DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (31ec81b5d7bb)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 4 -*-
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "mozilla/ArrayUtils.h"
#include "gfxCoreTextShaper.h"
#include "gfxMacFont.h"
#include "gfxFontUtils.h"
#include "mozilla/gfx/2D.h"

#include <algorithm>

using namespace mozilla;

// standard font descriptors that we construct the first time they're needed
CTFontDescriptorRef gfxCoreTextShaper::sDefaultFeaturesDescriptor = nullptr;
CTFontDescriptorRef gfxCoreTextShaper::sDisableLigaturesDescriptor = nullptr;

gfxCoreTextShaper::gfxCoreTextShaper(gfxMacFont *aFont)
    : gfxFontShaper(aFont)
{
    // Create our CTFontRef
    mCTFont = ::CTFontCreateWithGraphicsFont(aFont->GetCGFontRef(),
                                             aFont->GetAdjustedSize(),
                                             nullptr,
                                             GetDefaultFeaturesDescriptor());

    // Set up the default attribute dictionary that we will need each time we create a CFAttributedString
    mAttributesDict = ::CFDictionaryCreate(kCFAllocatorDefault,
                                           (const void**) &kCTFontAttributeName,
                                           (const void**) &mCTFont,
                                           1, // count of attributes
                                           &kCFTypeDictionaryKeyCallBacks,
                                           &kCFTypeDictionaryValueCallBacks);
}

gfxCoreTextShaper::~gfxCoreTextShaper()
{
    if (mAttributesDict) {
        ::CFRelease(mAttributesDict);
    }
    if (mCTFont) {
        ::CFRelease(mCTFont);
    }
}

bool
gfxCoreTextShaper::ShapeText(gfxContext      *aContext,
                             const PRUnichar *aText,
                             uint32_t         aOffset,
                             uint32_t         aLength,
                             int32_t          aScript,
                             gfxShapedText   *aShapedText)
{
    // Create a CFAttributedString with text and style info, so we can use CoreText to lay it out.

    bool isRightToLeft = aShapedText->IsRightToLeft();
    uint32_t length = aLength;

    // we need to bidi-wrap the text if the run is RTL,
    // or if it is an LTR run but may contain (overridden) RTL chars
    bool bidiWrap = isRightToLeft;
    if (!bidiWrap && !aShapedText->TextIs8Bit()) {
        uint32_t i;
        for (i = 0; i < length; ++i) {
            if (gfxFontUtils::PotentialRTLChar(aText[i])) {
                bidiWrap = true;
                break;
            }
        }
    }

    // If there's a possibility of any bidi, we wrap the text with direction overrides
    // to ensure neutrals or characters that were bidi-overridden in HTML behave properly.
    const UniChar beginLTR[]    = { 0x202d, 0x20 };
    const UniChar beginRTL[]    = { 0x202e, 0x20 };
    const UniChar endBidiWrap[] = { 0x20, 0x2e, 0x202c };

    uint32_t startOffset;
    CFStringRef stringObj;
    if (bidiWrap) {
        startOffset = isRightToLeft ?
            mozilla::ArrayLength(beginRTL) : mozilla::ArrayLength(beginLTR);
        CFMutableStringRef mutableString =
            ::CFStringCreateMutable(kCFAllocatorDefault,
                                    length + startOffset + mozilla::ArrayLength(endBidiWrap));
        ::CFStringAppendCharacters(mutableString,
                                   isRightToLeft ? beginRTL : beginLTR,
                                   startOffset);
        ::CFStringAppendCharacters(mutableString, reinterpret_cast<const UniChar*>(aText), length);
        ::CFStringAppendCharacters(mutableString,
                                   endBidiWrap, mozilla::ArrayLength(endBidiWrap));
        stringObj = mutableString;
    } else {
        startOffset = 0;
        stringObj = ::CFStringCreateWithCharactersNoCopy(kCFAllocatorDefault,
                                                         reinterpret_cast<const UniChar*>(aText),
                                                         length, kCFAllocatorNull);
    }

    CFDictionaryRef attrObj;
    if (aShapedText->DisableLigatures()) {
        // For letterspacing (or maybe other situations) we need to make a copy of the CTFont
        // with the ligature feature disabled
        CTFontRef ctFont =
            CreateCTFontWithDisabledLigatures(::CTFontGetSize(mCTFont));

        attrObj =
            ::CFDictionaryCreate(kCFAllocatorDefault,
                                 (const void**) &kCTFontAttributeName,
                                 (const void**) &ctFont,
                                 1, // count of attributes
                                 &kCFTypeDictionaryKeyCallBacks,
                                 &kCFTypeDictionaryValueCallBacks);
        // Having created the dict, we're finished with our ligature-disabled CTFontRef
        ::CFRelease(ctFont);
    } else {
        attrObj = mAttributesDict;
        ::CFRetain(attrObj);
    }

    // Now we can create an attributed string
    CFAttributedStringRef attrStringObj =
        ::CFAttributedStringCreate(kCFAllocatorDefault, stringObj, attrObj);
    ::CFRelease(stringObj);
    ::CFRelease(attrObj);

    // Create the CoreText line from our string, then we're done with it
    CTLineRef line = ::CTLineCreateWithAttributedString(attrStringObj);
    ::CFRelease(attrStringObj);

    // and finally retrieve the glyph data and store into the gfxTextRun
    CFArrayRef glyphRuns = ::CTLineGetGlyphRuns(line);
    uint32_t numRuns = ::CFArrayGetCount(glyphRuns);

    // Iterate through the glyph runs.
    // Note that this includes the bidi wrapper, so we have to be careful
    // not to include the extra glyphs from there
    bool success = true;
    for (uint32_t runIndex = 0; runIndex < numRuns; runIndex++) {
        CTRunRef aCTRun =
            (CTRunRef)::CFArrayGetValueAtIndex(glyphRuns, runIndex);
        if (SetGlyphsFromRun(aShapedText, aOffset, aLength, aCTRun, startOffset) != NS_OK) {
            success = false;
            break;
        }
    }

    ::CFRelease(line);

    return success;
}

#define SMALL_GLYPH_RUN 128 // preallocated size of our auto arrays for per-glyph data;
                            // some testing indicates that 90%+ of glyph runs will fit
                            // without requiring a separate allocation

nsresult
gfxCoreTextShaper::SetGlyphsFromRun(gfxShapedText *aShapedText,
                                    uint32_t       aOffset,
                                    uint32_t       aLength,
                                    CTRunRef       aCTRun,
                                    int32_t        aStringOffset)
{
    // The word has been bidi-wrapped; aStringOffset is the number
    // of chars at the beginning of the CTLine that we should skip.
    // aCTRun is a glyph run from the CoreText layout process.

    int32_t direction = aShapedText->IsRightToLeft() ? -1 : 1;

    int32_t numGlyphs = ::CTRunGetGlyphCount(aCTRun);
    if (numGlyphs == 0) {
        return NS_OK;
    }

    int32_t wordLength = aLength;

    // character offsets get really confusing here, as we have to keep track of
    // (a) the text in the actual textRun we're constructing
    // (c) the string that was handed to CoreText, which contains the text of the font run
    //     plus directional-override padding
    // (d) the CTRun currently being processed, which may be a sub-run of the CoreText line
    //     (but may extend beyond the actual font run into the bidi wrapping text).
    //     aStringOffset tells us how many initial characters of the line to ignore.

    // get the source string range within the CTLine's text
    CFRange stringRange = ::CTRunGetStringRange(aCTRun);
    // skip the run if it is entirely outside the actual range of the font run
    if (stringRange.location - aStringOffset + stringRange.length <= 0 ||
        stringRange.location - aStringOffset >= wordLength) {
        return NS_OK;
    }

    // retrieve the laid-out glyph data from the CTRun
    nsAutoArrayPtr<CGGlyph> glyphsArray;
    nsAutoArrayPtr<CGPoint> positionsArray;
    nsAutoArrayPtr<CFIndex> glyphToCharArray;
    const CGGlyph* glyphs = nullptr;
    const CGPoint* positions = nullptr;
    const CFIndex* glyphToChar = nullptr;

    // Testing indicates that CTRunGetGlyphsPtr (almost?) always succeeds,
    // and so allocating a new array and copying data with CTRunGetGlyphs
    // will be extremely rare.
    // If this were not the case, we could use an nsAutoTArray<> to
    // try and avoid the heap allocation for small runs.
    // It's possible that some future change to CoreText will mean that
    // CTRunGetGlyphsPtr fails more often; if this happens, nsAutoTArray<>
    // may become an attractive option.
    glyphs = ::CTRunGetGlyphsPtr(aCTRun);
    if (!glyphs) {
        glyphsArray = new (std::nothrow) CGGlyph[numGlyphs];
        if (!glyphsArray) {
            return NS_ERROR_OUT_OF_MEMORY;
        }
        ::CTRunGetGlyphs(aCTRun, ::CFRangeMake(0, 0), glyphsArray.get());
        glyphs = glyphsArray.get();
    }

    positions = ::CTRunGetPositionsPtr(aCTRun);
    if (!positions) {
        positionsArray = new (std::nothrow) CGPoint[numGlyphs];
        if (!positionsArray) {
            return NS_ERROR_OUT_OF_MEMORY;
        }
        ::CTRunGetPositions(aCTRun, ::CFRangeMake(0, 0), positionsArray.get());
        positions = positionsArray.get();
    }

    // Remember that the glyphToChar indices relate to the CoreText line,
    // not to the beginning of the textRun, the font run,
    // or the stringRange of the glyph run
    glyphToChar = ::CTRunGetStringIndicesPtr(aCTRun);
    if (!glyphToChar) {
        glyphToCharArray = new (std::nothrow) CFIndex[numGlyphs];
        if (!glyphToCharArray) {
            return NS_ERROR_OUT_OF_MEMORY;
        }
        ::CTRunGetStringIndices(aCTRun, ::CFRangeMake(0, 0), glyphToCharArray.get());
        glyphToChar = glyphToCharArray.get();
    }

    double runWidth = ::CTRunGetTypographicBounds(aCTRun, ::CFRangeMake(0, 0),
                                                  nullptr, nullptr, nullptr);

    nsAutoTArray<gfxShapedText::DetailedGlyph,1> detailedGlyphs;
    gfxShapedText::CompressedGlyph g;
    gfxShapedText::CompressedGlyph *charGlyphs =
        aShapedText->GetCharacterGlyphs() + aOffset;

    // CoreText gives us the glyphindex-to-charindex mapping, which relates each glyph
    // to a source text character; we also need the charindex-to-glyphindex mapping to
    // find the glyph for a given char. Note that some chars may not map to any glyph
    // (ligature continuations), and some may map to several glyphs (eg Indic split vowels).
    // We set the glyph index to NO_GLYPH for chars that have no associated glyph, and we
    // record the last glyph index for cases where the char maps to several glyphs,
    // so that our clumping will include all the glyph fragments for the character.

    // The charToGlyph array is indexed by char position within the stringRange of the glyph run.

    static const int32_t NO_GLYPH = -1;
    nsAutoTArray<int32_t,SMALL_GLYPH_RUN> charToGlyphArray;
    if (!charToGlyphArray.SetLength(stringRange.length)) {
        return NS_ERROR_OUT_OF_MEMORY;
    }
    int32_t *charToGlyph = charToGlyphArray.Elements();
    for (int32_t offset = 0; offset < stringRange.length; ++offset) {
        charToGlyph[offset] = NO_GLYPH;
    }
    for (int32_t i = 0; i < numGlyphs; ++i) {
        int32_t loc = glyphToChar[i] - stringRange.location;
        if (loc >= 0 && loc < stringRange.length) {
            charToGlyph[loc] = i;
        }
    }

    // Find character and glyph clumps that correspond, allowing for ligatures,
    // indic reordering, split glyphs, etc.
    //
    // The idea is that we'll find a character sequence starting at the first char of stringRange,
    // and extend it until it includes the character associated with the first glyph;
    // we also extend it as long as there are "holes" in the range of glyphs. So we
    // will eventually have a contiguous sequence of characters, starting at the beginning
    // of the range, that map to a contiguous sequence of glyphs, starting at the beginning
    // of the glyph array. That's a clump; then we update the starting positions and repeat.
    //
    // NB: In the case of RTL layouts, we iterate over the stringRange in reverse.
    //

    // This may find characters that fall outside the range 0:wordLength,
    // so we won't necessarily use everything we find here.

    bool isRightToLeft = aShapedText->IsRightToLeft();
    int32_t glyphStart = 0; // looking for a clump that starts at this glyph index
    int32_t charStart = isRightToLeft ?
        stringRange.length - 1 : 0; // and this char index (in the stringRange of the glyph run)

    while (glyphStart < numGlyphs) { // keep finding groups until all glyphs are accounted for
        bool inOrder = true;
        int32_t charEnd = glyphToChar[glyphStart] - stringRange.location;
        NS_WARN_IF_FALSE(charEnd >= 0 && charEnd < stringRange.length,
                         "glyph-to-char mapping points outside string range");
        // clamp charEnd to the valid range of the string
        charEnd = std::max(charEnd, 0);
        charEnd = std::min(charEnd, int32_t(stringRange.length));

        int32_t glyphEnd = glyphStart;
        int32_t charLimit = isRightToLeft ? -1 : stringRange.length;
        do {
            // This is normally executed once for each iteration of the outer loop,
            // but in unusual cases where the character/glyph association is complex,
            // the initial character range might correspond to a non-contiguous
            // glyph range with "holes" in it. If so, we will repeat this loop to
            // extend the character range until we have a contiguous glyph sequence.
            NS_ASSERTION((direction > 0 && charEnd < charLimit) ||
                         (direction < 0 && charEnd > charLimit),
                         "no characters left in range?");
            charEnd += direction;
            while (charEnd != charLimit && charToGlyph[charEnd] == NO_GLYPH) {
                charEnd += direction;
            }

            // find the maximum glyph index covered by the clump so far
            if (isRightToLeft) {
                for (int32_t i = charStart; i > charEnd; --i) {
                    if (charToGlyph[i] != NO_GLYPH) {
                        // update extent of glyph range
                        glyphEnd = std::max(glyphEnd, charToGlyph[i] + 1);
                    }
                }
            } else {
                for (int32_t i = charStart; i < charEnd; ++i) {
                    if (charToGlyph[i] != NO_GLYPH) {
                        // update extent of glyph range
                        glyphEnd = std::max(glyphEnd, charToGlyph[i] + 1);
                    }
                }
            }

            if (glyphEnd == glyphStart + 1) {
                // for the common case of a single-glyph clump, we can skip the following checks
                break;
            }

            if (glyphEnd == glyphStart) {
                // no glyphs, try to extend the clump
                continue;
            }

            // check whether all glyphs in the range are associated with the characters
            // in our clump; if not, we have a discontinuous range, and should extend it
            // unless we've reached the end of the text
            bool allGlyphsAreWithinCluster = true;
            int32_t prevGlyphCharIndex = charStart;
            for (int32_t i = glyphStart; i < glyphEnd; ++i) {
                int32_t glyphCharIndex = glyphToChar[i] - stringRange.location;
                if (isRightToLeft) {
                    if (glyphCharIndex > charStart || glyphCharIndex <= charEnd) {
                        allGlyphsAreWithinCluster = false;
                        break;
                    }
                    if (glyphCharIndex > prevGlyphCharIndex) {
                        inOrder = false;
                    }
                    prevGlyphCharIndex = glyphCharIndex;
                } else {
                    if (glyphCharIndex < charStart || glyphCharIndex >= charEnd) {
                        allGlyphsAreWithinCluster = false;
                        break;
                    }
                    if (glyphCharIndex < prevGlyphCharIndex) {
                        inOrder = false;
                    }
                    prevGlyphCharIndex = glyphCharIndex;
                }
            }
            if (allGlyphsAreWithinCluster) {
                break;
            }
        } while (charEnd != charLimit);

        NS_WARN_IF_FALSE(glyphStart < glyphEnd,
                         "character/glyph clump contains no glyphs!");
        if (glyphStart == glyphEnd) {
            ++glyphStart; // make progress - avoid potential infinite loop
            charStart = charEnd;
            continue;
        }

        NS_WARN_IF_FALSE(charStart != charEnd,
                         "character/glyph clump contains no characters!");
        if (charStart == charEnd) {
            glyphStart = glyphEnd; // this is bad - we'll discard the glyph(s),
                                   // as there's nowhere to attach them
            continue;
        }

        // Now charStart..charEnd is a ligature clump, corresponding to glyphStart..glyphEnd;
        // Set baseCharIndex to the char we'll actually attach the glyphs to (1st of ligature),
        // and endCharIndex to the limit (position beyond the last char),
        // adjusting for the offset of the stringRange relative to the textRun.
        int32_t baseCharIndex, endCharIndex;
        if (isRightToLeft) {
            while (charEnd >= 0 && charToGlyph[charEnd] == NO_GLYPH) {
                charEnd--;
            }
            baseCharIndex = charEnd + stringRange.location - aStringOffset + 1;
            endCharIndex = charStart + stringRange.location - aStringOffset + 1;
        } else {
            while (charEnd < stringRange.length && charToGlyph[charEnd] == NO_GLYPH) {
                charEnd++;
            }
            baseCharIndex = charStart + stringRange.location - aStringOffset;
            endCharIndex = charEnd + stringRange.location - aStringOffset;
        }

        // Then we check if the clump falls outside our actual string range; if so, just go to the next.
        if (endCharIndex <= 0 || baseCharIndex >= wordLength) {
            glyphStart = glyphEnd;
            charStart = charEnd;
            continue;
        }
        // Ensure we won't try to go beyond the valid length of the word's text
        baseCharIndex = std::max(baseCharIndex, 0);
        endCharIndex = std::min(endCharIndex, wordLength);

        // Now we're ready to set the glyph info in the textRun; measure the glyph width
        // of the first (perhaps only) glyph, to see if it is "Simple"
        int32_t appUnitsPerDevUnit = aShapedText->GetAppUnitsPerDevUnit();
        double toNextGlyph;
        if (glyphStart < numGlyphs-1) {
            toNextGlyph = positions[glyphStart+1].x - positions[glyphStart].x;
        } else {
            toNextGlyph = positions[0].x + runWidth - positions[glyphStart].x;
        }
        int32_t advance = int32_t(toNextGlyph * appUnitsPerDevUnit);

        // Check if it's a simple one-to-one mapping
        int32_t glyphsInClump = glyphEnd - glyphStart;
        if (glyphsInClump == 1 &&
            gfxTextRun::CompressedGlyph::IsSimpleGlyphID(glyphs[glyphStart]) &&
            gfxTextRun::CompressedGlyph::IsSimpleAdvance(advance) &&
            charGlyphs[baseCharIndex].IsClusterStart() &&
            positions[glyphStart].y == 0.0)
        {
            charGlyphs[baseCharIndex].SetSimpleGlyph(advance,
                                                     glyphs[glyphStart]);
        } else {
            // collect all glyphs in a list to be assigned to the first char;
            // there must be at least one in the clump, and we already measured its advance,
            // hence the placement of the loop-exit test and the measurement of the next glyph
            while (1) {
                gfxTextRun::DetailedGlyph *details = detailedGlyphs.AppendElement();
                details->mGlyphID = glyphs[glyphStart];
                details->mXOffset = 0;
                details->mYOffset = -positions[glyphStart].y * appUnitsPerDevUnit;
                details->mAdvance = advance;
                if (++glyphStart >= glyphEnd) {
                   break;
                }
                if (glyphStart < numGlyphs-1) {
                    toNextGlyph = positions[glyphStart+1].x - positions[glyphStart].x;
                } else {
                    toNextGlyph = positions[0].x + runWidth - positions[glyphStart].x;
                }
                advance = int32_t(toNextGlyph * appUnitsPerDevUnit);
            }

            gfxTextRun::CompressedGlyph g;
            g.SetComplex(charGlyphs[baseCharIndex].IsClusterStart(),
                         true, detailedGlyphs.Length());
            aShapedText->SetGlyphs(aOffset + baseCharIndex, g, detailedGlyphs.Elements());

            detailedGlyphs.Clear();
        }

        // the rest of the chars in the group are ligature continuations, no associated glyphs
        while (++baseCharIndex != endCharIndex && baseCharIndex < wordLength) {
            gfxShapedText::CompressedGlyph &g = charGlyphs[baseCharIndex];
            NS_ASSERTION(!g.IsSimpleGlyph(), "overwriting a simple glyph");
            g.SetComplex(inOrder && g.IsClusterStart(), false, 0);
        }

        glyphStart = glyphEnd;
        charStart = charEnd;
    }

    return NS_OK;
}

#undef SMALL_GLYPH_RUN

// Construct the font attribute descriptor that we'll apply by default when creating a CTFontRef.
// This will turn off line-edge swashes by default, because we don't know the actual line breaks
// when doing glyph shaping.
void
gfxCoreTextShaper::CreateDefaultFeaturesDescriptor()
{
    if (sDefaultFeaturesDescriptor != nullptr) {
        return;
    }

    SInt16 val = kSmartSwashType;
    CFNumberRef swashesType =
        ::CFNumberCreate(kCFAllocatorDefault,
                         kCFNumberSInt16Type,
                         &val);
    val = kLineInitialSwashesOffSelector;
    CFNumberRef lineInitialsOffSelector =
        ::CFNumberCreate(kCFAllocatorDefault,
                         kCFNumberSInt16Type,
                         &val);

    CFTypeRef keys[]   = { kCTFontFeatureTypeIdentifierKey,
                           kCTFontFeatureSelectorIdentifierKey };
    CFTypeRef values[] = { swashesType,
                           lineInitialsOffSelector };
    CFDictionaryRef featureSettings[2];
    featureSettings[0] =
        ::CFDictionaryCreate(kCFAllocatorDefault,
                             (const void **) keys,
                             (const void **) values,
                             ArrayLength(keys),
                             &kCFTypeDictionaryKeyCallBacks,
                             &kCFTypeDictionaryValueCallBacks);
    ::CFRelease(lineInitialsOffSelector);

    val = kLineFinalSwashesOffSelector;
    CFNumberRef lineFinalsOffSelector =
        ::CFNumberCreate(kCFAllocatorDefault,
                         kCFNumberSInt16Type,
                         &val);
    values[1] = lineFinalsOffSelector;
    featureSettings[1] =
        ::CFDictionaryCreate(kCFAllocatorDefault,
                             (const void **) keys,
                             (const void **) values,
                             ArrayLength(keys),
                             &kCFTypeDictionaryKeyCallBacks,
                             &kCFTypeDictionaryValueCallBacks);
    ::CFRelease(lineFinalsOffSelector);
    ::CFRelease(swashesType);

    CFArrayRef featuresArray =
        ::CFArrayCreate(kCFAllocatorDefault,
                        (const void **) featureSettings,
                        ArrayLength(featureSettings),
                        &kCFTypeArrayCallBacks);
    ::CFRelease(featureSettings[0]);
    ::CFRelease(featureSettings[1]);

    const CFTypeRef attrKeys[]   = { kCTFontFeatureSettingsAttribute };
    const CFTypeRef attrValues[] = { featuresArray };
    CFDictionaryRef attributesDict =
        ::CFDictionaryCreate(kCFAllocatorDefault,
                             (const void **) attrKeys,
                             (const void **) attrValues,
                             ArrayLength(attrKeys),
                             &kCFTypeDictionaryKeyCallBacks,
                             &kCFTypeDictionaryValueCallBacks);
    ::CFRelease(featuresArray);

    sDefaultFeaturesDescriptor =
        ::CTFontDescriptorCreateWithAttributes(attributesDict);
    ::CFRelease(attributesDict);
}

// Create a CTFontRef, with the Common Ligatures feature disabled
CTFontRef
gfxCoreTextShaper::CreateCTFontWithDisabledLigatures(CGFloat aSize)
{
    if (sDisableLigaturesDescriptor == nullptr) {
        // initialize cached descriptor to turn off the Common Ligatures feature
        SInt16 val = kLigaturesType;
        CFNumberRef ligaturesType =
            ::CFNumberCreate(kCFAllocatorDefault,
                             kCFNumberSInt16Type,
                             &val);
        val = kCommonLigaturesOffSelector;
        CFNumberRef commonLigaturesOffSelector =
            ::CFNumberCreate(kCFAllocatorDefault,
                             kCFNumberSInt16Type,
                             &val);

        const CFTypeRef keys[]   = { kCTFontFeatureTypeIdentifierKey,
                                     kCTFontFeatureSelectorIdentifierKey };
        const CFTypeRef values[] = { ligaturesType,
                                     commonLigaturesOffSelector };
        CFDictionaryRef featureSettingDict =
            ::CFDictionaryCreate(kCFAllocatorDefault,
                                 (const void **) keys,
                                 (const void **) values,
                                 ArrayLength(keys),
                                 &kCFTypeDictionaryKeyCallBacks,
                                 &kCFTypeDictionaryValueCallBacks);
        ::CFRelease(ligaturesType);
        ::CFRelease(commonLigaturesOffSelector);

        CFArrayRef featuresArray =
            ::CFArrayCreate(kCFAllocatorDefault,
                            (const void **) &featureSettingDict,
                            1,
                            &kCFTypeArrayCallBacks);
        ::CFRelease(featureSettingDict);

        CFDictionaryRef attributesDict =
            ::CFDictionaryCreate(kCFAllocatorDefault,
                                 (const void **) &kCTFontFeatureSettingsAttribute,
                                 (const void **) &featuresArray,
                                 1, // count of keys & values
                                 &kCFTypeDictionaryKeyCallBacks,
                                 &kCFTypeDictionaryValueCallBacks);
        ::CFRelease(featuresArray);

        sDisableLigaturesDescriptor =
            ::CTFontDescriptorCreateCopyWithAttributes(GetDefaultFeaturesDescriptor(),
                                                       attributesDict);
        ::CFRelease(attributesDict);
    }

    gfxMacFont *f = static_cast<gfxMacFont*>(mFont);
    return ::CTFontCreateWithGraphicsFont(f->GetCGFontRef(), aSize, nullptr,
                                          sDisableLigaturesDescriptor);
}

void
gfxCoreTextShaper::Shutdown() // [static]
{
    if (sDisableLigaturesDescriptor != nullptr) {
        ::CFRelease(sDisableLigaturesDescriptor);
        sDisableLigaturesDescriptor = nullptr;
    }        
    if (sDefaultFeaturesDescriptor != nullptr) {
        ::CFRelease(sDefaultFeaturesDescriptor);
        sDefaultFeaturesDescriptor = nullptr;
    }
}