DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Implementation

Mercurial (31ec81b5d7bb)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

/* Various predicates and operations on IEEE-754 floating point types. */

#ifndef mozilla_FloatingPoint_h
#define mozilla_FloatingPoint_h

#include "mozilla/Assertions.h"
#include "mozilla/Attributes.h"
#include "mozilla/Casting.h"
#include "mozilla/Types.h"

#include <stdint.h>

namespace mozilla {

/*
 * It's reasonable to ask why we have this header at all.  Don't isnan,
 * copysign, the built-in comparison operators, and the like solve these
 * problems?  Unfortunately, they don't.  We've found that various compilers
 * (MSVC, MSVC when compiling with PGO, and GCC on OS X, at least) miscompile
 * the standard methods in various situations, so we can't use them.  Some of
 * these compilers even have problems compiling seemingly reasonable bitwise
 * algorithms!  But with some care we've found algorithms that seem to not
 * trigger those compiler bugs.
 *
 * For the aforementioned reasons, be very wary of making changes to any of
 * these algorithms.  If you must make changes, keep a careful eye out for
 * compiler bustage, particularly PGO-specific bustage.
 */

/*
 * These implementations all assume |double| is a 64-bit double format number
 * type, compatible with the IEEE-754 standard.  C/C++ don't require this to be
 * the case.  But we required this in implementations of these algorithms that
 * preceded this header, so we shouldn't break anything if we continue doing so.
 */
static_assert(sizeof(double) == sizeof(uint64_t), "double must be 64 bits");

const unsigned DoubleExponentBias = 1023;
const unsigned DoubleExponentShift = 52;

const uint64_t DoubleSignBit         = 0x8000000000000000ULL;
const uint64_t DoubleExponentBits    = 0x7ff0000000000000ULL;
const uint64_t DoubleSignificandBits = 0x000fffffffffffffULL;

static_assert((DoubleSignBit & DoubleExponentBits) == 0,
              "sign bit doesn't overlap exponent bits");
static_assert((DoubleSignBit & DoubleSignificandBits) == 0,
              "sign bit doesn't overlap significand bits");
static_assert((DoubleExponentBits & DoubleSignificandBits) == 0,
              "exponent bits don't overlap significand bits");

static_assert((DoubleSignBit | DoubleExponentBits | DoubleSignificandBits) ==
              ~uint64_t(0),
              "all bits accounted for");

/*
 * Ditto for |float| that must be a 32-bit double format number type, compatible
 * with the IEEE-754 standard.
 */
static_assert(sizeof(float) == sizeof(uint32_t), "float must be 32bits");

const unsigned FloatExponentBias = 127;
const unsigned FloatExponentShift = 23;

const uint32_t FloatSignBit         = 0x80000000UL;
const uint32_t FloatExponentBits    = 0x7F800000UL;
const uint32_t FloatSignificandBits = 0x007FFFFFUL;

static_assert((FloatSignBit & FloatExponentBits) == 0,
              "sign bit doesn't overlap exponent bits");
static_assert((FloatSignBit & FloatSignificandBits) == 0,
              "sign bit doesn't overlap significand bits");
static_assert((FloatExponentBits & FloatSignificandBits) == 0,
              "exponent bits don't overlap significand bits");

static_assert((FloatSignBit | FloatExponentBits | FloatSignificandBits) ==
              ~uint32_t(0),
              "all bits accounted for");

/** Determines whether a double is NaN. */
static MOZ_ALWAYS_INLINE bool
IsNaN(double d)
{
  /*
   * A double is NaN if all exponent bits are 1 and the significand contains at
   * least one non-zero bit.
   */
  uint64_t bits = BitwiseCast<uint64_t>(d);
  return (bits & DoubleExponentBits) == DoubleExponentBits &&
         (bits & DoubleSignificandBits) != 0;
}

/** Determines whether a double is +Infinity or -Infinity. */
static MOZ_ALWAYS_INLINE bool
IsInfinite(double d)
{
  /* Infinities have all exponent bits set to 1 and an all-0 significand. */
  uint64_t bits = BitwiseCast<uint64_t>(d);
  return (bits & ~DoubleSignBit) == DoubleExponentBits;
}

/** Determines whether a double is not NaN or infinite. */
static MOZ_ALWAYS_INLINE bool
IsFinite(double d)
{
  /*
   * NaN and Infinities are the only non-finite doubles, and both have all
   * exponent bits set to 1.
   */
  uint64_t bits = BitwiseCast<uint64_t>(d);
  return (bits & DoubleExponentBits) != DoubleExponentBits;
}

/**
 * Determines whether a double is negative.  It is an error to call this method
 * on a double which is NaN.
 */
static MOZ_ALWAYS_INLINE bool
IsNegative(double d)
{
  MOZ_ASSERT(!IsNaN(d), "NaN does not have a sign");

  /* The sign bit is set if the double is negative. */
  uint64_t bits = BitwiseCast<uint64_t>(d);
  return (bits & DoubleSignBit) != 0;
}

/** Determines whether a double represents -0. */
static MOZ_ALWAYS_INLINE bool
IsNegativeZero(double d)
{
  /* Only the sign bit is set if the double is -0. */
  uint64_t bits = BitwiseCast<uint64_t>(d);
  return bits == DoubleSignBit;
}

/**
 * Returns the exponent portion of the double.
 *
 * Zero is not special-cased, so ExponentComponent(0.0) is
 * -int_fast16_t(DoubleExponentBias).
 */
static MOZ_ALWAYS_INLINE int_fast16_t
ExponentComponent(double d)
{
  /*
   * The exponent component of a double is an unsigned number, biased from its
   * actual value.  Subtract the bias to retrieve the actual exponent.
   */
  uint64_t bits = BitwiseCast<uint64_t>(d);
  return int_fast16_t((bits & DoubleExponentBits) >> DoubleExponentShift) -
         int_fast16_t(DoubleExponentBias);
}

/** Returns +Infinity. */
static MOZ_ALWAYS_INLINE double
PositiveInfinity()
{
  /*
   * Positive infinity has all exponent bits set, sign bit set to 0, and no
   * significand.
   */
  return BitwiseCast<double>(DoubleExponentBits);
}

/** Returns -Infinity. */
static MOZ_ALWAYS_INLINE double
NegativeInfinity()
{
  /*
   * Negative infinity has all exponent bits set, sign bit set to 1, and no
   * significand.
   */
  return BitwiseCast<double>(DoubleSignBit | DoubleExponentBits);
}

/** Constructs a NaN value with the specified sign bit and significand bits. */
static MOZ_ALWAYS_INLINE double
SpecificNaN(int signbit, uint64_t significand)
{
  MOZ_ASSERT(signbit == 0 || signbit == 1);
  MOZ_ASSERT((significand & ~DoubleSignificandBits) == 0);
  MOZ_ASSERT(significand & DoubleSignificandBits);

  double d = BitwiseCast<double>((signbit ? DoubleSignBit : 0) |
                                 DoubleExponentBits |
                                 significand);
  MOZ_ASSERT(IsNaN(d));
  return d;
}

/** Computes the smallest non-zero positive double value. */
static MOZ_ALWAYS_INLINE double
MinDoubleValue()
{
  return BitwiseCast<double>(uint64_t(1));
}

/**
 * If d is equal to some int32_t value, set *i to that value and return true;
 * otherwise return false.
 *
 * Note that negative zero is "equal" to zero here. To test whether a value can
 * be losslessly converted to int32_t and back, use DoubleIsInt32 instead.
 */
static MOZ_ALWAYS_INLINE bool
DoubleEqualsInt32(double d, int32_t* i)
{
  /*
   * XXX Casting a double that doesn't truncate to int32_t, to int32_t, induces
   *     undefined behavior.  We should definitely fix this (bug 744965), but as
   *     apparently it "works" in practice, it's not a pressing concern now.
   */
  return d == (*i = int32_t(d));
}

/**
 * If d can be converted to int32_t and back to an identical double value,
 * set *i to that value and return true; otherwise return false.
 *
 * The difference between this and DoubleEqualsInt32 is that this method returns
 * false for negative zero.
 */
static MOZ_ALWAYS_INLINE bool
DoubleIsInt32(double d, int32_t* i)
{
  return !IsNegativeZero(d) && DoubleEqualsInt32(d, i);
}

/**
 * Computes a NaN value.  Do not use this method if you depend upon a particular
 * NaN value being returned.
 */
static MOZ_ALWAYS_INLINE double
UnspecifiedNaN()
{
  /*
   * If we can use any quiet NaN, we might as well use the all-ones NaN,
   * since it's cheap to materialize on common platforms (such as x64, where
   * this value can be represented in a 32-bit signed immediate field, allowing
   * it to be stored to memory in a single instruction).
   */
  return SpecificNaN(1, 0xfffffffffffffULL);
}

/**
 * Compare two doubles for equality, *without* equating -0 to +0, and equating
 * any NaN value to any other NaN value.  (The normal equality operators equate
 * -0 with +0, and they equate NaN to no other value.)
 */
static inline bool
DoublesAreIdentical(double d1, double d2)
{
  if (IsNaN(d1))
    return IsNaN(d2);
  return BitwiseCast<uint64_t>(d1) == BitwiseCast<uint64_t>(d2);
}

/** Determines whether a float is NaN. */
static MOZ_ALWAYS_INLINE bool
IsFloatNaN(float f)
{
  /*
   * A float is NaN if all exponent bits are 1 and the significand contains at
   * least one non-zero bit.
   */
  uint32_t bits = BitwiseCast<uint32_t>(f);
  return (bits & FloatExponentBits) == FloatExponentBits &&
         (bits & FloatSignificandBits) != 0;
}

/** Constructs a NaN value with the specified sign bit and significand bits. */
static MOZ_ALWAYS_INLINE float
SpecificFloatNaN(int signbit, uint32_t significand)
{
  MOZ_ASSERT(signbit == 0 || signbit == 1);
  MOZ_ASSERT((significand & ~FloatSignificandBits) == 0);
  MOZ_ASSERT(significand & FloatSignificandBits);

  float f = BitwiseCast<float>((signbit ? FloatSignBit : 0) |
                                 FloatExponentBits |
                                 significand);
  MOZ_ASSERT(IsFloatNaN(f));
  return f;
}

/**
 * Returns true if the given value can be losslessly represented as an IEEE-754
 * single format number, false otherwise.  All NaN values are considered
 * representable (notwithstanding that the exact bit pattern of a double format
 * NaN value can't be exactly represented in single format).
 *
 * This function isn't inlined to avoid buggy optimizations by MSVC.
 */
MOZ_WARN_UNUSED_RESULT
extern MFBT_API bool
IsFloat32Representable(double x);

} /* namespace mozilla */

#endif /* mozilla_FloatingPoint_h */