DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (31ec81b5d7bb)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
/*
******************************************************************************
*   Copyright (C) 1997-2011, International Business Machines
*   Corporation and others.  All Rights Reserved.
******************************************************************************
*   file name:  nfrule.cpp
*   encoding:   US-ASCII
*   tab size:   8 (not used)
*   indentation:4
*
* Modification history
* Date        Name      Comments
* 10/11/2001  Doug      Ported from ICU4J
*/

#include "nfrule.h"

#if U_HAVE_RBNF

#include "unicode/rbnf.h"
#include "unicode/tblcoll.h"
#include "unicode/coleitr.h"
#include "unicode/uchar.h"
#include "nfrs.h"
#include "nfrlist.h"
#include "nfsubs.h"
#include "patternprops.h"

U_NAMESPACE_BEGIN

NFRule::NFRule(const RuleBasedNumberFormat* _rbnf)
  : baseValue((int32_t)0)
  , radix(0)
  , exponent(0)
  , ruleText()
  , sub1(NULL)
  , sub2(NULL)
  , formatter(_rbnf)
{
}

NFRule::~NFRule()
{
  delete sub1;
  delete sub2;
}

static const UChar gLeftBracket = 0x005b;
static const UChar gRightBracket = 0x005d;
static const UChar gColon = 0x003a;
static const UChar gZero = 0x0030;
static const UChar gNine = 0x0039;
static const UChar gSpace = 0x0020;
static const UChar gSlash = 0x002f;
static const UChar gGreaterThan = 0x003e;
static const UChar gLessThan = 0x003c;
static const UChar gComma = 0x002c;
static const UChar gDot = 0x002e;
static const UChar gTick = 0x0027;
//static const UChar gMinus = 0x002d;
static const UChar gSemicolon = 0x003b;

static const UChar gMinusX[] =                  {0x2D, 0x78, 0};    /* "-x" */
static const UChar gXDotX[] =                   {0x78, 0x2E, 0x78, 0}; /* "x.x" */
static const UChar gXDotZero[] =                {0x78, 0x2E, 0x30, 0}; /* "x.0" */
static const UChar gZeroDotX[] =                {0x30, 0x2E, 0x78, 0}; /* "0.x" */

static const UChar gLessLess[] =                {0x3C, 0x3C, 0};    /* "<<" */
static const UChar gLessPercent[] =             {0x3C, 0x25, 0};    /* "<%" */
static const UChar gLessHash[] =                {0x3C, 0x23, 0};    /* "<#" */
static const UChar gLessZero[] =                {0x3C, 0x30, 0};    /* "<0" */
static const UChar gGreaterGreater[] =          {0x3E, 0x3E, 0};    /* ">>" */
static const UChar gGreaterPercent[] =          {0x3E, 0x25, 0};    /* ">%" */
static const UChar gGreaterHash[] =             {0x3E, 0x23, 0};    /* ">#" */
static const UChar gGreaterZero[] =             {0x3E, 0x30, 0};    /* ">0" */
static const UChar gEqualPercent[] =            {0x3D, 0x25, 0};    /* "=%" */
static const UChar gEqualHash[] =               {0x3D, 0x23, 0};    /* "=#" */
static const UChar gEqualZero[] =               {0x3D, 0x30, 0};    /* "=0" */
static const UChar gGreaterGreaterGreater[] =   {0x3E, 0x3E, 0x3E, 0}; /* ">>>" */

static const UChar * const tokenStrings[] = {
    gLessLess, gLessPercent, gLessHash, gLessZero,
    gGreaterGreater, gGreaterPercent,gGreaterHash, gGreaterZero,
    gEqualPercent, gEqualHash, gEqualZero, NULL
};

void
NFRule::makeRules(UnicodeString& description,
                  const NFRuleSet *ruleSet,
                  const NFRule *predecessor,
                  const RuleBasedNumberFormat *rbnf,
                  NFRuleList& rules,
                  UErrorCode& status)
{
    // we know we're making at least one rule, so go ahead and
    // new it up and initialize its basevalue and divisor
    // (this also strips the rule descriptor, if any, off the
    // descripton string)
    NFRule* rule1 = new NFRule(rbnf);
    /* test for NULL */
    if (rule1 == 0) {
        status = U_MEMORY_ALLOCATION_ERROR;
        return;
    }
    rule1->parseRuleDescriptor(description, status);

    // check the description to see whether there's text enclosed
    // in brackets
    int32_t brack1 = description.indexOf(gLeftBracket);
    int32_t brack2 = description.indexOf(gRightBracket);

    // if the description doesn't contain a matched pair of brackets,
    // or if it's of a type that doesn't recognize bracketed text,
    // then leave the description alone, initialize the rule's
    // rule text and substitutions, and return that rule
    if (brack1 == -1 || brack2 == -1 || brack1 > brack2
        || rule1->getType() == kProperFractionRule
        || rule1->getType() == kNegativeNumberRule) {
        rule1->ruleText = description;
        rule1->extractSubstitutions(ruleSet, predecessor, rbnf, status);
        rules.add(rule1);
    } else {
        // if the description does contain a matched pair of brackets,
        // then it's really shorthand for two rules (with one exception)
        NFRule* rule2 = NULL;
        UnicodeString sbuf;

        // we'll actually only split the rule into two rules if its
        // base value is an even multiple of its divisor (or it's one
        // of the special rules)
        if ((rule1->baseValue > 0
            && (rule1->baseValue % util64_pow(rule1->radix, rule1->exponent)) == 0)
            || rule1->getType() == kImproperFractionRule
            || rule1->getType() == kMasterRule) {

            // if it passes that test, new up the second rule.  If the
            // rule set both rules will belong to is a fraction rule
            // set, they both have the same base value; otherwise,
            // increment the original rule's base value ("rule1" actually
            // goes SECOND in the rule set's rule list)
            rule2 = new NFRule(rbnf);
            /* test for NULL */
            if (rule2 == 0) {
                status = U_MEMORY_ALLOCATION_ERROR;
                return;
            }
            if (rule1->baseValue >= 0) {
                rule2->baseValue = rule1->baseValue;
                if (!ruleSet->isFractionRuleSet()) {
                    ++rule1->baseValue;
                }
            }

            // if the description began with "x.x" and contains bracketed
            // text, it describes both the improper fraction rule and
            // the proper fraction rule
            else if (rule1->getType() == kImproperFractionRule) {
                rule2->setType(kProperFractionRule);
            }

            // if the description began with "x.0" and contains bracketed
            // text, it describes both the master rule and the
            // improper fraction rule
            else if (rule1->getType() == kMasterRule) {
                rule2->baseValue = rule1->baseValue;
                rule1->setType(kImproperFractionRule);
            }

            // both rules have the same radix and exponent (i.e., the
            // same divisor)
            rule2->radix = rule1->radix;
            rule2->exponent = rule1->exponent;

            // rule2's rule text omits the stuff in brackets: initalize
            // its rule text and substitutions accordingly
            sbuf.append(description, 0, brack1);
            if (brack2 + 1 < description.length()) {
                sbuf.append(description, brack2 + 1, description.length() - brack2 - 1);
            }
            rule2->ruleText.setTo(sbuf);
            rule2->extractSubstitutions(ruleSet, predecessor, rbnf, status);
        }

        // rule1's text includes the text in the brackets but omits
        // the brackets themselves: initialize _its_ rule text and
        // substitutions accordingly
        sbuf.setTo(description, 0, brack1);
        sbuf.append(description, brack1 + 1, brack2 - brack1 - 1);
        if (brack2 + 1 < description.length()) {
            sbuf.append(description, brack2 + 1, description.length() - brack2 - 1);
        }
        rule1->ruleText.setTo(sbuf);
        rule1->extractSubstitutions(ruleSet, predecessor, rbnf, status);

        // if we only have one rule, return it; if we have two, return
        // a two-element array containing them (notice that rule2 goes
        // BEFORE rule1 in the list: in all cases, rule2 OMITS the
        // material in the brackets and rule1 INCLUDES the material
        // in the brackets)
        if (rule2 != NULL) {
            rules.add(rule2);
        }
        rules.add(rule1);
    }
}

/**
 * This function parses the rule's rule descriptor (i.e., the base
 * value and/or other tokens that precede the rule's rule text
 * in the description) and sets the rule's base value, radix, and
 * exponent according to the descriptor.  (If the description doesn't
 * include a rule descriptor, then this function sets everything to
 * default values and the rule set sets the rule's real base value).
 * @param description The rule's description
 * @return If "description" included a rule descriptor, this is
 * "description" with the descriptor and any trailing whitespace
 * stripped off.  Otherwise; it's "descriptor" unchangd.
 */
void
NFRule::parseRuleDescriptor(UnicodeString& description, UErrorCode& status)
{
    // the description consists of a rule descriptor and a rule body,
    // separated by a colon.  The rule descriptor is optional.  If
    // it's omitted, just set the base value to 0.
    int32_t p = description.indexOf(gColon);
    if (p == -1) {
        setBaseValue((int32_t)0, status);
    } else {
        // copy the descriptor out into its own string and strip it,
        // along with any trailing whitespace, out of the original
        // description
        UnicodeString descriptor;
        descriptor.setTo(description, 0, p);

        ++p;
        while (p < description.length() && PatternProps::isWhiteSpace(description.charAt(p))) {
            ++p;
        }
        description.removeBetween(0, p);

        // check first to see if the rule descriptor matches the token
        // for one of the special rules.  If it does, set the base
        // value to the correct identfier value
        if (0 == descriptor.compare(gMinusX, 2)) {
            setType(kNegativeNumberRule);
        }
        else if (0 == descriptor.compare(gXDotX, 3)) {
            setType(kImproperFractionRule);
        }
        else if (0 == descriptor.compare(gZeroDotX, 3)) {
            setType(kProperFractionRule);
        }
        else if (0 == descriptor.compare(gXDotZero, 3)) {
            setType(kMasterRule);
        }

        // if the rule descriptor begins with a digit, it's a descriptor
        // for a normal rule
        // since we don't have Long.parseLong, and this isn't much work anyway,
        // just build up the value as we encounter the digits.
        else if (descriptor.charAt(0) >= gZero && descriptor.charAt(0) <= gNine) {
            int64_t val = 0;
            p = 0;
            UChar c = gSpace;

            // begin parsing the descriptor: copy digits
            // into "tempValue", skip periods, commas, and spaces,
            // stop on a slash or > sign (or at the end of the string),
            // and throw an exception on any other character
            int64_t ll_10 = 10;
            while (p < descriptor.length()) {
                c = descriptor.charAt(p);
                if (c >= gZero && c <= gNine) {
                    val = val * ll_10 + (int32_t)(c - gZero);
                }
                else if (c == gSlash || c == gGreaterThan) {
                    break;
                }
                else if (PatternProps::isWhiteSpace(c) || c == gComma || c == gDot) {
                }
                else {
                    // throw new IllegalArgumentException("Illegal character in rule descriptor");
                    status = U_PARSE_ERROR;
                    return;
                }
                ++p;
            }

            // we have the base value, so set it
            setBaseValue(val, status);

            // if we stopped the previous loop on a slash, we're
            // now parsing the rule's radix.  Again, accumulate digits
            // in tempValue, skip punctuation, stop on a > mark, and
            // throw an exception on anything else
            if (c == gSlash) {
                val = 0;
                ++p;
                int64_t ll_10 = 10;
                while (p < descriptor.length()) {
                    c = descriptor.charAt(p);
                    if (c >= gZero && c <= gNine) {
                        val = val * ll_10 + (int32_t)(c - gZero);
                    }
                    else if (c == gGreaterThan) {
                        break;
                    }
                    else if (PatternProps::isWhiteSpace(c) || c == gComma || c == gDot) {
                    }
                    else {
                        // throw new IllegalArgumentException("Illegal character is rule descriptor");
                        status = U_PARSE_ERROR;
                        return;
                    }
                    ++p;
                }

                // tempValue now contain's the rule's radix.  Set it
                // accordingly, and recalculate the rule's exponent
                radix = (int32_t)val;
                if (radix == 0) {
                    // throw new IllegalArgumentException("Rule can't have radix of 0");
                    status = U_PARSE_ERROR;
                }

                exponent = expectedExponent();
            }

            // if we stopped the previous loop on a > sign, then continue
            // for as long as we still see > signs.  For each one,
            // decrement the exponent (unless the exponent is already 0).
            // If we see another character before reaching the end of
            // the descriptor, that's also a syntax error.
            if (c == gGreaterThan) {
                while (p < descriptor.length()) {
                    c = descriptor.charAt(p);
                    if (c == gGreaterThan && exponent > 0) {
                        --exponent;
                    } else {
                        // throw new IllegalArgumentException("Illegal character in rule descriptor");
                        status = U_PARSE_ERROR;
                        return;
                    }
                    ++p;
                }
            }
        }
    }

    // finally, if the rule body begins with an apostrophe, strip it off
    // (this is generally used to put whitespace at the beginning of
    // a rule's rule text)
    if (description.length() > 0 && description.charAt(0) == gTick) {
        description.removeBetween(0, 1);
    }

    // return the description with all the stuff we've just waded through
    // stripped off the front.  It now contains just the rule body.
    // return description;
}

/**
* Searches the rule's rule text for the substitution tokens,
* creates the substitutions, and removes the substitution tokens
* from the rule's rule text.
* @param owner The rule set containing this rule
* @param predecessor The rule preseding this one in "owners" rule list
* @param ownersOwner The RuleBasedFormat that owns this rule
*/
void
NFRule::extractSubstitutions(const NFRuleSet* ruleSet,
                             const NFRule* predecessor,
                             const RuleBasedNumberFormat* rbnf,
                             UErrorCode& status)
{
    if (U_SUCCESS(status)) {
        sub1 = extractSubstitution(ruleSet, predecessor, rbnf, status);
        sub2 = extractSubstitution(ruleSet, predecessor, rbnf, status);
    }
}

/**
* Searches the rule's rule text for the first substitution token,
* creates a substitution based on it, and removes the token from
* the rule's rule text.
* @param owner The rule set containing this rule
* @param predecessor The rule preceding this one in the rule set's
* rule list
* @param ownersOwner The RuleBasedNumberFormat that owns this rule
* @return The newly-created substitution.  This is never null; if
* the rule text doesn't contain any substitution tokens, this will
* be a NullSubstitution.
*/
NFSubstitution *
NFRule::extractSubstitution(const NFRuleSet* ruleSet,
                            const NFRule* predecessor,
                            const RuleBasedNumberFormat* rbnf,
                            UErrorCode& status)
{
    NFSubstitution* result = NULL;

    // search the rule's rule text for the first two characters of
    // a substitution token
    int32_t subStart = indexOfAny(tokenStrings);
    int32_t subEnd = subStart;

    // if we didn't find one, create a null substitution positioned
    // at the end of the rule text
    if (subStart == -1) {
        return NFSubstitution::makeSubstitution(ruleText.length(), this, predecessor,
            ruleSet, rbnf, UnicodeString(), status);
    }

    // special-case the ">>>" token, since searching for the > at the
    // end will actually find the > in the middle
    if (ruleText.indexOf(gGreaterGreaterGreater, 3, 0) == subStart) {
        subEnd = subStart + 2;

        // otherwise the substitution token ends with the same character
        // it began with
    } else {
        UChar c = ruleText.charAt(subStart);
        subEnd = ruleText.indexOf(c, subStart + 1);
        // special case for '<%foo<<'
        if (c == gLessThan && subEnd != -1 && subEnd < ruleText.length() - 1 && ruleText.charAt(subEnd+1) == c) {
            // ordinals use "=#,##0==%abbrev=" as their rule.  Notice that the '==' in the middle
            // occurs because of the juxtaposition of two different rules.  The check for '<' is a hack
            // to get around this.  Having the duplicate at the front would cause problems with
            // rules like "<<%" to format, say, percents...
            ++subEnd;
        }
   }

    // if we don't find the end of the token (i.e., if we're on a single,
    // unmatched token character), create a null substitution positioned
    // at the end of the rule
    if (subEnd == -1) {
        return NFSubstitution::makeSubstitution(ruleText.length(), this, predecessor,
            ruleSet, rbnf, UnicodeString(), status);
    }

    // if we get here, we have a real substitution token (or at least
    // some text bounded by substitution token characters).  Use
    // makeSubstitution() to create the right kind of substitution
    UnicodeString subToken;
    subToken.setTo(ruleText, subStart, subEnd + 1 - subStart);
    result = NFSubstitution::makeSubstitution(subStart, this, predecessor, ruleSet,
        rbnf, subToken, status);

    // remove the substitution from the rule text
    ruleText.removeBetween(subStart, subEnd+1);

    return result;
}

/**
 * Sets the rule's base value, and causes the radix and exponent
 * to be recalculated.  This is used during construction when we
 * don't know the rule's base value until after it's been
 * constructed.  It should be used at any other time.
 * @param The new base value for the rule.
 */
void
NFRule::setBaseValue(int64_t newBaseValue, UErrorCode& status)
{
    // set the base value
    baseValue = newBaseValue;

    // if this isn't a special rule, recalculate the radix and exponent
    // (the radix always defaults to 10; if it's supposed to be something
    // else, it's cleaned up by the caller and the exponent is
    // recalculated again-- the only function that does this is
    // NFRule.parseRuleDescriptor() )
    if (baseValue >= 1) {
        radix = 10;
        exponent = expectedExponent();

        // this function gets called on a fully-constructed rule whose
        // description didn't specify a base value.  This means it
        // has substitutions, and some substitutions hold on to copies
        // of the rule's divisor.  Fix their copies of the divisor.
        if (sub1 != NULL) {
            sub1->setDivisor(radix, exponent, status);
        }
        if (sub2 != NULL) {
            sub2->setDivisor(radix, exponent, status);
        }

        // if this is a special rule, its radix and exponent are basically
        // ignored.  Set them to "safe" default values
    } else {
        radix = 10;
        exponent = 0;
    }
}

/**
* This calculates the rule's exponent based on its radix and base
* value.  This will be the highest power the radix can be raised to
* and still produce a result less than or equal to the base value.
*/
int16_t
NFRule::expectedExponent() const
{
    // since the log of 0, or the log base 0 of something, causes an
    // error, declare the exponent in these cases to be 0 (we also
    // deal with the special-rule identifiers here)
    if (radix == 0 || baseValue < 1) {
        return 0;
    }

    // we get rounding error in some cases-- for example, log 1000 / log 10
    // gives us 1.9999999996 instead of 2.  The extra logic here is to take
    // that into account
    int16_t tempResult = (int16_t)(uprv_log((double)baseValue) / uprv_log((double)radix));
    int64_t temp = util64_pow(radix, tempResult + 1);
    if (temp <= baseValue) {
        tempResult += 1;
    }
    return tempResult;
}

/**
 * Searches the rule's rule text for any of the specified strings.
 * @param strings An array of strings to search the rule's rule
 * text for
 * @return The index of the first match in the rule's rule text
 * (i.e., the first substring in the rule's rule text that matches
 * _any_ of the strings in "strings").  If none of the strings in
 * "strings" is found in the rule's rule text, returns -1.
 */
int32_t
NFRule::indexOfAny(const UChar* const strings[]) const
{
    int result = -1;
    for (int i = 0; strings[i]; i++) {
        int32_t pos = ruleText.indexOf(*strings[i]);
        if (pos != -1 && (result == -1 || pos < result)) {
            result = pos;
        }
    }
    return result;
}

//-----------------------------------------------------------------------
// boilerplate
//-----------------------------------------------------------------------

/**
* Tests two rules for equality.
* @param that The rule to compare this one against
* @return True is the two rules are functionally equivalent
*/
UBool
NFRule::operator==(const NFRule& rhs) const
{
    return baseValue == rhs.baseValue
        && radix == rhs.radix
        && exponent == rhs.exponent
        && ruleText == rhs.ruleText
        && *sub1 == *rhs.sub1
        && *sub2 == *rhs.sub2;
}

/**
* Returns a textual representation of the rule.  This won't
* necessarily be the same as the description that this rule
* was created with, but it will produce the same result.
* @return A textual description of the rule
*/
static void util_append64(UnicodeString& result, int64_t n)
{
    UChar buffer[256];
    int32_t len = util64_tou(n, buffer, sizeof(buffer));
    UnicodeString temp(buffer, len);
    result.append(temp);
}

void
NFRule::_appendRuleText(UnicodeString& result) const
{
    switch (getType()) {
    case kNegativeNumberRule: result.append(gMinusX, 2); break;
    case kImproperFractionRule: result.append(gXDotX, 3); break;
    case kProperFractionRule: result.append(gZeroDotX, 3); break;
    case kMasterRule: result.append(gXDotZero, 3); break;
    default:
        // for a normal rule, write out its base value, and if the radix is
        // something other than 10, write out the radix (with the preceding
        // slash, of course).  Then calculate the expected exponent and if
        // if isn't the same as the actual exponent, write an appropriate
        // number of > signs.  Finally, terminate the whole thing with
        // a colon.
        util_append64(result, baseValue);
        if (radix != 10) {
            result.append(gSlash);
            util_append64(result, radix);
        }
        int numCarets = expectedExponent() - exponent;
        for (int i = 0; i < numCarets; i++) {
            result.append(gGreaterThan);
        }
        break;
    }
    result.append(gColon);
    result.append(gSpace);

    // if the rule text begins with a space, write an apostrophe
    // (whitespace after the rule descriptor is ignored; the
    // apostrophe is used to make the whitespace significant)
    if (ruleText.charAt(0) == gSpace && sub1->getPos() != 0) {
        result.append(gTick);
    }

    // now, write the rule's rule text, inserting appropriate
    // substitution tokens in the appropriate places
    UnicodeString ruleTextCopy;
    ruleTextCopy.setTo(ruleText);

    UnicodeString temp;
    sub2->toString(temp);
    ruleTextCopy.insert(sub2->getPos(), temp);
    sub1->toString(temp);
    ruleTextCopy.insert(sub1->getPos(), temp);

    result.append(ruleTextCopy);

    // and finally, top the whole thing off with a semicolon and
    // return the result
    result.append(gSemicolon);
}

//-----------------------------------------------------------------------
// formatting
//-----------------------------------------------------------------------

/**
* Formats the number, and inserts the resulting text into
* toInsertInto.
* @param number The number being formatted
* @param toInsertInto The string where the resultant text should
* be inserted
* @param pos The position in toInsertInto where the resultant text
* should be inserted
*/
void
NFRule::doFormat(int64_t number, UnicodeString& toInsertInto, int32_t pos) const
{
    // first, insert the rule's rule text into toInsertInto at the
    // specified position, then insert the results of the substitutions
    // into the right places in toInsertInto (notice we do the
    // substitutions in reverse order so that the offsets don't get
    // messed up)
    toInsertInto.insert(pos, ruleText);
    sub2->doSubstitution(number, toInsertInto, pos);
    sub1->doSubstitution(number, toInsertInto, pos);
}

/**
* Formats the number, and inserts the resulting text into
* toInsertInto.
* @param number The number being formatted
* @param toInsertInto The string where the resultant text should
* be inserted
* @param pos The position in toInsertInto where the resultant text
* should be inserted
*/
void
NFRule::doFormat(double number, UnicodeString& toInsertInto, int32_t pos) const
{
    // first, insert the rule's rule text into toInsertInto at the
    // specified position, then insert the results of the substitutions
    // into the right places in toInsertInto
    // [again, we have two copies of this routine that do the same thing
    // so that we don't sacrifice precision in a long by casting it
    // to a double]
    toInsertInto.insert(pos, ruleText);
    sub2->doSubstitution(number, toInsertInto, pos);
    sub1->doSubstitution(number, toInsertInto, pos);
}

/**
* Used by the owning rule set to determine whether to invoke the
* rollback rule (i.e., whether this rule or the one that precedes
* it in the rule set's list should be used to format the number)
* @param The number being formatted
* @return True if the rule set should use the rule that precedes
* this one in its list; false if it should use this rule
*/
UBool
NFRule::shouldRollBack(double number) const
{
    // we roll back if the rule contains a modulus substitution,
    // the number being formatted is an even multiple of the rule's
    // divisor, and the rule's base value is NOT an even multiple
    // of its divisor
    // In other words, if the original description had
    //    100: << hundred[ >>];
    // that expands into
    //    100: << hundred;
    //    101: << hundred >>;
    // internally.  But when we're formatting 200, if we use the rule
    // at 101, which would normally apply, we get "two hundred zero".
    // To prevent this, we roll back and use the rule at 100 instead.
    // This is the logic that makes this happen: the rule at 101 has
    // a modulus substitution, its base value isn't an even multiple
    // of 100, and the value we're trying to format _is_ an even
    // multiple of 100.  This is called the "rollback rule."
    if ((sub1->isModulusSubstitution()) || (sub2->isModulusSubstitution())) {
        int64_t re = util64_pow(radix, exponent);
        return uprv_fmod(number, (double)re) == 0 && (baseValue % re) != 0;
    }
    return FALSE;
}

//-----------------------------------------------------------------------
// parsing
//-----------------------------------------------------------------------

/**
* Attempts to parse the string with this rule.
* @param text The string being parsed
* @param parsePosition On entry, the value is ignored and assumed to
* be 0. On exit, this has been updated with the position of the first
* character not consumed by matching the text against this rule
* (if this rule doesn't match the text at all, the parse position
* if left unchanged (presumably at 0) and the function returns
* new Long(0)).
* @param isFractionRule True if this rule is contained within a
* fraction rule set.  This is only used if the rule has no
* substitutions.
* @return If this rule matched the text, this is the rule's base value
* combined appropriately with the results of parsing the substitutions.
* If nothing matched, this is new Long(0) and the parse position is
* left unchanged.  The result will be an instance of Long if the
* result is an integer and Double otherwise.  The result is never null.
*/
#ifdef RBNF_DEBUG
#include <stdio.h>

static void dumpUS(FILE* f, const UnicodeString& us) {
  int len = us.length();
  char* buf = (char *)uprv_malloc((len+1)*sizeof(char)); //new char[len+1];
  if (buf != NULL) {
	  us.extract(0, len, buf);
	  buf[len] = 0;
	  fprintf(f, "%s", buf);
	  uprv_free(buf); //delete[] buf;
  }
}
#endif

UBool
NFRule::doParse(const UnicodeString& text,
                ParsePosition& parsePosition,
                UBool isFractionRule,
                double upperBound,
                Formattable& resVal) const
{
    // internally we operate on a copy of the string being parsed
    // (because we're going to change it) and use our own ParsePosition
    ParsePosition pp;
    UnicodeString workText(text);

    // check to see whether the text before the first substitution
    // matches the text at the beginning of the string being
    // parsed.  If it does, strip that off the front of workText;
    // otherwise, dump out with a mismatch
    UnicodeString prefix;
    prefix.setTo(ruleText, 0, sub1->getPos());

#ifdef RBNF_DEBUG
    fprintf(stderr, "doParse %x ", this);
    {
        UnicodeString rt;
        _appendRuleText(rt);
        dumpUS(stderr, rt);
    }

    fprintf(stderr, " text: '", this);
    dumpUS(stderr, text);
    fprintf(stderr, "' prefix: '");
    dumpUS(stderr, prefix);
#endif
    stripPrefix(workText, prefix, pp);
    int32_t prefixLength = text.length() - workText.length();

#ifdef RBNF_DEBUG
    fprintf(stderr, "' pl: %d ppi: %d s1p: %d\n", prefixLength, pp.getIndex(), sub1->getPos());
#endif

    if (pp.getIndex() == 0 && sub1->getPos() != 0) {
        // commented out because ParsePosition doesn't have error index in 1.1.x
        // restored for ICU4C port
        parsePosition.setErrorIndex(pp.getErrorIndex());
        resVal.setLong(0);
        return TRUE;
    }

    // this is the fun part.  The basic guts of the rule-matching
    // logic is matchToDelimiter(), which is called twice.  The first
    // time it searches the input string for the rule text BETWEEN
    // the substitutions and tries to match the intervening text
    // in the input string with the first substitution.  If that
    // succeeds, it then calls it again, this time to look for the
    // rule text after the second substitution and to match the
    // intervening input text against the second substitution.
    //
    // For example, say we have a rule that looks like this:
    //    first << middle >> last;
    // and input text that looks like this:
    //    first one middle two last
    // First we use stripPrefix() to match "first " in both places and
    // strip it off the front, leaving
    //    one middle two last
    // Then we use matchToDelimiter() to match " middle " and try to
    // match "one" against a substitution.  If it's successful, we now
    // have
    //    two last
    // We use matchToDelimiter() a second time to match " last" and
    // try to match "two" against a substitution.  If "two" matches
    // the substitution, we have a successful parse.
    //
    // Since it's possible in many cases to find multiple instances
    // of each of these pieces of rule text in the input string,
    // we need to try all the possible combinations of these
    // locations.  This prevents us from prematurely declaring a mismatch,
    // and makes sure we match as much input text as we can.
    int highWaterMark = 0;
    double result = 0;
    int start = 0;
    double tempBaseValue = (double)(baseValue <= 0 ? 0 : baseValue);

    UnicodeString temp;
    do {
        // our partial parse result starts out as this rule's base
        // value.  If it finds a successful match, matchToDelimiter()
        // will compose this in some way with what it gets back from
        // the substitution, giving us a new partial parse result
        pp.setIndex(0);

        temp.setTo(ruleText, sub1->getPos(), sub2->getPos() - sub1->getPos());
        double partialResult = matchToDelimiter(workText, start, tempBaseValue,
            temp, pp, sub1,
            upperBound);

        // if we got a successful match (or were trying to match a
        // null substitution), pp is now pointing at the first unmatched
        // character.  Take note of that, and try matchToDelimiter()
        // on the input text again
        if (pp.getIndex() != 0 || sub1->isNullSubstitution()) {
            start = pp.getIndex();

            UnicodeString workText2;
            workText2.setTo(workText, pp.getIndex(), workText.length() - pp.getIndex());
            ParsePosition pp2;

            // the second matchToDelimiter() will compose our previous
            // partial result with whatever it gets back from its
            // substitution if there's a successful match, giving us
            // a real result
            temp.setTo(ruleText, sub2->getPos(), ruleText.length() - sub2->getPos());
            partialResult = matchToDelimiter(workText2, 0, partialResult,
                temp, pp2, sub2,
                upperBound);

            // if we got a successful match on this second
            // matchToDelimiter() call, update the high-water mark
            // and result (if necessary)
            if (pp2.getIndex() != 0 || sub2->isNullSubstitution()) {
                if (prefixLength + pp.getIndex() + pp2.getIndex() > highWaterMark) {
                    highWaterMark = prefixLength + pp.getIndex() + pp2.getIndex();
                    result = partialResult;
                }
            }
            // commented out because ParsePosition doesn't have error index in 1.1.x
            // restored for ICU4C port
            else {
                int32_t temp = pp2.getErrorIndex() + sub1->getPos() + pp.getIndex();
                if (temp> parsePosition.getErrorIndex()) {
                    parsePosition.setErrorIndex(temp);
                }
            }
        }
        // commented out because ParsePosition doesn't have error index in 1.1.x
        // restored for ICU4C port
        else {
            int32_t temp = sub1->getPos() + pp.getErrorIndex();
            if (temp > parsePosition.getErrorIndex()) {
                parsePosition.setErrorIndex(temp);
            }
        }
        // keep trying to match things until the outer matchToDelimiter()
        // call fails to make a match (each time, it picks up where it
        // left off the previous time)
    } while (sub1->getPos() != sub2->getPos()
        && pp.getIndex() > 0
        && pp.getIndex() < workText.length()
        && pp.getIndex() != start);

    // update the caller's ParsePosition with our high-water mark
    // (i.e., it now points at the first character this function
    // didn't match-- the ParsePosition is therefore unchanged if
    // we didn't match anything)
    parsePosition.setIndex(highWaterMark);
    // commented out because ParsePosition doesn't have error index in 1.1.x
    // restored for ICU4C port
    if (highWaterMark > 0) {
        parsePosition.setErrorIndex(0);
    }

    // this is a hack for one unusual condition: Normally, whether this
    // rule belong to a fraction rule set or not is handled by its
    // substitutions.  But if that rule HAS NO substitutions, then
    // we have to account for it here.  By definition, if the matching
    // rule in a fraction rule set has no substitutions, its numerator
    // is 1, and so the result is the reciprocal of its base value.
    if (isFractionRule &&
        highWaterMark > 0 &&
        sub1->isNullSubstitution()) {
        result = 1 / result;
    }

    resVal.setDouble(result);
    return TRUE; // ??? do we need to worry if it is a long or a double?
}

/**
* This function is used by parse() to match the text being parsed
* against a possible prefix string.  This function
* matches characters from the beginning of the string being parsed
* to characters from the prospective prefix.  If they match, pp is
* updated to the first character not matched, and the result is
* the unparsed part of the string.  If they don't match, the whole
* string is returned, and pp is left unchanged.
* @param text The string being parsed
* @param prefix The text to match against
* @param pp On entry, ignored and assumed to be 0.  On exit, points
* to the first unmatched character (assuming the whole prefix matched),
* or is unchanged (if the whole prefix didn't match).
* @return If things match, this is the unparsed part of "text";
* if they didn't match, this is "text".
*/
void
NFRule::stripPrefix(UnicodeString& text, const UnicodeString& prefix, ParsePosition& pp) const
{
    // if the prefix text is empty, dump out without doing anything
    if (prefix.length() != 0) {
    	UErrorCode status = U_ZERO_ERROR;
        // use prefixLength() to match the beginning of
        // "text" against "prefix".  This function returns the
        // number of characters from "text" that matched (or 0 if
        // we didn't match the whole prefix)
        int32_t pfl = prefixLength(text, prefix, status);
        if (U_FAILURE(status)) { // Memory allocation error.
        	return;
        }
        if (pfl != 0) {
            // if we got a successful match, update the parse position
            // and strip the prefix off of "text"
            pp.setIndex(pp.getIndex() + pfl);
            text.remove(0, pfl);
        }
    }
}

/**
* Used by parse() to match a substitution and any following text.
* "text" is searched for instances of "delimiter".  For each instance
* of delimiter, the intervening text is tested to see whether it
* matches the substitution.  The longest match wins.
* @param text The string being parsed
* @param startPos The position in "text" where we should start looking
* for "delimiter".
* @param baseValue A partial parse result (often the rule's base value),
* which is combined with the result from matching the substitution
* @param delimiter The string to search "text" for.
* @param pp Ignored and presumed to be 0 on entry.  If there's a match,
* on exit this will point to the first unmatched character.
* @param sub If we find "delimiter" in "text", this substitution is used
* to match the text between the beginning of the string and the
* position of "delimiter."  (If "delimiter" is the empty string, then
* this function just matches against this substitution and updates
* everything accordingly.)
* @param upperBound When matching the substitution, it will only
* consider rules with base values lower than this value.
* @return If there's a match, this is the result of composing
* baseValue with the result of matching the substitution.  Otherwise,
* this is new Long(0).  It's never null.  If the result is an integer,
* this will be an instance of Long; otherwise, it's an instance of
* Double.
*
* !!! note {dlf} in point of fact, in the java code the caller always converts
* the result to a double, so we might as well return one.
*/
double
NFRule::matchToDelimiter(const UnicodeString& text,
                         int32_t startPos,
                         double _baseValue,
                         const UnicodeString& delimiter,
                         ParsePosition& pp,
                         const NFSubstitution* sub,
                         double upperBound) const
{
	UErrorCode status = U_ZERO_ERROR;
    // if "delimiter" contains real (i.e., non-ignorable) text, search
    // it for "delimiter" beginning at "start".  If that succeeds, then
    // use "sub"'s doParse() method to match the text before the
    // instance of "delimiter" we just found.
    if (!allIgnorable(delimiter, status)) {
    	if (U_FAILURE(status)) { //Memory allocation error.
    		return 0;
    	}
        ParsePosition tempPP;
        Formattable result;

        // use findText() to search for "delimiter".  It returns a two-
        // element array: element 0 is the position of the match, and
        // element 1 is the number of characters that matched
        // "delimiter".
        int32_t dLen;
        int32_t dPos = findText(text, delimiter, startPos, &dLen);

        // if findText() succeeded, isolate the text preceding the
        // match, and use "sub" to match that text
        while (dPos >= 0) {
            UnicodeString subText;
            subText.setTo(text, 0, dPos);
            if (subText.length() > 0) {
                UBool success = sub->doParse(subText, tempPP, _baseValue, upperBound,
#if UCONFIG_NO_COLLATION
                    FALSE,
#else
                    formatter->isLenient(),
#endif
                    result);

                // if the substitution could match all the text up to
                // where we found "delimiter", then this function has
                // a successful match.  Bump the caller's parse position
                // to point to the first character after the text
                // that matches "delimiter", and return the result
                // we got from parsing the substitution.
                if (success && tempPP.getIndex() == dPos) {
                    pp.setIndex(dPos + dLen);
                    return result.getDouble();
                }
                // commented out because ParsePosition doesn't have error index in 1.1.x
                // restored for ICU4C port
                else {
                    if (tempPP.getErrorIndex() > 0) {
                        pp.setErrorIndex(tempPP.getErrorIndex());
                    } else {
                        pp.setErrorIndex(tempPP.getIndex());
                    }
                }
            }

            // if we didn't match the substitution, search for another
            // copy of "delimiter" in "text" and repeat the loop if
            // we find it
            tempPP.setIndex(0);
            dPos = findText(text, delimiter, dPos + dLen, &dLen);
        }
        // if we make it here, this was an unsuccessful match, and we
        // leave pp unchanged and return 0
        pp.setIndex(0);
        return 0;

        // if "delimiter" is empty, or consists only of ignorable characters
        // (i.e., is semantically empty), thwe we obviously can't search
        // for "delimiter".  Instead, just use "sub" to parse as much of
        // "text" as possible.
    } else {
        ParsePosition tempPP;
        Formattable result;

        // try to match the whole string against the substitution
        UBool success = sub->doParse(text, tempPP, _baseValue, upperBound,
#if UCONFIG_NO_COLLATION
            FALSE,
#else
            formatter->isLenient(),
#endif
            result);
        if (success && (tempPP.getIndex() != 0 || sub->isNullSubstitution())) {
            // if there's a successful match (or it's a null
            // substitution), update pp to point to the first
            // character we didn't match, and pass the result from
            // sub.doParse() on through to the caller
            pp.setIndex(tempPP.getIndex());
            return result.getDouble();
        }
        // commented out because ParsePosition doesn't have error index in 1.1.x
        // restored for ICU4C port
        else {
            pp.setErrorIndex(tempPP.getErrorIndex());
        }

        // and if we get to here, then nothing matched, so we return
        // 0 and leave pp alone
        return 0;
    }
}

/**
* Used by stripPrefix() to match characters.  If lenient parse mode
* is off, this just calls startsWith().  If lenient parse mode is on,
* this function uses CollationElementIterators to match characters in
* the strings (only primary-order differences are significant in
* determining whether there's a match).
* @param str The string being tested
* @param prefix The text we're hoping to see at the beginning
* of "str"
* @return If "prefix" is found at the beginning of "str", this
* is the number of characters in "str" that were matched (this
* isn't necessarily the same as the length of "prefix" when matching
* text with a collator).  If there's no match, this is 0.
*/
int32_t
NFRule::prefixLength(const UnicodeString& str, const UnicodeString& prefix, UErrorCode& status) const
{
    // if we're looking for an empty prefix, it obviously matches
    // zero characters.  Just go ahead and return 0.
    if (prefix.length() == 0) {
        return 0;
    }

#if !UCONFIG_NO_COLLATION
    // go through all this grief if we're in lenient-parse mode
    if (formatter->isLenient()) {
        // get the formatter's collator and use it to create two
        // collation element iterators, one over the target string
        // and another over the prefix (right now, we'll throw an
        // exception if the collator we get back from the formatter
        // isn't a RuleBasedCollator, because RuleBasedCollator defines
        // the CollationElementIterator protocol.  Hopefully, this
        // will change someday.)
        RuleBasedCollator* collator = (RuleBasedCollator*)formatter->getCollator();
        CollationElementIterator* strIter = collator->createCollationElementIterator(str);
        CollationElementIterator* prefixIter = collator->createCollationElementIterator(prefix);
        // Check for memory allocation error.
        if (collator == NULL || strIter == NULL || prefixIter == NULL) {
        	delete collator;
        	delete strIter;
        	delete prefixIter;
        	status = U_MEMORY_ALLOCATION_ERROR;
        	return 0;
        }

        UErrorCode err = U_ZERO_ERROR;

        // The original code was problematic.  Consider this match:
        // prefix = "fifty-"
        // string = " fifty-7"
        // The intent is to match string up to the '7', by matching 'fifty-' at position 1
        // in the string.  Unfortunately, we were getting a match, and then computing where
        // the match terminated by rematching the string.  The rematch code was using as an
        // initial guess the substring of string between 0 and prefix.length.  Because of
        // the leading space and trailing hyphen (both ignorable) this was succeeding, leaving
        // the position before the hyphen in the string.  Recursing down, we then parsed the
        // remaining string '-7' as numeric.  The resulting number turned out as 43 (50 - 7).
        // This was not pretty, especially since the string "fifty-7" parsed just fine.
        //
        // We have newer APIs now, so we can use calls on the iterator to determine what we
        // matched up to.  If we terminate because we hit the last element in the string,
        // our match terminates at this length.  If we terminate because we hit the last element
        // in the target, our match terminates at one before the element iterator position.

        // match collation elements between the strings
        int32_t oStr = strIter->next(err);
        int32_t oPrefix = prefixIter->next(err);

        while (oPrefix != CollationElementIterator::NULLORDER) {
            // skip over ignorable characters in the target string
            while (CollationElementIterator::primaryOrder(oStr) == 0
                && oStr != CollationElementIterator::NULLORDER) {
                oStr = strIter->next(err);
            }

            // skip over ignorable characters in the prefix
            while (CollationElementIterator::primaryOrder(oPrefix) == 0
                && oPrefix != CollationElementIterator::NULLORDER) {
                oPrefix = prefixIter->next(err);
            }

            // dlf: move this above following test, if we consume the
            // entire target, aren't we ok even if the source was also
            // entirely consumed?

            // if skipping over ignorables brought to the end of
            // the prefix, we DID match: drop out of the loop
            if (oPrefix == CollationElementIterator::NULLORDER) {
                break;
            }

            // if skipping over ignorables brought us to the end
            // of the target string, we didn't match and return 0
            if (oStr == CollationElementIterator::NULLORDER) {
                delete prefixIter;
                delete strIter;
                return 0;
            }

            // match collation elements from the two strings
            // (considering only primary differences).  If we
            // get a mismatch, dump out and return 0
            if (CollationElementIterator::primaryOrder(oStr)
                != CollationElementIterator::primaryOrder(oPrefix)) {
                delete prefixIter;
                delete strIter;
                return 0;

                // otherwise, advance to the next character in each string
                // and loop (we drop out of the loop when we exhaust
                // collation elements in the prefix)
            } else {
                oStr = strIter->next(err);
                oPrefix = prefixIter->next(err);
            }
        }

        int32_t result = strIter->getOffset();
        if (oStr != CollationElementIterator::NULLORDER) {
            --result; // back over character that we don't want to consume;
        }

#ifdef RBNF_DEBUG
        fprintf(stderr, "prefix length: %d\n", result);
#endif
        delete prefixIter;
        delete strIter;

        return result;
#if 0
        //----------------------------------------------------------------
        // JDK 1.2-specific API call
        // return strIter.getOffset();
        //----------------------------------------------------------------
        // JDK 1.1 HACK (take out for 1.2-specific code)

        // if we make it to here, we have a successful match.  Now we
        // have to find out HOW MANY characters from the target string
        // matched the prefix (there isn't necessarily a one-to-one
        // mapping between collation elements and characters).
        // In JDK 1.2, there's a simple getOffset() call we can use.
        // In JDK 1.1, on the other hand, we have to go through some
        // ugly contortions.  First, use the collator to compare the
        // same number of characters from the prefix and target string.
        // If they're equal, we're done.
        collator->setStrength(Collator::PRIMARY);
        if (str.length() >= prefix.length()) {
            UnicodeString temp;
            temp.setTo(str, 0, prefix.length());
            if (collator->equals(temp, prefix)) {
#ifdef RBNF_DEBUG
                fprintf(stderr, "returning: %d\n", prefix.length());
#endif
                return prefix.length();
            }
        }

        // if they're not equal, then we have to compare successively
        // larger and larger substrings of the target string until we
        // get to one that matches the prefix.  At that point, we know
        // how many characters matched the prefix, and we can return.
        int32_t p = 1;
        while (p <= str.length()) {
            UnicodeString temp;
            temp.setTo(str, 0, p);
            if (collator->equals(temp, prefix)) {
                return p;
            } else {
                ++p;
            }
        }

        // SHOULD NEVER GET HERE!!!
        return 0;
        //----------------------------------------------------------------
#endif

        // If lenient parsing is turned off, forget all that crap above.
        // Just use String.startsWith() and be done with it.
  } else
#endif
  {
      if (str.startsWith(prefix)) {
          return prefix.length();
      } else {
          return 0;
      }
  }
}

/**
* Searches a string for another string.  If lenient parsing is off,
* this just calls indexOf().  If lenient parsing is on, this function
* uses CollationElementIterator to match characters, and only
* primary-order differences are significant in determining whether
* there's a match.
* @param str The string to search
* @param key The string to search "str" for
* @param startingAt The index into "str" where the search is to
* begin
* @return A two-element array of ints.  Element 0 is the position
* of the match, or -1 if there was no match.  Element 1 is the
* number of characters in "str" that matched (which isn't necessarily
* the same as the length of "key")
*/
int32_t
NFRule::findText(const UnicodeString& str,
                 const UnicodeString& key,
                 int32_t startingAt,
                 int32_t* length) const
{
#if !UCONFIG_NO_COLLATION
    // if lenient parsing is turned off, this is easy: just call
    // String.indexOf() and we're done
    if (!formatter->isLenient()) {
        *length = key.length();
        return str.indexOf(key, startingAt);

        // but if lenient parsing is turned ON, we've got some work
        // ahead of us
    } else
#endif
    {
        //----------------------------------------------------------------
        // JDK 1.1 HACK (take out of 1.2-specific code)

        // in JDK 1.2, CollationElementIterator provides us with an
        // API to map between character offsets and collation elements
        // and we can do this by marching through the string comparing
        // collation elements.  We can't do that in JDK 1.1.  Insted,
        // we have to go through this horrible slow mess:
        int32_t p = startingAt;
        int32_t keyLen = 0;

        // basically just isolate smaller and smaller substrings of
        // the target string (each running to the end of the string,
        // and with the first one running from startingAt to the end)
        // and then use prefixLength() to see if the search key is at
        // the beginning of each substring.  This is excruciatingly
        // slow, but it will locate the key and tell use how long the
        // matching text was.
        UnicodeString temp;
        UErrorCode status = U_ZERO_ERROR;
        while (p < str.length() && keyLen == 0) {
            temp.setTo(str, p, str.length() - p);
            keyLen = prefixLength(temp, key, status);
            if (U_FAILURE(status)) {
            	break;
            }
            if (keyLen != 0) {
                *length = keyLen;
                return p;
            }
            ++p;
        }
        // if we make it to here, we didn't find it.  Return -1 for the
        // location.  The length should be ignored, but set it to 0,
        // which should be "safe"
        *length = 0;
        return -1;

        //----------------------------------------------------------------
        // JDK 1.2 version of this routine
        //RuleBasedCollator collator = (RuleBasedCollator)formatter.getCollator();
        //
        //CollationElementIterator strIter = collator.getCollationElementIterator(str);
        //CollationElementIterator keyIter = collator.getCollationElementIterator(key);
        //
        //int keyStart = -1;
        //
        //str.setOffset(startingAt);
        //
        //int oStr = strIter.next();
        //int oKey = keyIter.next();
        //while (oKey != CollationElementIterator.NULLORDER) {
        //    while (oStr != CollationElementIterator.NULLORDER &&
        //                CollationElementIterator.primaryOrder(oStr) == 0)
        //        oStr = strIter.next();
        //
        //    while (oKey != CollationElementIterator.NULLORDER &&
        //                CollationElementIterator.primaryOrder(oKey) == 0)
        //        oKey = keyIter.next();
        //
        //    if (oStr == CollationElementIterator.NULLORDER) {
        //        return new int[] { -1, 0 };
        //    }
        //
        //    if (oKey == CollationElementIterator.NULLORDER) {
        //        break;
        //    }
        //
        //    if (CollationElementIterator.primaryOrder(oStr) ==
        //            CollationElementIterator.primaryOrder(oKey)) {
        //        keyStart = strIter.getOffset();
        //        oStr = strIter.next();
        //        oKey = keyIter.next();
        //    } else {
        //        if (keyStart != -1) {
        //            keyStart = -1;
        //            keyIter.reset();
        //        } else {
        //            oStr = strIter.next();
        //        }
        //    }
        //}
        //
        //if (oKey == CollationElementIterator.NULLORDER) {
        //    return new int[] { keyStart, strIter.getOffset() - keyStart };
        //} else {
        //    return new int[] { -1, 0 };
        //}
    }
}

/**
* Checks to see whether a string consists entirely of ignorable
* characters.
* @param str The string to test.
* @return true if the string is empty of consists entirely of
* characters that the number formatter's collator says are
* ignorable at the primary-order level.  false otherwise.
*/
UBool
NFRule::allIgnorable(const UnicodeString& str, UErrorCode& status) const
{
    // if the string is empty, we can just return true
    if (str.length() == 0) {
        return TRUE;
    }

#if !UCONFIG_NO_COLLATION
    // if lenient parsing is turned on, walk through the string with
    // a collation element iterator and make sure each collation
    // element is 0 (ignorable) at the primary level
    if (formatter->isLenient()) {
        RuleBasedCollator* collator = (RuleBasedCollator*)(formatter->getCollator());
        CollationElementIterator* iter = collator->createCollationElementIterator(str);
        
        // Memory allocation error check.
        if (collator == NULL || iter == NULL) {
        	delete collator;
        	delete iter;
        	status = U_MEMORY_ALLOCATION_ERROR;
        	return FALSE;
        }

        UErrorCode err = U_ZERO_ERROR;
        int32_t o = iter->next(err);
        while (o != CollationElementIterator::NULLORDER
            && CollationElementIterator::primaryOrder(o) == 0) {
            o = iter->next(err);
        }

        delete iter;
        return o == CollationElementIterator::NULLORDER;
    }
#endif

    // if lenient parsing is turned off, there is no such thing as
    // an ignorable character: return true only if the string is empty
    return FALSE;
}

U_NAMESPACE_END

/* U_HAVE_RBNF */
#endif