, 1)
#endif

typedef struct _U16_S { U16 v; } _PACKED U16_S;
typedef struct _U32_S { U32 v; } _PACKED U32_S;
typedef struct _U64_S { U64 v; } _PACKED U64_S;

#if !defined(LZ4_FORCE_UNALIGNED_ACCESS) && !defined(__GNUC__)
#  pragma pack(pop)
#endif

#define A64(x) (((U64_S *)(x))->v)
#define A32(x) (((U32_S *)(x))->v)
#define A16(x) (((U16_S *)(x))->v)


//**************************************
// Constants
//**************************************
#define HASHTABLESIZE (1 << MEMORY_USAGE)

#define MINMATCH 4

#define COPYLENGTH 8
#define LASTLITERALS 5
#define MFLIMIT (COPYLENGTH+MINMATCH)
#define MINLENGTH (MFLIMIT+1)

#define LZ4_64KLIMIT ((1<<16) + (MFLIMIT-1))
#define SKIPSTRENGTH 6     // Increasing this value will make the compression run slower on incompressible data

#define MAXD_LOG 16
#define MAX_DISTANCE ((1 << MAXD_LOG) - 1)

#define ML_BITS  4
#define ML_MASK  ((1U<<ML_BITS)-1)
#define RUN_BITS (8-ML_BITS)
#define RUN_MASK ((1U<<RUN_BITS)-1)


//**************************************
// Architecture-specific macros
//**************************************
#if LZ4_ARCH64   // 64-bit
#  define STEPSIZE 8
#  define UARCH U64
#  define AARCH A64
#  define LZ4_COPYSTEP(s,d)       A64(d) = A64(s); d+=8; s+=8;
#  define LZ4_COPYPACKET(s,d)     LZ4_COPYSTEP(s,d)
#  define LZ4_SECURECOPY(s,d,e)   if (d<e) LZ4_WILDCOPY(s,d,e)
#  define HTYPE                   U32
#  define INITBASE(base)          const BYTE* const base = ip
#else      // 32-bit
#  define STEPSIZE 4
#  define UARCH U32
#  define AARCH A32
#  define LZ4_COPYSTEP(s,d)       A32(d) = A32(s); d+=4; s+=4;
#  define LZ4_COPYPACKET(s,d)     LZ4_COPYSTEP(s,d); LZ4_COPYSTEP(s,d);
#  define LZ4_SECURECOPY          LZ4_WILDCOPY
#  define HTYPE                   const BYTE*
#  define INITBASE(base)          const int base = 0
#endif

#if (defined(LZ4_BIG_ENDIAN) && !defined(BIG_ENDIAN_NATIVE_BUT_INCOMPATIBLE))
#  define LZ4_READ_LITTLEENDIAN_16(d,s,p) { U16 v = A16(p); v = lz4_bswap16(v); d = (s) - v; }
#  define LZ4_WRITE_LITTLEENDIAN_16(p,i)  { U16 v = (U16)(i); v = lz4_bswap16(v); A16(p) = v; p+=2; }
#else      // Little Endian
#  define LZ4_READ_LITTLEENDIAN_16(d,s,p) { d = (s) - A16(p); }
#  define LZ4_WRITE_LITTLEENDIAN_16(p,v)  { A16(p) = v; p+=2; }
#endif


//**************************************
// Macros
//**************************************
#define LZ4_WILDCOPY(s,d,e)     do { LZ4_COPYPACKET(s,d) } while (d<e);
#define LZ4_BLINDCOPY(s,d,l)    { BYTE* e=(d)+(l); LZ4_WILDCOPY(s,d,e); d=e; }


//****************************
// Private functions
//****************************
#if LZ4_ARCH64

static inline int LZ4_NbCommonBytes (register U64 val)
{
#if defined(LZ4_BIG_ENDIAN)
    #if defined(_MSC_VER) && !defined(LZ4_FORCE_SW_BITCOUNT)
    unsigned long r = 0;
    _BitScanReverse64( &r, val );
    return (int)(r>>3);
    #elif defined(__GNUC__) && (GCC_VERSION >= 304) && !defined(LZ4_FORCE_SW_BITCOUNT)
    return (__builtin_clzll(val) >> 3);
    #else
    int r;
    if (!(val>>32)) { r=4; } else { r=0; val>>=32; }
    if (!(val>>16)) { r+=2; val>>=8; } else { val>>=24; }
    r += (!val);
    return r;
    #endif
#else
    #if defined(_MSC_VER) && !defined(LZ4_FORCE_SW_BITCOUNT)
    unsigned long r = 0;
    _BitScanForward64( &r, val );
    return (int)(r>>3);
    #elif defined(__GNUC__) && (GCC_VERSION >= 304) && !defined(LZ4_FORCE_SW_BITCOUNT)
    return (__builtin_ctzll(val) >> 3);
    #else
    static const int DeBruijnBytePos[64] = { 0, 0, 0, 0, 0, 1, 1, 2, 0, 3, 1, 3, 1, 4, 2, 7, 0, 2, 3, 6, 1, 5, 3, 5, 1, 3, 4, 4, 2, 5, 6, 7, 7, 0, 1, 2, 3, 3, 4, 6, 2, 6, 5, 5, 3, 4, 5, 6, 7, 1, 2, 4, 6, 4, 4, 5, 7, 2, 6, 5, 7, 6, 7, 7 };
    return DeBruijnBytePos[((U64)((val & -val) * 0x0218A392CDABBD3F)) >> 58];
    #endif
#endif
}

#else

static inline int LZ4_NbCommonBytes (register U32 val)
{
#if defined(LZ4_BIG_ENDIAN)
#  if defined(_MSC_VER) && !defined(LZ4_FORCE_SW_BITCOUNT)
    unsigned long r = 0;
    _BitScanReverse( &r, val );
    return (int)(r>>3);
#  elif defined(__GNUC__) && (GCC_VERSION >= 304) && !defined(LZ4_FORCE_SW_BITCOUNT)
    return (__builtin_clz(val) >> 3);
#  else
    int r;
    if (!(val>>16)) { r=2; val>>=8; } else { r=0; val>>=24; }
    r += (!val);
    return r;
#  endif
#else
#  if defined(_MSC_VER) && !defined(LZ4_FORCE_SW_BITCOUNT)
    unsigned long r;
    _BitScanForward( &r, val );
    return (int)(r>>3);
#  elif defined(__GNUC__) && (GCC_VERSION >= 304) && !defined(LZ4_FORCE_SW_BITCOUNT)
    return (__builtin_ctz(val) >> 3);
#  else
    static const int DeBruijnBytePos[32] = { 0, 0, 3, 0, 3, 1, 3, 0, 3, 2, 2, 1, 3, 2, 0, 1, 3, 3, 1, 2, 2, 2, 2, 0, 3, 1, 2, 0, 1, 0, 1, 1 };
    return DeBruijnBytePos[((U32)((val & -(S32)val) * 0x077CB531U)) >> 27];
#  endif
#endif
}

#endif



//******************************
// Compression functions
//******************************

/*
int LZ4_compress_stack(
                 const char* source,
                 char* dest,
                 int inputSize)

Compress 'inputSize' bytes from 'source' into an output buffer 'dest'.
Destination buffer must be already allocated, and sized at a minimum of LZ4_compressBound(inputSize).
return : the number of bytes written in buffer 'dest'
*/
#define FUNCTION_NAME LZ4_compress_stack
#include "lz4_encoder.h"


/*
int LZ4_compress_stack_limitedOutput(
                 const char* source,
                 char* dest,
                 int inputSize,
                 int maxOutputSize)

Compress 'inputSize' bytes from 'source' into an output buffer 'dest' of maximum size 'maxOutputSize'.
If it cannot achieve it, compression will stop, and result of the function will be zero.
return : the number of bytes written in buffer 'dest', or 0 if the compression fails
*/
#define FUNCTION_NAME LZ4_compress_stack_limitedOutput
#define LIMITED_OUTPUT
#include "lz4_encoder.h"


/*
int LZ4_compress64k_stack(
                 const char* source,
                 char* dest,
                 int inputSize)

Compress 'inputSize' bytes from 'source' into an output buffer 'dest'.
This function compresses better than LZ4_compress_stack(), on the condition that
'inputSize' must be < to LZ4_64KLIMIT, or the function will fail.
Destination buffer must be already allocated, and sized at a minimum of LZ4_compressBound(inputSize).
return : the number of bytes written in buffer 'dest', or 0 if compression fails
*/
#define FUNCTION_NAME LZ4_compress64k_stack
#define COMPRESS_64K
#include "lz4_encoder.h"


/*
int LZ4_compress64k_stack_limitedOutput(
                 const char* source,
                 char* dest,
                 int inputSize,
                 int maxOutputSize)

Compress 'inputSize' bytes from 'source' into an output buffer 'dest' of maximum size 'maxOutputSize'.
This function compresses better than LZ4_compress_stack_limitedOutput(), on the condition that
'inputSize' must be < to LZ4_64KLIMIT, or the function will fail.
If it cannot achieve it, compression will stop, and result of the function will be zero.
return : the number of bytes written in buffer 'dest', or 0 if the compression fails
*/
#define FUNCTION_NAME LZ4_compress64k_stack_limitedOutput
#define COMPRESS_64K
#define LIMITED_OUTPUT
#include "lz4_encoder.h"


/*
void* LZ4_createHeapMemory();
int LZ4_freeHeapMemory(void* ctx);

Used to allocate and free hashTable memory 
to be used by the LZ4_compress_heap* family of functions.
LZ4_createHeapMemory() returns NULL is memory allocation fails.
*/
void* LZ4_create() { return malloc(HASHTABLESIZE); }
int   LZ4_free(void* ctx) { free(ctx); return 0; }


/*
int LZ4_compress_heap(
                 void* ctx,
                 const char* source,
                 char* dest,
                 int inputSize)

Compress 'inputSize' bytes from 'source' into an output buffer 'dest'.
The memory used for compression must be created by LZ4_createHeapMemory() and provided by pointer 'ctx'.
Destination buffer must be already allocated, and sized at a minimum of LZ4_compressBound(inputSize).
return : the number of bytes written in buffer 'dest'
*/
#define FUNCTION_NAME LZ4_compress_heap
#define USE_HEAPMEMORY
#include "lz4_encoder.h"


/*
int LZ4_compress_heap_limitedOutput(
                 void* ctx,
                 const char* source,
                 char* dest,
                 int inputSize,
                 int maxOutputSize)

Compress 'inputSize' bytes from 'source' into an output buffer 'dest' of maximum size 'maxOutputSize'.
If it cannot achieve it, compression will stop, and result of the function will be zero.
The memory used for compression must be created by LZ4_createHeapMemory() and provided by pointer 'ctx'.
return : the number of bytes written in buffer 'dest', or 0 if the compression fails
*/
#define FUNCTION_NAME LZ4_compress_heap_limitedOutput
#define LIMITED_OUTPUT
#define USE_HEAPMEMORY
#include "lz4_encoder.h"


/*
int LZ4_compress64k_heap(
                 void* ctx,
                 const char* source,
                 char* dest,
                 int inputSize)

Compress 'inputSize' bytes from 'source' into an output buffer 'dest'.
The memory used for compression must be created by LZ4_createHeapMemory() and provided by pointer 'ctx'.
'inputSize' must be < to LZ4_64KLIMIT, or the function will fail.
Destination buffer must be already allocated, and sized at a minimum of LZ4_compressBound(inputSize).
return : the number of bytes written in buffer 'dest'
*/
#define FUNCTION_NAME LZ4_compress64k_heap
#define COMPRESS_64K
#define USE_HEAPMEMORY
#include "lz4_encoder.h"


/*
int LZ4_compress64k_heap_limitedOutput(
                 void* ctx,
                 const char* source,
                 char* dest,
                 int inputSize,
                 int maxOutputSize)

Compress 'inputSize' bytes from 'source' into an output buffer 'dest' of maximum size 'maxOutputSize'.
If it cannot achieve it, compression will stop, and result of the function will be zero.
The memory used for compression must be created by LZ4_createHeapMemory() and provided by pointer 'ctx'.
'inputSize' must be < to LZ4_64KLIMIT, or the function will fail.
return : the number of bytes written in buffer 'dest', or 0 if the compression fails
*/
#define FUNCTION_NAME LZ4_compress64k_heap_limitedOutput
#define COMPRESS_64K
#define LIMITED_OUTPUT
#define USE_HEAPMEMORY
#include "lz4_encoder.h"


int LZ4_compress(const char* source, char* dest, int inputSize)
{
#if HEAPMODE
    void* ctx = LZ4_create();
    int result;
    if (ctx == NULL) return 0;    // Failed allocation => compression not done
    if (inputSize < LZ4_64KLIMIT)
        result = LZ4_compress64k_heap(ctx, source, dest, inputSize);
    else result = LZ4_compress_heap(ctx, source, dest, inputSize);
    LZ4_free(ctx);
    return result;
#else
    if (inputSize < (int)LZ4_64KLIMIT) return LZ4_compress64k_stack(source, dest, inputSize);
    return LZ4_compress_stack(source, dest, inputSize);
#endif
}


int LZ4_compress_limitedOutput(const char* source, char* dest, int inputSize, int maxOutputSize)
{
#if HEAPMODE
    void* ctx = LZ4_create();
    int result;
    if (ctx == NULL) return 0;    // Failed allocation => compression not done
    if (inputSize < LZ4_64KLIMIT)
        result = LZ4_compress64k_heap_limitedOutput(ctx, source, dest, inputSize, maxOutputSize);
    else result = LZ4_compress_heap_limitedOutput(ctx, source, dest, inputSize, maxOutputSize);
    LZ4_free(ctx);
    return result;
#else
    if (inputSize < (int)LZ4_64KLIMIT) return LZ4_compress64k_stack_limitedOutput(source, dest, inputSize, maxOutputSize);
    return LZ4_compress_stack_limitedOutput(source, dest, inputSize, maxOutputSize);
#endif
}


//****************************
// Decompression functions
//****************************

typedef enum { noPrefix = 0, withPrefix = 1 } prefix64k_directive;
typedef enum { endOnOutputSize = 0, endOnInputSize = 1 } end_directive;
typedef enum { full = 0, partial = 1 } exit_directive;


// This generic decompression function cover all use cases.
// It shall be instanciated several times, using different sets of directives
// Note that it is essential this generic function is really inlined, 
// in order to remove useless branches during compilation optimisation.
static inline int LZ4_decompress_generic(
                 const char* source,
                 char* dest,
                 int inputSize,          //
                 int outputSize,         // OutputSize must be != 0; if endOnInput==endOnInputSize, this value is the max size of Output Buffer.

                 int endOnInput,         // endOnOutputSize, endOnInputSize
                 int prefix64k,          // noPrefix, withPrefix
                 int partialDecoding,    // full, partial
                 int targetOutputSize    // only used if partialDecoding==partial
                 )
{
    // Local Variables
    const BYTE* restrict ip = (const BYTE*) source;
    const BYTE* ref;
    const BYTE* const iend = ip + inputSize;

    BYTE* op = (BYTE*) dest;
    BYTE* const oend = op + outputSize;
    BYTE* cpy;
    BYTE* oexit = op + targetOutputSize;

    size_t dec32table[] = {0, 3, 2, 3, 0, 0, 0, 0};
#if LZ4_ARCH64
    size_t dec64table[] = {0, 0, 0, (size_t)-1, 0, 1, 2, 3};
#endif


    // Special case
    if ((partialDecoding) && (oexit> oend-MFLIMIT)) oexit = oend-MFLIMIT;   // targetOutputSize too large, better decode everything
    if unlikely(outputSize==0) goto _output_error;                          // Empty output buffer


    // Main Loop
    while (1)
    {
        unsigned token;
        size_t length;

        // get runlength
        token = *ip++;
        if ((length=(token>>ML_BITS)) == RUN_MASK)  
        { 
            unsigned s=255; 
            while (((endOnInput)?ip<iend:1) && (s==255)) 
            { 
                s = *ip++; 
                length += s; 
            } 
        }

        // copy literals
        cpy = op+length;
        if (((endOnInput) && ((cpy>(partialDecoding?oexit:oend-MFLIMIT)) || (ip+length>iend-(2+1+LASTLITERALS))) )
            || ((!endOnInput) && (cpy>oend-COPYLENGTH)))
        {
            if (partialDecoding)
            {
                if (cpy > oend) goto _output_error;                            // Error : write attempt beyond end of output buffer
                if ((endOnInput) && (ip+length > iend)) goto _output_error;    // Error : read attempt beyond end of input buffer
            }
            else
            {
                if ((!endOnInput) && (cpy != oend)) goto _output_error;        // Error : block decoding must stop exactly there, due to parsing restrictions
                if ((endOnInput) && ((ip+length != iend) || (cpy > oend))) goto _output_error;   // Error : not enough place for another match (min 4) + 5 literals
            }
            memcpy(op, ip, length);
            ip += length;
            op += length;
            break;                                       // Necessarily EOF, due to parsing restrictions
        }
        LZ4_WILDCOPY(ip, op, cpy); ip -= (op-cpy); op = cpy;

        // get offset
        LZ4_READ_LITTLEENDIAN_16(ref,cpy,ip); ip+=2;
        if ((prefix64k==noPrefix) && unlikely(ref < (BYTE* const)dest)) goto _output_error;   // Error : offset outside destination buffer

        // get matchlength
        if ((length=(token&ML_MASK)) == ML_MASK) 
        { 
            while (endOnInput ? ip<iend-(LASTLITERALS+1) : 1)    // A minimum nb of input bytes must remain for LASTLITERALS + token
            { 
                unsigned s = *ip++; 
                length += s; 
                if (s==255) continue; 
                break; 
            } 
        }

        // copy repeated sequence
        if unlikely((op-ref)<STEPSIZE)
        {
#if LZ4_ARCH64
            size_t dec64 = dec64table[op-ref];
#else
            const size_t dec64 = 0;
#endif
            op[0] = ref[0];
            op[1] = ref[1];
            op[2] = ref[2];
            op[3] = ref[3];
            op += 4, ref += 4; ref -= dec32table[op-ref];
            A32(op) = A32(ref); 
            op += STEPSIZE-4; ref -= dec64;
        } else { LZ4_COPYSTEP(ref,op); }
        cpy = op + length - (STEPSIZE-4);

        if unlikely(cpy>oend-(COPYLENGTH)-(STEPSIZE-4))
        {
            if (cpy > oend-LASTLITERALS) goto _output_error;    // Error : last 5 bytes must be literals
            LZ4_SECURECOPY(ref, op, (oend-COPYLENGTH));
            while(op<cpy) *op++=*ref++;
            op=cpy;
            continue;
        }
        LZ4_WILDCOPY(ref, op, cpy);
        op=cpy;   // correction
    }

    // end of decoding
    if (endOnInput)
       return (int) (((char*)op)-dest);     // Nb of output bytes decoded
    else
       return (int) (((char*)ip)-source);   // Nb of input bytes read

    // Overflow error detected
_output_error:
    return (int) (-(((char*)ip)-source))-1;
}


int LZ4_decompress_safe(const char* source, char* dest, int inputSize, int maxOutputSize)
{
    return LZ4_decompress_generic(source, dest, inputSize, maxOutputSize, endOnInputSize, noPrefix, full, 0);
}

int LZ4_decompress_fast(const char* source, char* dest, int outputSize)
{
    return LZ4_decompress_generic(source, dest, 0, outputSize, endOnOutputSize, noPrefix, full, 0);
}

int LZ4_decompress_safe_withPrefix64k(const char* source, char* dest, int inputSize, int maxOutputSize)
{
    return LZ4_decompress_generic(source, dest, inputSize, maxOutputSize, endOnInputSize, withPrefix, full, 0);
}

int LZ4_decompress_fast_withPrefix64k(const char* source, char* dest, int outputSize)
{
    return LZ4_decompress_generic(source, dest, 0, outputSize, endOnOutputSize, withPrefix, full, 0);
}

int LZ4_decompress_safe_partial(const char* source, char* dest, int inputSize, int targetOutputSize, int maxOutputSize)
{
    return LZ4_decompress_generic(source, dest, inputSize, maxOutputSize, endOnInputSize, noPrefix, partial, targetOutputSize);
}