DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (31ec81b5d7bb)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
/*  GRAPHITE2 LICENSING

    Copyright 2010, SIL International
    All rights reserved.

    This library is free software; you can redistribute it and/or modify
    it under the terms of the GNU Lesser General Public License as published
    by the Free Software Foundation; either version 2.1 of License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
    Lesser General Public License for more details.

    You should also have received a copy of the GNU Lesser General Public
    License along with this library in the file named "LICENSE".
    If not, write to the Free Software Foundation, 51 Franklin Street, 
    Suite 500, Boston, MA 02110-1335, USA or visit their web page on the 
    internet at http://www.fsf.org/licenses/lgpl.html.

Alternatively, the contents of this file may be used under the terms of the
Mozilla Public License (http://mozilla.org/MPL) or the GNU General Public
License, as published by the Free Software Foundation, either version 2
of the License or (at your option) any later version.
*/
// This class represents loaded graphite stack machine code.  It performs 
// basic sanity checks, on the incoming code to prevent more obvious problems
// from crashing graphite.
// Author: Tim Eves

#include <cassert>
#include <cstddef>
#include <cstdlib>
#include <cstring>
#include "graphite2/Segment.h"
#include "inc/Code.h"
#include "inc/Face.h"
#include "inc/GlyphFace.h"
#include "inc/GlyphCache.h"
#include "inc/Machine.h"
#include "inc/Rule.h"
#include "inc/Silf.h"

#include <stdio.h>

#ifdef NDEBUG
#ifdef __GNUC__
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif
#endif


using namespace graphite2;
using namespace vm;

namespace {

inline bool is_return(const instr i) {
    const opcode_t * opmap = Machine::getOpcodeTable();
    const instr pop_ret  = *opmap[POP_RET].impl,
                ret_zero = *opmap[RET_ZERO].impl,
                ret_true = *opmap[RET_TRUE].impl;
    return i == pop_ret || i == ret_zero || i == ret_true;
}

struct context
{
    context(uint8 ref=0) : codeRef(ref) {flags.changed=false; flags.referenced=false; flags.inserted=false;}
    struct { 
        uint8   changed:1,
                referenced:1,
                inserted:1;
    } flags;
    uint8       codeRef;
};

} // end namespace


class Machine::Code::decoder
{
public:
    struct limits;
    struct analysis
    {
        uint8     slotref;
        context   contexts[256];
        byte      max_ref;
        
        analysis() : slotref(0), max_ref(0) {};
        void set_ref(int index) throw();
        void set_changed(int index) throw();

    };
    
    decoder(const limits & lims, Code &code) throw();
    
    bool        load(const byte * bc_begin, const byte * bc_end);
    void        apply_analysis(instr * const code, instr * code_end);
    byte        max_ref() { return _analysis.max_ref; }
    int         pre_context() const { return _pre_context; }
    
private:
    opcode      fetch_opcode(const byte * bc);
    void        analyse_opcode(const opcode, const int8 * const dp) throw();
    bool        emit_opcode(opcode opc, const byte * & bc);
    bool 		validate_opcode(const opcode opc, const byte * const bc);
    bool        valid_upto(const uint16 limit, const uint16 x) const throw();
    void        failure(const status_t s) const throw() { _code.failure(s); }
    
    Code              & _code;
    int                 _pre_context;
    uint16              _rule_length;
    instr             * _instr;
    byte              * _data;
    const limits      & _max;
    analysis            _analysis;
};


struct Machine::Code::decoder::limits
{
  const byte * const bytecode;
  const uint8        pre_context;
  const uint16       rule_length,
                     classes,
                     glyf_attrs,
                     features;
  const byte         attrid[gr_slatMax];
};
   
inline Machine::Code::decoder::decoder(const limits & lims, Code &code) throw()
: _code(code),
  _pre_context(code._constraint ? 0 : lims.pre_context), 
  _rule_length(code._constraint ? 1 : lims.rule_length), 
  _instr(code._code), _data(code._data), _max(lims)
{ }
    


Machine::Code::Code(bool is_constraint, const byte * bytecode_begin, const byte * const bytecode_end,
           uint8 pre_context, uint16 rule_length, const Silf & silf, const Face & face)
 :  _code(0), _data(0), _data_size(0), _instr_count(0), _max_ref(0), _status(loaded),
    _constraint(is_constraint), _modify(false), _delete(false), _own(true)
{
#ifdef GRAPHITE2_TELEMETRY
    telemetry::category _code_cat(face.tele.code);
#endif
    assert(bytecode_begin != 0);
    if (bytecode_begin == bytecode_end)
    {
      ::new (this) Code();
      return;
    }
    assert(bytecode_end > bytecode_begin);
    const opcode_t *    op_to_fn = Machine::getOpcodeTable();
    
    // Allocate code and dat target buffers, these sizes are a worst case 
    // estimate.  Once we know their real sizes the we'll shrink them.
    _code = static_cast<instr *>(malloc((bytecode_end - bytecode_begin)
                                             * sizeof(instr)));
    _data = static_cast<byte *>(malloc((bytecode_end - bytecode_begin)
                                             * sizeof(byte)));
    
    if (!_code || !_data) {
        failure(alloc_failed);
        return;
    }
    
    const decoder::limits lims = {
        bytecode_end,
        pre_context,
        rule_length,
        silf.numClasses(),
        face.glyphs().numAttrs(),
        face.numFeatures(), 
        {1,1,1,1,1,1,1,1, 
         1,1,1,1,1,1,1,255,
         1,1,1,1,1,1,1,1, 
         1,1,1,1,1,1,0,0, 
         0,0,0,0,0,0,0,0, 
         0,0,0,0,0,0,0,0, 
         0,0,0,0,0,0,0, silf.numUser()}
    };
    
    decoder dec(lims, *this);
    if(!dec.load(bytecode_begin, bytecode_end))
       return;
    
    // Is this an empty program?
    if (_instr_count == 0)
    {
      release_buffers();
      ::new (this) Code();
      return;
    }
    
    // When we reach the end check we've terminated it correctly
    if (!is_return(_code[_instr_count-1])) {
        failure(missing_return);
        return;
    }

    assert((_constraint && immutable()) || !_constraint);
    dec.apply_analysis(_code, _code + _instr_count);
    _max_ref = dec.max_ref();
    
    // Now we know exactly how much code and data the program really needs
    // realloc the buffers to exactly the right size so we don't waste any 
    // memory.
    assert((bytecode_end - bytecode_begin) >= std::ptrdiff_t(_instr_count));
    assert((bytecode_end - bytecode_begin) >= std::ptrdiff_t(_data_size));
    _code = static_cast<instr *>(realloc(_code, (_instr_count+1)*sizeof(instr)));
    _data = static_cast<byte *>(realloc(_data, _data_size*sizeof(byte)));

    if (!_code)
        failure(alloc_failed);

    // Make this RET_ZERO, we should never reach this but just in case ...
    _code[_instr_count] = op_to_fn[RET_ZERO].impl[_constraint];

#ifdef GRAPHITE2_TELEMETRY
    telemetry::count_bytes(_data_size + (_instr_count+1)*sizeof(instr));
#endif
}

Machine::Code::~Code() throw ()
{
    if (_own)
        release_buffers();
}


bool Machine::Code::decoder::load(const byte * bc, const byte * bc_end)
{
    while (bc < bc_end)
    {
        const opcode opc = fetch_opcode(bc++);
        if (opc == vm::MAX_OPCODE)
            return false;
        
        analyse_opcode(opc, reinterpret_cast<const int8 *>(bc));
        
        if (!emit_opcode(opc, bc))
            return false;
    }
    
    return bool(_code);
}

// Validation check and fixups.
//

opcode Machine::Code::decoder::fetch_opcode(const byte * bc)
{
    const opcode opc = opcode(*bc++);

    // Do some basic sanity checks based on what we know about the opcode
    if (!validate_opcode(opc, bc))	return MAX_OPCODE;

    // And check it's arguments as far as possible
    switch (opc)
    {
        case NOP :
        case PUSH_BYTE :
        case PUSH_BYTEU :
        case PUSH_SHORT :
        case PUSH_SHORTU :
        case PUSH_LONG :
        case ADD :
        case SUB :
        case MUL :
        case DIV :
        case MIN_ :
        case MAX_ :
        case NEG :
        case TRUNC8 :
        case TRUNC16 :
        case COND :
        case AND :
        case OR :
        case NOT :
        case EQUAL :
        case NOT_EQ :
        case LESS :
        case GTR :
        case LESS_EQ :
        case GTR_EQ :
            break;
        case NEXT :
        case NEXT_N :           // runtime checked
        case COPY_NEXT :
            ++_pre_context;
            break;
        case PUT_GLYPH_8BIT_OBS :
            valid_upto(_max.classes, bc[0]);
            break;
        case PUT_SUBS_8BIT_OBS :
            valid_upto(_rule_length, _pre_context + int8(bc[0]));
            valid_upto(_max.classes, bc[1]);
            valid_upto(_max.classes, bc[2]);
            break;
        case PUT_COPY :
            valid_upto(_rule_length, _pre_context + int8(bc[0]));
            break;
        case INSERT :
            --_pre_context;
            break;
        case DELETE :
            break;
        case ASSOC :
            for (uint8 num = bc[0]; num; --num)
                valid_upto(_rule_length, _pre_context + int8(bc[num]));
            break;
        case CNTXT_ITEM :
            valid_upto(_max.rule_length, _max.pre_context + int8(bc[0]));
            if (bc + 2 + bc[1] >= _max.bytecode)  failure(jump_past_end);
            if (_pre_context != 0)                failure(nested_context_item);
            break;
        case ATTR_SET :
        case ATTR_ADD :
        case ATTR_SUB :
        case ATTR_SET_SLOT :
        	valid_upto(gr_slatMax, bc[0]);
            break;
        case IATTR_SET_SLOT :
            if (valid_upto(gr_slatMax, bc[0]))
            	valid_upto(_max.attrid[bc[0]], bc[1]);
            break;
        case PUSH_SLOT_ATTR :
            valid_upto(gr_slatMax, bc[0]);
            valid_upto(_rule_length, _pre_context + int8(bc[1]));
            break;
        case PUSH_GLYPH_ATTR_OBS :
            valid_upto(_max.glyf_attrs, bc[0]);
            valid_upto(_rule_length, _pre_context + int8(bc[1]));
            break;
        case PUSH_GLYPH_METRIC :
            valid_upto(kgmetDescent, bc[0]);
            valid_upto(_rule_length, _pre_context + int8(bc[1]));
            // level: dp[2] no check necessary
            break;
        case PUSH_FEAT :
            valid_upto(_max.features, bc[0]);
            valid_upto(_rule_length, _pre_context + int8(bc[1]));
            break;
        case PUSH_ATT_TO_GATTR_OBS :
            valid_upto(_max.glyf_attrs, bc[0]);
            valid_upto(_rule_length, _pre_context + int8(bc[1]));
            break;
        case PUSH_ATT_TO_GLYPH_METRIC :
            valid_upto(kgmetDescent, bc[0]);
            valid_upto(_rule_length, _pre_context + int8(bc[1]));
            // level: dp[2] no check necessary
            break;
        case PUSH_ISLOT_ATTR :
            if (valid_upto(gr_slatMax, bc[0]))
            {
            	valid_upto(_rule_length, _pre_context + int8(bc[1]));
            	valid_upto(_max.attrid[bc[0]], bc[2]);
            }
            break;
        case PUSH_IGLYPH_ATTR :// not implemented
        case POP_RET :
        case RET_ZERO :
        case RET_TRUE :
            break;
        case IATTR_SET :
        case IATTR_ADD :
        case IATTR_SUB :
            if (valid_upto(gr_slatMax, bc[0]))
            	valid_upto(_max.attrid[bc[0]], bc[1]);
            break;
        case PUSH_PROC_STATE :  // dummy: dp[0] no check necessary
        case PUSH_VERSION :
            break;
        case PUT_SUBS :
            valid_upto(_rule_length, _pre_context + int8(bc[0]));
            valid_upto(_max.classes, uint16(bc[1]<< 8) | bc[2]);
            valid_upto(_max.classes, uint16(bc[3]<< 8) | bc[4]);
            break;
        case PUT_SUBS2 :        // not implemented
        case PUT_SUBS3 :        // not implemented
            break;
        case PUT_GLYPH :
            valid_upto(_max.classes, uint16(bc[0]<< 8) | bc[1]);
            break;
        case PUSH_GLYPH_ATTR :
        case PUSH_ATT_TO_GLYPH_ATTR :
            valid_upto(_max.glyf_attrs, uint16(bc[0]<< 8) | bc[1]);
            valid_upto(_rule_length, _pre_context + int8(bc[2]));
            break;
        default:
            failure(invalid_opcode);
            break;
    }

    return bool(_code) ? opc : MAX_OPCODE;
}


void Machine::Code::decoder::analyse_opcode(const opcode opc, const int8  * arg) throw()
{
  if (_code._constraint) return;
  
  switch (opc)
  {
    case DELETE :
      _code._delete = true;
      break;
    case PUT_GLYPH_8BIT_OBS :
    case PUT_GLYPH :
      _code._modify = true;
      _analysis.set_changed(_analysis.slotref);
      break;
    case NEXT :
    case COPY_NEXT :
      if (!_analysis.contexts[_analysis.slotref].flags.inserted)
        ++_analysis.slotref;
      _analysis.contexts[_analysis.slotref] = context(_code._instr_count+1);
      if (_analysis.slotref > _analysis.max_ref) _analysis.max_ref = _analysis.slotref;
      break;
    case INSERT :
      _analysis.contexts[_analysis.slotref].flags.inserted = true;
      _code._modify = true;
      break;
    case PUT_SUBS_8BIT_OBS :    // slotref on 1st parameter
    case PUT_SUBS : 
      _code._modify = true;
      _analysis.set_changed(_analysis.slotref);
      // no break
    case PUT_COPY :
    {
      if (arg[0] != 0) { _analysis.set_changed(_analysis.slotref); _code._modify = true; }
      if (arg[0] <= 0 && -arg[0] <= _analysis.slotref - _analysis.contexts[_analysis.slotref].flags.inserted)
        _analysis.set_ref(_analysis.slotref + arg[0] - _analysis.contexts[_analysis.slotref].flags.inserted);
      else if (_analysis.slotref + arg[0] > _analysis.max_ref) _analysis.max_ref = _analysis.slotref + arg[0];
      break;
    }
    case PUSH_ATT_TO_GATTR_OBS : // slotref on 2nd parameter
        if (_code._constraint) return;
        // no break
    case PUSH_GLYPH_ATTR_OBS :
    case PUSH_SLOT_ATTR :
    case PUSH_GLYPH_METRIC :
    case PUSH_ATT_TO_GLYPH_METRIC :
    case PUSH_ISLOT_ATTR :
    case PUSH_FEAT :
      if (arg[1] <= 0 && -arg[1] <= _analysis.slotref - _analysis.contexts[_analysis.slotref].flags.inserted)
        _analysis.set_ref(_analysis.slotref + arg[1] - _analysis.contexts[_analysis.slotref].flags.inserted);
      else if (_analysis.slotref + arg[1] > _analysis.max_ref) _analysis.max_ref = _analysis.slotref + arg[1];
      break;
    case PUSH_ATT_TO_GLYPH_ATTR :
        if (_code._constraint) return;
        // no break
    case PUSH_GLYPH_ATTR :
      if (arg[2] <= 0 && -arg[2] <= _analysis.slotref - _analysis.contexts[_analysis.slotref].flags.inserted)
        _analysis.set_ref(_analysis.slotref + arg[2] - _analysis.contexts[_analysis.slotref].flags.inserted);
      else if (_analysis.slotref + arg[2] > _analysis.max_ref) _analysis.max_ref = _analysis.slotref + arg[2];
      break;
    case ASSOC :                // slotrefs in varargs
      break;
    default:
        break;
  }
}


bool Machine::Code::decoder::emit_opcode(opcode opc, const byte * & bc)
{
    const opcode_t * op_to_fn = Machine::getOpcodeTable();
    const opcode_t & op       = op_to_fn[opc];
    if (op.impl[_code._constraint] == 0)
    {
        failure(unimplemented_opcode_used);
        return false;
    }

    const size_t     param_sz = op.param_sz == VARARGS ? bc[0] + 1 : op.param_sz;

    // Add this instruction
    *_instr++ = op.impl[_code._constraint]; 
    ++_code._instr_count;

    // Grab the parameters
    if (param_sz) {
        memcpy(_data, bc, param_sz * sizeof(byte));
        bc               += param_sz;
        _data            += param_sz;
        _code._data_size += param_sz;
    }
    
    // recursively decode a context item so we can split the skip into 
    // instruction and data portions.
    if (opc == CNTXT_ITEM)
    {
        assert(_pre_context == 0);
        _pre_context = _max.pre_context + int8(_data[-2]);
        _rule_length = _max.rule_length;

        const size_t ctxt_start = _code._instr_count;
        byte & instr_skip = _data[-1];
        byte & data_skip  = *_data++;
        ++_code._data_size;

        if (load(bc, bc + instr_skip))
        {
            bc += instr_skip;
            data_skip  = instr_skip - (_code._instr_count - ctxt_start);
            instr_skip = _code._instr_count - ctxt_start;

            _rule_length = 1;
            _pre_context = 0;
        }
    }
    
    return bool(_code);
}


void Machine::Code::decoder::apply_analysis(instr * const code, instr * code_end)
{
    // insert TEMP_COPY commands for slots that need them (that change and are referenced later)
    int tempcount = 0;
    if (_code._constraint) return;

    const instr temp_copy = Machine::getOpcodeTable()[TEMP_COPY].impl[0];
    for (const context * c = _analysis.contexts, * const ce = c + _analysis.slotref; c != ce; ++c)
    {
        if (!c->flags.referenced || !c->flags.changed) continue;
        
        instr * const tip = code + c->codeRef + tempcount;        
        memmove(tip+1, tip, (code_end - tip) * sizeof(instr));
        *tip = temp_copy;
        ++code_end;
        ++tempcount;
    }
    
    _code._instr_count = code_end - code;
}


inline
bool Machine::Code::decoder::validate_opcode(const opcode opc, const byte * const bc)
{
	if (opc >= MAX_OPCODE)
	{
		failure(invalid_opcode);
		return false;
	}
	const opcode_t & op = Machine::getOpcodeTable()[opc];
	const size_t param_sz = op.param_sz == VARARGS ? bc[0] + 1 : op.param_sz;
	if (bc + param_sz > _max.bytecode)
	{
		failure(arguments_exhausted);
		return false;
	}
	return true;
}


bool Machine::Code::decoder::valid_upto(const uint16 limit, const uint16 x) const throw()
{
	const bool t = x < limit;
    if (!t)	failure(out_of_range_data);
    return t;
}


inline 
void Machine::Code::failure(const status_t s) throw() {
    release_buffers();
    _status = s;
}


inline
void Machine::Code::decoder::analysis::set_ref(const int index) throw() {
    contexts[index].flags.referenced = true;
    if (index > max_ref) max_ref = index;
}


inline
void Machine::Code::decoder::analysis::set_changed(const int index) throw() {
    contexts[index].flags.changed = true;
    if (index > max_ref) max_ref = index;
}


void Machine::Code::release_buffers() throw()
{
    free(_code);
    free(_data);
    _code = 0;
    _data = 0;
    _own  = false;
}


int32 Machine::Code::run(Machine & m, slotref * & map) const
{
    assert(_own);
    assert(*this);          // Check we are actually runnable

    if (m.slotMap().size() <= size_t(_max_ref + m.slotMap().context()))
    {
        m._status = Machine::slot_offset_out_bounds;
//        return (m.slotMap().end() - map);
        return 1;
    }

    return  m.run(_code, _data, map);
}