DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (31ec81b5d7bb)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
/*
**********************************************************************
*   Copyright (C) 1999-2011, International Business Machines
*   Corporation and others.  All Rights Reserved.
**********************************************************************
*   Date        Name        Description
*   11/17/99    aliu        Creation.
**********************************************************************
*/

#include "unicode/utypes.h"

#if !UCONFIG_NO_TRANSLITERATION

#include "unicode/unifilt.h"
#include "unicode/uniset.h"
#include "cpdtrans.h"
#include "uvector.h"
#include "tridpars.h"
#include "cmemory.h"

// keep in sync with Transliterator
//static const UChar ID_SEP   = 0x002D; /*-*/
static const UChar ID_DELIM = 0x003B; /*;*/
static const UChar NEWLINE  = 10;

static const UChar COLON_COLON[] = {0x3A, 0x3A, 0}; //"::"

U_NAMESPACE_BEGIN

const UChar CompoundTransliterator::PASS_STRING[] = { 0x0025, 0x0050, 0x0061, 0x0073, 0x0073, 0 }; // "%Pass"

UOBJECT_DEFINE_RTTI_IMPLEMENTATION(CompoundTransliterator)

/**
 * Constructs a new compound transliterator given an array of
 * transliterators.  The array of transliterators may be of any
 * length, including zero or one, however, useful compound
 * transliterators have at least two components.
 * @param transliterators array of <code>Transliterator</code>
 * objects
 * @param transliteratorCount The number of
 * <code>Transliterator</code> objects in transliterators.
 * @param filter the filter.  Any character for which
 * <tt>filter.contains()</tt> returns <tt>false</tt> will not be
 * altered by this transliterator.  If <tt>filter</tt> is
 * <tt>null</tt> then no filtering is applied.
 */
CompoundTransliterator::CompoundTransliterator(
                           Transliterator* const transliterators[],
                           int32_t transliteratorCount,
                           UnicodeFilter* adoptedFilter) :
    Transliterator(joinIDs(transliterators, transliteratorCount), adoptedFilter),
    trans(0), count(0), numAnonymousRBTs(0)  {
    setTransliterators(transliterators, transliteratorCount);
}

/**
 * Splits an ID of the form "ID;ID;..." into a compound using each
 * of the IDs. 
 * @param id of above form
 * @param forward if false, does the list in reverse order, and
 * takes the inverse of each ID.
 */
CompoundTransliterator::CompoundTransliterator(const UnicodeString& id,
                              UTransDirection direction,
                              UnicodeFilter* adoptedFilter,
                              UParseError& /*parseError*/,
                              UErrorCode& status) :
    Transliterator(id, adoptedFilter),
    trans(0), numAnonymousRBTs(0) {
    // TODO add code for parseError...currently unused, but
    // later may be used by parsing code...
    init(id, direction, TRUE, status);
}

CompoundTransliterator::CompoundTransliterator(const UnicodeString& id,
                              UParseError& /*parseError*/,
                              UErrorCode& status) :
    Transliterator(id, 0), // set filter to 0 here!
    trans(0), numAnonymousRBTs(0) {
    // TODO add code for parseError...currently unused, but
    // later may be used by parsing code...
    init(id, UTRANS_FORWARD, TRUE, status);
}


/**
 * Private constructor for use of TransliteratorAlias
 */
CompoundTransliterator::CompoundTransliterator(const UnicodeString& newID,
                                              UVector& list,
                                              UnicodeFilter* adoptedFilter,
                                              int32_t anonymousRBTs,
                                              UParseError& /*parseError*/,
                                              UErrorCode& status) :
    Transliterator(newID, adoptedFilter),
    trans(0), numAnonymousRBTs(anonymousRBTs)
{
    init(list, UTRANS_FORWARD, FALSE, status);
}

/**
 * Private constructor for Transliterator from a vector of
 * transliterators.  The caller is responsible for fixing up the
 * ID.
 */
CompoundTransliterator::CompoundTransliterator(UVector& list,
                                               UParseError& /*parseError*/,
                                               UErrorCode& status) :
    Transliterator(UnicodeString(), NULL),
    trans(0), numAnonymousRBTs(0)
{
    // TODO add code for parseError...currently unused, but
    // later may be used by parsing code...
    init(list, UTRANS_FORWARD, FALSE, status);
    // assume caller will fixup ID
}

CompoundTransliterator::CompoundTransliterator(UVector& list,
                                               int32_t anonymousRBTs,
                                               UParseError& /*parseError*/,
                                               UErrorCode& status) :
    Transliterator(UnicodeString(), NULL),
    trans(0), numAnonymousRBTs(anonymousRBTs)
{
    init(list, UTRANS_FORWARD, FALSE, status);
}

/**
 * Finish constructing a transliterator: only to be called by
 * constructors.  Before calling init(), set trans and filter to NULL.
 * @param id the id containing ';'-separated entries
 * @param direction either FORWARD or REVERSE
 * @param idSplitPoint the index into id at which the
 * adoptedSplitTransliterator should be inserted, if there is one, or
 * -1 if there is none.
 * @param adoptedSplitTransliterator a transliterator to be inserted
 * before the entry at offset idSplitPoint in the id string.  May be
 * NULL to insert no entry.
 * @param fixReverseID if TRUE, then reconstruct the ID of reverse
 * entries by calling getID() of component entries.  Some constructors
 * do not require this because they apply a facade ID anyway.
 * @param status the error code indicating success or failure
 */
void CompoundTransliterator::init(const UnicodeString& id,
                                  UTransDirection direction,
                                  UBool fixReverseID,
                                  UErrorCode& status) {
    // assert(trans == 0);

    if (U_FAILURE(status)) {
        return;
    }

    UVector list(status);
    UnicodeSet* compoundFilter = NULL;
    UnicodeString regenID;
    if (!TransliteratorIDParser::parseCompoundID(id, direction,
                                      regenID, list, compoundFilter)) {
        status = U_INVALID_ID;
        delete compoundFilter;
        return;
    }

    TransliteratorIDParser::instantiateList(list, status);

    init(list, direction, fixReverseID, status);

    if (compoundFilter != NULL) {
        adoptFilter(compoundFilter);
    }
}

/**
 * Finish constructing a transliterator: only to be called by
 * constructors.  Before calling init(), set trans and filter to NULL.
 * @param list a vector of transliterator objects to be adopted.  It
 * should NOT be empty.  The list should be in declared order.  That
 * is, it should be in the FORWARD order; if direction is REVERSE then
 * the list order will be reversed.
 * @param direction either FORWARD or REVERSE
 * @param fixReverseID if TRUE, then reconstruct the ID of reverse
 * entries by calling getID() of component entries.  Some constructors
 * do not require this because they apply a facade ID anyway.
 * @param status the error code indicating success or failure
 */
void CompoundTransliterator::init(UVector& list,
                                  UTransDirection direction,
                                  UBool fixReverseID,
                                  UErrorCode& status) {
    // assert(trans == 0);

    // Allocate array
    if (U_SUCCESS(status)) {
        count = list.size();
        trans = (Transliterator **)uprv_malloc(count * sizeof(Transliterator *));
        /* test for NULL */
        if (trans == 0) {
            status = U_MEMORY_ALLOCATION_ERROR;
            return;
        }
    }

    if (U_FAILURE(status) || trans == 0) {
         // assert(trans == 0);
        return;
    }

    // Move the transliterators from the vector into an array.
    // Reverse the order if necessary.
    int32_t i;
    for (i=0; i<count; ++i) {
        int32_t j = (direction == UTRANS_FORWARD) ? i : count - 1 - i;
        trans[i] = (Transliterator*) list.elementAt(j);
    }

    // If the direction is UTRANS_REVERSE then we may need to fix the
    // ID.
    if (direction == UTRANS_REVERSE && fixReverseID) {
        UnicodeString newID;
        for (i=0; i<count; ++i) {
            if (i > 0) {
                newID.append(ID_DELIM);
            }
            newID.append(trans[i]->getID());
        }
        setID(newID);
    }

    computeMaximumContextLength();
}

/**
 * Return the IDs of the given list of transliterators, concatenated
 * with ID_DELIM delimiting them.  Equivalent to the perlish expression
 * join(ID_DELIM, map($_.getID(), transliterators).
 */
UnicodeString CompoundTransliterator::joinIDs(Transliterator* const transliterators[],
                                              int32_t transCount) {
    UnicodeString id;
    for (int32_t i=0; i<transCount; ++i) {
        if (i > 0) {
            id.append(ID_DELIM);
        }
        id.append(transliterators[i]->getID());
    }
    return id; // Return temporary
}

/**
 * Copy constructor.
 */
CompoundTransliterator::CompoundTransliterator(const CompoundTransliterator& t) :
    Transliterator(t), trans(0), count(0), numAnonymousRBTs(-1) {
    *this = t;
}

/**
 * Destructor
 */
CompoundTransliterator::~CompoundTransliterator() {
    freeTransliterators();
}

void CompoundTransliterator::freeTransliterators(void) {
    if (trans != 0) {
        for (int32_t i=0; i<count; ++i) {
            delete trans[i];
        }
        uprv_free(trans);
    }
    trans = 0;
    count = 0;
}

/**
 * Assignment operator.
 */
CompoundTransliterator& CompoundTransliterator::operator=(
                                             const CompoundTransliterator& t)
{
    Transliterator::operator=(t);
    int32_t i = 0;
    UBool failed = FALSE;
    if (trans != NULL) {
        for (i=0; i<count; ++i) {
            delete trans[i];
            trans[i] = 0;
        }
    }
    if (t.count > count) {
        if (trans != NULL) {
            uprv_free(trans);
        }
        trans = (Transliterator **)uprv_malloc(t.count * sizeof(Transliterator *));
    }
    count = t.count;
    if (trans != NULL) {
        for (i=0; i<count; ++i) {
            trans[i] = t.trans[i]->clone();
            if (trans[i] == NULL) {
                failed = TRUE;
                break;
            }
        }
    }

    // if memory allocation failed delete backwards trans array
    if (failed && i > 0) {
        int32_t n;
        for (n = i-1; n >= 0; n--) {
            uprv_free(trans[n]);
            trans[n] = NULL;
        }
    }
    numAnonymousRBTs = t.numAnonymousRBTs;
    return *this;
}

/**
 * Transliterator API.
 */
Transliterator* CompoundTransliterator::clone(void) const {
    return new CompoundTransliterator(*this);
}

/**
 * Returns the number of transliterators in this chain.
 * @return number of transliterators in this chain.
 */
int32_t CompoundTransliterator::getCount(void) const {
    return count;
}

/**
 * Returns the transliterator at the given index in this chain.
 * @param index index into chain, from 0 to <code>getCount() - 1</code>
 * @return transliterator at the given index
 */
const Transliterator& CompoundTransliterator::getTransliterator(int32_t index) const {
    return *trans[index];
}

void CompoundTransliterator::setTransliterators(Transliterator* const transliterators[],
                                                int32_t transCount) {
    Transliterator** a = (Transliterator **)uprv_malloc(transCount * sizeof(Transliterator *));
    if (a == NULL) {
        return;
    }
    int32_t i = 0;
    UBool failed = FALSE;
    for (i=0; i<transCount; ++i) {
        a[i] = transliterators[i]->clone();
        if (a[i] == NULL) {
            failed = TRUE;
            break;
        }
    }
    if (failed && i > 0) {
        int32_t n;
        for (n = i-1; n >= 0; n--) {
            uprv_free(a[n]);
            a[n] = NULL;
        }
        return;
    }
    adoptTransliterators(a, transCount);
}

void CompoundTransliterator::adoptTransliterators(Transliterator* adoptedTransliterators[],
                                                  int32_t transCount) {
    // First free trans[] and set count to zero.  Once this is done,
    // orphan the filter.  Set up the new trans[].
    freeTransliterators();
    trans = adoptedTransliterators;
    count = transCount;
    computeMaximumContextLength();
    setID(joinIDs(trans, count));
}

/**
 * Append c to buf, unless buf is empty or buf already ends in c.
 */
static void _smartAppend(UnicodeString& buf, UChar c) {
    if (buf.length() != 0 &&
        buf.charAt(buf.length() - 1) != c) {
        buf.append(c);
    }
}

UnicodeString& CompoundTransliterator::toRules(UnicodeString& rulesSource,
                                               UBool escapeUnprintable) const {
    // We do NOT call toRules() on our component transliterators, in
    // general.  If we have several rule-based transliterators, this
    // yields a concatenation of the rules -- not what we want.  We do
    // handle compound RBT transliterators specially -- those for which
    // compoundRBTIndex >= 0.  For the transliterator at compoundRBTIndex,
    // we do call toRules() recursively.
    rulesSource.truncate(0);
    if (numAnonymousRBTs >= 1 && getFilter() != NULL) {
        // If we are a compound RBT and if we have a global
        // filter, then emit it at the top.
        UnicodeString pat;
        rulesSource.append(COLON_COLON, 2).append(getFilter()->toPattern(pat, escapeUnprintable)).append(ID_DELIM);
    }
    for (int32_t i=0; i<count; ++i) {
        UnicodeString rule;

        // Anonymous RuleBasedTransliterators (inline rules and
        // ::BEGIN/::END blocks) are given IDs that begin with
        // "%Pass": use toRules() to write all the rules to the output
        // (and insert "::Null;" if we have two in a row)
        if (trans[i]->getID().startsWith(PASS_STRING, 5)) {
            trans[i]->toRules(rule, escapeUnprintable);
            if (numAnonymousRBTs > 1 && i > 0 && trans[i - 1]->getID().startsWith(PASS_STRING, 5))
                rule = UNICODE_STRING_SIMPLE("::Null;") + rule;

        // we also use toRules() on CompoundTransliterators (which we
        // check for by looking for a semicolon in the ID)-- this gets
        // the list of their child transliterators output in the right
        // format
        } else if (trans[i]->getID().indexOf(ID_DELIM) >= 0) {
            trans[i]->toRules(rule, escapeUnprintable);

        // for everything else, use Transliterator::toRules()
        } else {
            trans[i]->Transliterator::toRules(rule, escapeUnprintable);
        }
        _smartAppend(rulesSource, NEWLINE);
        rulesSource.append(rule);
        _smartAppend(rulesSource, ID_DELIM);
    }
    return rulesSource;
}

/**
 * Implement Transliterator framework
 */
void CompoundTransliterator::handleGetSourceSet(UnicodeSet& result) const {
    UnicodeSet set;
    result.clear();
    for (int32_t i=0; i<count; ++i) {
    result.addAll(trans[i]->getSourceSet(set));
    // Take the example of Hiragana-Latin.  This is really
    // Hiragana-Katakana; Katakana-Latin.  The source set of
    // these two is roughly [:Hiragana:] and [:Katakana:].
    // But the source set for the entire transliterator is
    // actually [:Hiragana:] ONLY -- that is, the first
    // non-empty source set.

    // This is a heuristic, and not 100% reliable.
    if (!result.isEmpty()) {
        break;
    }
    }
}

/**
 * Override Transliterator framework
 */
UnicodeSet& CompoundTransliterator::getTargetSet(UnicodeSet& result) const {
    UnicodeSet set;
    result.clear();
    for (int32_t i=0; i<count; ++i) {
    // This is a heuristic, and not 100% reliable.
    result.addAll(trans[i]->getTargetSet(set));
    }
    return result;
}

/**
 * Implements {@link Transliterator#handleTransliterate}.
 */
void CompoundTransliterator::handleTransliterate(Replaceable& text, UTransPosition& index,
                                                 UBool incremental) const {
    /* Call each transliterator with the same contextStart and
     * start, but with the limit as modified
     * by preceding transliterators.  The start index must be
     * reset for each transliterator to give each a chance to
     * transliterate the text.  The initial contextStart index is known
     * to still point to the same place after each transliterator
     * is called because each transliterator will not change the
     * text between contextStart and the initial start index.
     *
     * IMPORTANT: After the first transliterator, each subsequent
     * transliterator only gets to transliterate text committed by
     * preceding transliterators; that is, the start (output
     * value) of transliterator i becomes the limit (input value)
     * of transliterator i+1.  Finally, the overall limit is fixed
     * up before we return.
     *
     * Assumptions we make here:
     * (1) contextStart <= start <= limit <= contextLimit <= text.length()
     * (2) start <= start' <= limit'  ;cursor doesn't move back
     * (3) start <= limit'            ;text before cursor unchanged
     * - start' is the value of start after calling handleKT
     * - limit' is the value of limit after calling handleKT
     */
    
    /**
     * Example: 3 transliterators.  This example illustrates the
     * mechanics we need to implement.  C, S, and L are the contextStart,
     * start, and limit.  gl is the globalLimit.  contextLimit is
     * equal to limit throughout.
     *
     * 1. h-u, changes hex to Unicode
     *
     *    4  7  a  d  0      4  7  a
     *    abc/u0061/u    =>  abca/u    
     *    C  S       L       C   S L   gl=f->a
     *
     * 2. upup, changes "x" to "XX"
     *
     *    4  7  a       4  7  a
     *    abca/u    =>  abcAA/u    
     *    C  SL         C    S   
     *                       L    gl=a->b
     * 3. u-h, changes Unicode to hex
     *
     *    4  7  a        4  7  a  d  0  3
     *    abcAA/u    =>  abc/u0041/u0041/u    
     *    C  S L         C              S
     *                                  L   gl=b->15
     * 4. return
     *
     *    4  7  a  d  0  3
     *    abc/u0041/u0041/u    
     *    C S L
     */

    if (count < 1) {
        index.start = index.limit;
        return; // Short circuit for empty compound transliterators
    }

    // compoundLimit is the limit value for the entire compound
    // operation.  We overwrite index.limit with the previous
    // index.start.  After each transliteration, we update
    // compoundLimit for insertions or deletions that have happened.
    int32_t compoundLimit = index.limit;

    // compoundStart is the start for the entire compound
    // operation.
    int32_t compoundStart = index.start;
    
    int32_t delta = 0; // delta in length

    // Give each transliterator a crack at the run of characters.
    // See comments at the top of the method for more detail.
    for (int32_t i=0; i<count; ++i) {
        index.start = compoundStart; // Reset start
        int32_t limit = index.limit;
        
        if (index.start == index.limit) {
            // Short circuit for empty range
            break;
        }

        trans[i]->filteredTransliterate(text, index, incremental);
        
        // In a properly written transliterator, start == limit after
        // handleTransliterate() returns when incremental is false.
        // Catch cases where the subclass doesn't do this, and throw
        // an exception.  (Just pinning start to limit is a bad idea,
        // because what's probably happening is that the subclass
        // isn't transliterating all the way to the end, and it should
        // in non-incremental mode.)
        if (!incremental && index.start != index.limit) {
            // We can't throw an exception, so just fudge things
            index.start = index.limit;
        }

        // Cumulative delta for insertions/deletions
        delta += index.limit - limit;
        
        if (incremental) {
            // In the incremental case, only allow subsequent
            // transliterators to modify what has already been
            // completely processed by prior transliterators.  In the
            // non-incrmental case, allow each transliterator to
            // process the entire text.
            index.limit = index.start;
        }
    }

    compoundLimit += delta;

    // Start is good where it is -- where the last transliterator left
    // it.  Limit needs to be put back where it was, modulo
    // adjustments for deletions/insertions.
    index.limit = compoundLimit;
}

/**
 * Sets the length of the longest context required by this transliterator.
 * This is <em>preceding</em> context.
 */
void CompoundTransliterator::computeMaximumContextLength(void) {
    int32_t max = 0;
    for (int32_t i=0; i<count; ++i) {
        int32_t len = trans[i]->getMaximumContextLength();
        if (len > max) {
            max = len;
        }
    }
    setMaximumContextLength(max);
}

U_NAMESPACE_END

#endif /* #if !UCONFIG_NO_TRANSLITERATION */

/* eof */