DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (31ec81b5d7bb)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
/*
 **********************************************************************
 *   Copyright (C) 2005-2012, International Business Machines
 *   Corporation and others.  All Rights Reserved.
 **********************************************************************
 */

#include "unicode/utypes.h"

#if !UCONFIG_NO_CONVERSION

#include "csmatch.h"
#include "csrmbcs.h"

#include <math.h>

U_NAMESPACE_BEGIN

#define ARRAY_SIZE(array) (sizeof array / sizeof array[0])

#define min(x,y) (((x)<(y))?(x):(y))

static const uint16_t commonChars_sjis [] = {
// TODO:  This set of data comes from the character frequency-
//        of-occurence analysis tool.  The data needs to be moved
//        into a resource and loaded from there.
0x8140, 0x8141, 0x8142, 0x8145, 0x815b, 0x8169, 0x816a, 0x8175, 0x8176, 0x82a0,
0x82a2, 0x82a4, 0x82a9, 0x82aa, 0x82ab, 0x82ad, 0x82af, 0x82b1, 0x82b3, 0x82b5,
0x82b7, 0x82bd, 0x82be, 0x82c1, 0x82c4, 0x82c5, 0x82c6, 0x82c8, 0x82c9, 0x82cc,
0x82cd, 0x82dc, 0x82e0, 0x82e7, 0x82e8, 0x82e9, 0x82ea, 0x82f0, 0x82f1, 0x8341,
0x8343, 0x834e, 0x834f, 0x8358, 0x835e, 0x8362, 0x8367, 0x8375, 0x8376, 0x8389,
0x838a, 0x838b, 0x838d, 0x8393, 0x8e96, 0x93fa, 0x95aa};

static const uint16_t commonChars_euc_jp[] = {
// TODO:  This set of data comes from the character frequency-
//        of-occurence analysis tool.  The data needs to be moved
//        into a resource and loaded from there.
0xa1a1, 0xa1a2, 0xa1a3, 0xa1a6, 0xa1bc, 0xa1ca, 0xa1cb, 0xa1d6, 0xa1d7, 0xa4a2,
0xa4a4, 0xa4a6, 0xa4a8, 0xa4aa, 0xa4ab, 0xa4ac, 0xa4ad, 0xa4af, 0xa4b1, 0xa4b3,
0xa4b5, 0xa4b7, 0xa4b9, 0xa4bb, 0xa4bd, 0xa4bf, 0xa4c0, 0xa4c1, 0xa4c3, 0xa4c4,
0xa4c6, 0xa4c7, 0xa4c8, 0xa4c9, 0xa4ca, 0xa4cb, 0xa4ce, 0xa4cf, 0xa4d0, 0xa4de,
0xa4df, 0xa4e1, 0xa4e2, 0xa4e4, 0xa4e8, 0xa4e9, 0xa4ea, 0xa4eb, 0xa4ec, 0xa4ef,
0xa4f2, 0xa4f3, 0xa5a2, 0xa5a3, 0xa5a4, 0xa5a6, 0xa5a7, 0xa5aa, 0xa5ad, 0xa5af,
0xa5b0, 0xa5b3, 0xa5b5, 0xa5b7, 0xa5b8, 0xa5b9, 0xa5bf, 0xa5c3, 0xa5c6, 0xa5c7,
0xa5c8, 0xa5c9, 0xa5cb, 0xa5d0, 0xa5d5, 0xa5d6, 0xa5d7, 0xa5de, 0xa5e0, 0xa5e1,
0xa5e5, 0xa5e9, 0xa5ea, 0xa5eb, 0xa5ec, 0xa5ed, 0xa5f3, 0xb8a9, 0xb9d4, 0xbaee,
0xbbc8, 0xbef0, 0xbfb7, 0xc4ea, 0xc6fc, 0xc7bd, 0xcab8, 0xcaf3, 0xcbdc, 0xcdd1};

static const uint16_t commonChars_euc_kr[] = {
// TODO:  This set of data comes from the character frequency-
//        of-occurence analysis tool.  The data needs to be moved
//        into a resource and loaded from there.
0xb0a1, 0xb0b3, 0xb0c5, 0xb0cd, 0xb0d4, 0xb0e6, 0xb0ed, 0xb0f8, 0xb0fa, 0xb0fc,
0xb1b8, 0xb1b9, 0xb1c7, 0xb1d7, 0xb1e2, 0xb3aa, 0xb3bb, 0xb4c2, 0xb4cf, 0xb4d9,
0xb4eb, 0xb5a5, 0xb5b5, 0xb5bf, 0xb5c7, 0xb5e9, 0xb6f3, 0xb7af, 0xb7c2, 0xb7ce,
0xb8a6, 0xb8ae, 0xb8b6, 0xb8b8, 0xb8bb, 0xb8e9, 0xb9ab, 0xb9ae, 0xb9cc, 0xb9ce,
0xb9fd, 0xbab8, 0xbace, 0xbad0, 0xbaf1, 0xbbe7, 0xbbf3, 0xbbfd, 0xbcad, 0xbcba,
0xbcd2, 0xbcf6, 0xbdba, 0xbdc0, 0xbdc3, 0xbdc5, 0xbec6, 0xbec8, 0xbedf, 0xbeee,
0xbef8, 0xbefa, 0xbfa1, 0xbfa9, 0xbfc0, 0xbfe4, 0xbfeb, 0xbfec, 0xbff8, 0xc0a7,
0xc0af, 0xc0b8, 0xc0ba, 0xc0bb, 0xc0bd, 0xc0c7, 0xc0cc, 0xc0ce, 0xc0cf, 0xc0d6,
0xc0da, 0xc0e5, 0xc0fb, 0xc0fc, 0xc1a4, 0xc1a6, 0xc1b6, 0xc1d6, 0xc1df, 0xc1f6,
0xc1f8, 0xc4a1, 0xc5cd, 0xc6ae, 0xc7cf, 0xc7d1, 0xc7d2, 0xc7d8, 0xc7e5, 0xc8ad};

static const uint16_t commonChars_big5[] = {
// TODO:  This set of data comes from the character frequency-
//        of-occurence analysis tool.  The data needs to be moved
//        into a resource and loaded from there.
0xa140, 0xa141, 0xa142, 0xa143, 0xa147, 0xa149, 0xa175, 0xa176, 0xa440, 0xa446,
0xa447, 0xa448, 0xa451, 0xa454, 0xa457, 0xa464, 0xa46a, 0xa46c, 0xa477, 0xa4a3,
0xa4a4, 0xa4a7, 0xa4c1, 0xa4ce, 0xa4d1, 0xa4df, 0xa4e8, 0xa4fd, 0xa540, 0xa548,
0xa558, 0xa569, 0xa5cd, 0xa5e7, 0xa657, 0xa661, 0xa662, 0xa668, 0xa670, 0xa6a8,
0xa6b3, 0xa6b9, 0xa6d3, 0xa6db, 0xa6e6, 0xa6f2, 0xa740, 0xa751, 0xa759, 0xa7da,
0xa8a3, 0xa8a5, 0xa8ad, 0xa8d1, 0xa8d3, 0xa8e4, 0xa8fc, 0xa9c0, 0xa9d2, 0xa9f3,
0xaa6b, 0xaaba, 0xaabe, 0xaacc, 0xaafc, 0xac47, 0xac4f, 0xacb0, 0xacd2, 0xad59,
0xaec9, 0xafe0, 0xb0ea, 0xb16f, 0xb2b3, 0xb2c4, 0xb36f, 0xb44c, 0xb44e, 0xb54c,
0xb5a5, 0xb5bd, 0xb5d0, 0xb5d8, 0xb671, 0xb7ed, 0xb867, 0xb944, 0xbad8, 0xbb44,
0xbba1, 0xbdd1, 0xc2c4, 0xc3b9, 0xc440, 0xc45f};

static const uint16_t commonChars_gb_18030[] = {
// TODO:  This set of data comes from the character frequency-
//        of-occurence analysis tool.  The data needs to be moved
//        into a resource and loaded from there.
0xa1a1, 0xa1a2, 0xa1a3, 0xa1a4, 0xa1b0, 0xa1b1, 0xa1f1, 0xa1f3, 0xa3a1, 0xa3ac,
0xa3ba, 0xb1a8, 0xb1b8, 0xb1be, 0xb2bb, 0xb3c9, 0xb3f6, 0xb4f3, 0xb5bd, 0xb5c4,
0xb5e3, 0xb6af, 0xb6d4, 0xb6e0, 0xb7a2, 0xb7a8, 0xb7bd, 0xb7d6, 0xb7dd, 0xb8b4,
0xb8df, 0xb8f6, 0xb9ab, 0xb9c9, 0xb9d8, 0xb9fa, 0xb9fd, 0xbacd, 0xbba7, 0xbbd6,
0xbbe1, 0xbbfa, 0xbcbc, 0xbcdb, 0xbcfe, 0xbdcc, 0xbecd, 0xbedd, 0xbfb4, 0xbfc6,
0xbfc9, 0xc0b4, 0xc0ed, 0xc1cb, 0xc2db, 0xc3c7, 0xc4dc, 0xc4ea, 0xc5cc, 0xc6f7,
0xc7f8, 0xc8ab, 0xc8cb, 0xc8d5, 0xc8e7, 0xc9cf, 0xc9fa, 0xcab1, 0xcab5, 0xcac7,
0xcad0, 0xcad6, 0xcaf5, 0xcafd, 0xccec, 0xcdf8, 0xceaa, 0xcec4, 0xced2, 0xcee5,
0xcfb5, 0xcfc2, 0xcfd6, 0xd0c2, 0xd0c5, 0xd0d0, 0xd0d4, 0xd1a7, 0xd2aa, 0xd2b2,
0xd2b5, 0xd2bb, 0xd2d4, 0xd3c3, 0xd3d0, 0xd3fd, 0xd4c2, 0xd4da, 0xd5e2, 0xd6d0};

static int32_t binarySearch(const uint16_t *array, int32_t len, uint16_t value)
{
    int32_t start = 0, end = len-1;
    int32_t mid = (start+end)/2;

    while(start <= end) {
        if(array[mid] == value) {
            return mid;
        }

        if(array[mid] < value){
            start = mid+1;
        } else {
            end = mid-1;
        }

        mid = (start+end)/2;
    }

    return -1;
}

IteratedChar::IteratedChar() : 
charValue(0), index(-1), nextIndex(0), error(FALSE), done(FALSE)
{
    // nothing else to do.
}

/*void IteratedChar::reset()
{
    charValue = 0;
    index     = -1;
    nextIndex = 0;
    error     = FALSE;
    done      = FALSE;
}*/

int32_t IteratedChar::nextByte(InputText *det)
{
    if (nextIndex >= det->fRawLength) {
        done = TRUE;

        return -1;
    }

    return det->fRawInput[nextIndex++];
}

CharsetRecog_mbcs::~CharsetRecog_mbcs()
{
    // nothing to do.
}

int32_t CharsetRecog_mbcs::match_mbcs(InputText *det, const uint16_t commonChars[], int32_t commonCharsLen) const {
    int32_t singleByteCharCount = 0;
    int32_t doubleByteCharCount = 0;
    int32_t commonCharCount     = 0;
    int32_t badCharCount        = 0;
    int32_t totalCharCount      = 0;
    int32_t confidence          = 0;
    IteratedChar iter;

    while (nextChar(&iter, det)) {
        totalCharCount++;

        if (iter.error) {
            badCharCount++;
        } else {
            if (iter.charValue <= 0xFF) {
                singleByteCharCount++;
            } else {
                doubleByteCharCount++;

                if (commonChars != 0) {
                    if (binarySearch(commonChars, commonCharsLen, iter.charValue) >= 0){
                        commonCharCount += 1;
                    }
                }
            }
        }


        if (badCharCount >= 2 && badCharCount*5 >= doubleByteCharCount) {
            // Bail out early if the byte data is not matching the encoding scheme.
            // break detectBlock;
            return confidence;
        }
    }

    if (doubleByteCharCount <= 10 && badCharCount == 0) {
        // Not many multi-byte chars.
        if (doubleByteCharCount == 0 && totalCharCount < 10) {
            // There weren't any multibyte sequences, and there was a low density of non-ASCII single bytes.
            // We don't have enough data to have any confidence.
            // Statistical analysis of single byte non-ASCII charcters would probably help here.
            confidence = 0;
        }
        else {
            //   ASCII or ISO file?  It's probably not our encoding,
            //   but is not incompatible with our encoding, so don't give it a zero.
            confidence = 10;
        }

        return confidence;
    }

    //
    //  No match if there are too many characters that don't fit the encoding scheme.
    //    (should we have zero tolerance for these?)
    //
    if (doubleByteCharCount < 20*badCharCount) {
        confidence = 0;

        return confidence;
    }

    if (commonChars == 0) {
        // We have no statistics on frequently occuring characters.
        //  Assess confidence purely on having a reasonable number of
        //  multi-byte characters (the more the better)
        confidence = 30 + doubleByteCharCount - 20*badCharCount;

        if (confidence > 100) {
            confidence = 100;
        }
    } else {
        //
        // Frequency of occurence statistics exist.
        //

        double maxVal = log((double)doubleByteCharCount / 4); /*(float)?*/
        double scaleFactor = 90.0 / maxVal;
        confidence = (int32_t)(log((double)commonCharCount+1) * scaleFactor + 10.0);

        confidence = min(confidence, 100);
    }

    if (confidence < 0) {
        confidence = 0;
    }

    return confidence;
}

CharsetRecog_sjis::~CharsetRecog_sjis()
{
    // nothing to do
}

UBool CharsetRecog_sjis::nextChar(IteratedChar* it, InputText* det) const {
    it->index = it->nextIndex;
    it->error = FALSE;

    int32_t firstByte = it->charValue = it->nextByte(det);

    if (firstByte < 0) {
        return FALSE;
    }

    if (firstByte <= 0x7F || (firstByte > 0xA0 && firstByte <= 0xDF)) {
        return TRUE;
    }

    int32_t secondByte = it->nextByte(det);
    if (secondByte >= 0) {
        it->charValue = (firstByte << 8) | secondByte;
    }
    // else we'll handle the error later.

    if (! ((secondByte >= 0x40 && secondByte <= 0x7F) || (secondByte >= 0x80 && secondByte <= 0xFE))) {
        // Illegal second byte value.
        it->error = TRUE;
    }

    return TRUE;
}

UBool CharsetRecog_sjis::match(InputText* det, CharsetMatch *results) const {
    int32_t confidence = match_mbcs(det, commonChars_sjis, ARRAY_SIZE(commonChars_sjis));
    results->set(det, this, confidence);
    return (confidence > 0);
}

const char *CharsetRecog_sjis::getName() const
{
    return "Shift_JIS";
}

const char *CharsetRecog_sjis::getLanguage() const
{
    return "ja";
}

CharsetRecog_euc::~CharsetRecog_euc()
{
    // nothing to do
}

UBool CharsetRecog_euc::nextChar(IteratedChar* it, InputText* det) const {
    int32_t firstByte  = 0;
    int32_t secondByte = 0;
    int32_t thirdByte  = 0;

    it->index = it->nextIndex;
    it->error = FALSE;
    firstByte = it->charValue = it->nextByte(det);

    if (firstByte < 0) {
        // Ran off the end of the input data
        return FALSE;
    }

    if (firstByte <= 0x8D) {
        // single byte char
        return TRUE;
    }

    secondByte = it->nextByte(det);
    if (secondByte >= 0) {
        it->charValue = (it->charValue << 8) | secondByte;
    }
    // else we'll handle the error later.

    if (firstByte >= 0xA1 && firstByte <= 0xFE) {
        // Two byte Char
        if (secondByte < 0xA1) {
            it->error = TRUE;
        }

        return TRUE;
    }

    if (firstByte == 0x8E) {
        // Code Set 2.
        //   In EUC-JP, total char size is 2 bytes, only one byte of actual char value.
        //   In EUC-TW, total char size is 4 bytes, three bytes contribute to char value.
        // We don't know which we've got.
        // Treat it like EUC-JP.  If the data really was EUC-TW, the following two
        //   bytes will look like a well formed 2 byte char.
        if (secondByte < 0xA1) {
            it->error = TRUE;
        }

        return TRUE;
    }

    if (firstByte == 0x8F) {
        // Code set 3.
        // Three byte total char size, two bytes of actual char value.
        thirdByte    = it->nextByte(det);
        it->charValue = (it->charValue << 8) | thirdByte;

        if (thirdByte < 0xa1) {
            // Bad second byte or ran off the end of the input data with a non-ASCII first byte.
            it->error = TRUE;
        }
    }

    return TRUE;

}

CharsetRecog_euc_jp::~CharsetRecog_euc_jp()
{
    // nothing to do
}

const char *CharsetRecog_euc_jp::getName() const
{
    return "EUC-JP";
}

const char *CharsetRecog_euc_jp::getLanguage() const
{
    return "ja";
}

UBool CharsetRecog_euc_jp::match(InputText *det, CharsetMatch *results) const
{
    int32_t confidence = match_mbcs(det, commonChars_euc_jp, ARRAY_SIZE(commonChars_euc_jp));
    results->set(det, this, confidence);
    return (confidence > 0);
}

CharsetRecog_euc_kr::~CharsetRecog_euc_kr()
{
    // nothing to do
}

const char *CharsetRecog_euc_kr::getName() const
{
    return "EUC-KR";
}

const char *CharsetRecog_euc_kr::getLanguage() const
{
    return "ko";
}

UBool CharsetRecog_euc_kr::match(InputText *det, CharsetMatch *results) const
{
    int32_t confidence =  match_mbcs(det, commonChars_euc_kr, ARRAY_SIZE(commonChars_euc_kr));
    results->set(det, this, confidence);
    return (confidence > 0);
}

CharsetRecog_big5::~CharsetRecog_big5()
{
    // nothing to do
}

UBool CharsetRecog_big5::nextChar(IteratedChar* it, InputText* det) const
{
    int32_t firstByte;

    it->index = it->nextIndex;
    it->error = FALSE;
    firstByte = it->charValue = it->nextByte(det);

    if (firstByte < 0) {
        return FALSE;
    }

    if (firstByte <= 0x7F || firstByte == 0xFF) {
        // single byte character.
        return TRUE;
    }

    int32_t secondByte = it->nextByte(det);
    if (secondByte >= 0)  {
        it->charValue = (it->charValue << 8) | secondByte;
    }
    // else we'll handle the error later.

    if (secondByte < 0x40 || secondByte == 0x7F || secondByte == 0xFF) {
        it->error = TRUE;
    }

    return TRUE;
}

const char *CharsetRecog_big5::getName() const
{
    return "Big5";
}

const char *CharsetRecog_big5::getLanguage() const
{
    return "zh";
}

UBool CharsetRecog_big5::match(InputText *det, CharsetMatch *results) const
{
    int32_t confidence = match_mbcs(det, commonChars_big5, ARRAY_SIZE(commonChars_big5));
    results->set(det, this, confidence);
    return (confidence > 0);
}

CharsetRecog_gb_18030::~CharsetRecog_gb_18030()
{
    // nothing to do
}

UBool CharsetRecog_gb_18030::nextChar(IteratedChar* it, InputText* det) const {
    int32_t firstByte  = 0;
    int32_t secondByte = 0;
    int32_t thirdByte  = 0;
    int32_t fourthByte = 0;

    it->index = it->nextIndex;
    it->error = FALSE;
    firstByte = it->charValue = it->nextByte(det);

    if (firstByte < 0) {
        // Ran off the end of the input data
        return FALSE;
    }

    if (firstByte <= 0x80) {
        // single byte char
        return TRUE;
    }

    secondByte = it->nextByte(det);
    if (secondByte >= 0) {
        it->charValue = (it->charValue << 8) | secondByte;
    }
    // else we'll handle the error later.

    if (firstByte >= 0x81 && firstByte <= 0xFE) {
        // Two byte Char
        if ((secondByte >= 0x40 && secondByte <= 0x7E) || (secondByte >=80 && secondByte <= 0xFE)) {
            return TRUE;
        }

        // Four byte char
        if (secondByte >= 0x30 && secondByte <= 0x39) {
            thirdByte = it->nextByte(det);

            if (thirdByte >= 0x81 && thirdByte <= 0xFE) {
                fourthByte = it->nextByte(det);

                if (fourthByte >= 0x30 && fourthByte <= 0x39) {
                    it->charValue = (it->charValue << 16) | (thirdByte << 8) | fourthByte;

                    return TRUE;
                }
            }
        }

        // Something wasn't valid, or we ran out of data (-1).
        it->error = TRUE;
    }

    return TRUE;
}

const char *CharsetRecog_gb_18030::getName() const
{
    return "GB18030";
}

const char *CharsetRecog_gb_18030::getLanguage() const
{
    return "zh";
}

UBool CharsetRecog_gb_18030::match(InputText *det, CharsetMatch *results) const
{
    int32_t confidence = match_mbcs(det, commonChars_gb_18030, ARRAY_SIZE(commonChars_gb_18030));
    results->set(det, this, confidence);
    return (confidence > 0);
}

U_NAMESPACE_END
#endif