DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (31ec81b5d7bb)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
# HG changeset patch
# User Robert O'Callahan <robert@ocallahan.org>
# Date 1249558156 -43200
# Node ID e564f3ab4ea6e3b5dd9c4e9e6042d3a84c229dde
# Parent  6ef9993a30bf2f983c9d64d7441d2e3b6b935de1
Bug 508227. Don't fallback to Quartz for repeating radial gradients. r=jmuizelaar

diff --git a/gfx/cairo/cairo/src/cairo-quartz-surface.c b/gfx/cairo/cairo/src/cairo-quartz-surface.c
--- a/gfx/cairo/cairo/src/cairo-quartz-surface.c
+++ b/gfx/cairo/cairo/src/cairo-quartz-surface.c
@@ -708,20 +708,20 @@ CreateGradientFunction (const cairo_grad
 			     1,
 			     input_value_range,
 			     4,
 			     output_value_ranges,
 			     &callbacks);
 }
 
 static CGFunctionRef
-CreateRepeatingGradientFunction (cairo_quartz_surface_t *surface,
-				 const cairo_gradient_pattern_t *gpat,
-				 CGPoint *start, CGPoint *end,
-				 CGAffineTransform matrix)
+CreateRepeatingLinearGradientFunction (cairo_quartz_surface_t *surface,
+				       const cairo_gradient_pattern_t *gpat,
+				       CGPoint *start, CGPoint *end,
+				       CGAffineTransform matrix)
 {
     cairo_pattern_t *pat;
     float input_value_range[2];
     float output_value_ranges[8] = { 0.f, 1.f, 0.f, 1.f, 0.f, 1.f, 0.f, 1.f };
     CGFunctionCallbacks callbacks = {
 	0, ComputeGradientValue, (CGFunctionReleaseInfoCallback) cairo_pattern_destroy
     };
 
@@ -791,16 +791,156 @@ CreateRepeatingGradientFunction (cairo_q
     return CGFunctionCreate (pat,
 			     1,
 			     input_value_range,
 			     4,
 			     output_value_ranges,
 			     &callbacks);
 }
 
+static void
+UpdateRadialParameterToIncludePoint(double *max_t, CGPoint *center,
+                                    double dr, double dx, double dy,
+                                    double x, double y)
+{
+    /* Compute a parameter t such that a circle centered at
+       (center->x + dx*t, center->y + dy*t) with radius dr*t contains the
+       point (x,y).
+
+       Let px = x - center->x, py = y - center->y.
+       Parameter values for which t is on the circle are given by
+         (px - dx*t)^2 + (py - dy*t)^2 = (t*dr)^2
+
+       Solving for t using the quadratic formula, and simplifying, we get
+         numerator = dx*px + dy*py +-
+                     sqrt( dr^2*(px^2 + py^2) - (dx*py - dy*px)^2 )
+         denominator = dx^2 + dy^2 - dr^2
+         t = numerator/denominator
+
+       In CreateRepeatingRadialGradientFunction we know the outer circle
+       contains the inner circle. Therefore the distance between the circle
+       centers plus the radius of the inner circle is less than the radius of
+       the outer circle. (This is checked in _cairo_quartz_setup_radial_source.)
+       Therefore
+         dx^2 + dy^2 < dr^2
+       So the denominator is negative and the larger solution for t is given by
+         numerator = dx*px + dy*py -
+                     sqrt( dr^2*(px^2 + py^2) - (dx*py - dy*px)^2 )
+         denominator = dx^2 + dy^2 - dr^2
+         t = numerator/denominator
+       dx^2 + dy^2 < dr^2 also ensures that the operand of sqrt is positive.
+    */
+    double px = x - center->x;
+    double py = y - center->y;
+    double dx_py_minus_dy_px = dx*py - dy*px;
+    double numerator = dx*px + dy*py -
+        sqrt (dr*dr*(px*px + py*py) - dx_py_minus_dy_px*dx_py_minus_dy_px);
+    double denominator = dx*dx + dy*dy - dr*dr;
+    double t = numerator/denominator;
+
+    if (*max_t < t) {
+        *max_t = t;
+    }
+}
+
+/* This must only be called when one of the circles properly contains the other */
+static CGFunctionRef
+CreateRepeatingRadialGradientFunction (cairo_quartz_surface_t *surface,
+                                       const cairo_gradient_pattern_t *gpat,
+                                       CGPoint *start, double *start_radius,
+                                       CGPoint *end, double *end_radius)
+{
+    CGRect clip = CGContextGetClipBoundingBox (surface->cgContext);
+    CGAffineTransform transform;
+    cairo_pattern_t *pat;
+    float input_value_range[2];
+    float output_value_ranges[8] = { 0.f, 1.f, 0.f, 1.f, 0.f, 1.f, 0.f, 1.f };
+    CGFunctionCallbacks callbacks = {
+        0, ComputeGradientValue, (CGFunctionReleaseInfoCallback) cairo_pattern_destroy
+    };
+    CGPoint *inner;
+    double *inner_radius;
+    CGPoint *outer;
+    double *outer_radius;
+    /* minimum and maximum t-parameter values that will make our gradient
+       cover the clipBox */
+    double t_min, t_max, t_temp;
+    /* outer minus inner */
+    double dr, dx, dy;
+
+    _cairo_quartz_cairo_matrix_to_quartz (&gpat->base.matrix, &transform);
+    /* clip is in cairo device coordinates; get it into cairo user space */
+    clip = CGRectApplyAffineTransform (clip, transform);
+
+    if (*start_radius < *end_radius) {
+        /* end circle contains start circle */
+        inner = start;
+        outer = end;
+        inner_radius = start_radius;
+        outer_radius = end_radius;
+    } else {
+        /* start circle contains end circle */
+        inner = end;
+        outer = start;
+        inner_radius = end_radius;
+        outer_radius = start_radius;
+    }
+
+    dr = *outer_radius - *inner_radius;
+    dx = outer->x - inner->x;
+    dy = outer->y - inner->y;
+
+    t_min = -(*inner_radius/dr);
+    inner->x += t_min*dx;
+    inner->y += t_min*dy;
+    *inner_radius = 0.;
+
+    t_temp = 0.;
+    UpdateRadialParameterToIncludePoint(&t_temp, inner, dr, dx, dy,
+                                        clip.origin.x, clip.origin.y);
+    UpdateRadialParameterToIncludePoint(&t_temp, inner, dr, dx, dy,
+                                        clip.origin.x + clip.size.width, clip.origin.y);
+    UpdateRadialParameterToIncludePoint(&t_temp, inner, dr, dx, dy,
+                                        clip.origin.x + clip.size.width, clip.origin.y + clip.size.height);
+    UpdateRadialParameterToIncludePoint(&t_temp, inner, dr, dx, dy,
+                                        clip.origin.x, clip.origin.y + clip.size.height);
+    /* UpdateRadialParameterToIncludePoint assumes t=0 means radius 0.
+       But for the parameter values we use with Quartz, t_min means radius 0.
+       Also, add a small fudge factor to avoid rounding issues. Since the
+       circles are alway expanding and containing the earlier circles, this is
+       OK. */
+    t_temp += 1e-6;
+    t_max = t_min + t_temp;
+    outer->x = inner->x + t_temp*dx;
+    outer->y = inner->y + t_temp*dy;
+    *outer_radius = t_temp*dr;
+
+    /* set the input range for the function -- the function knows how to
+       map values outside of 0.0 .. 1.0 to that range for REPEAT/REFLECT. */
+    if (*start_radius < *end_radius) {
+        input_value_range[0] = t_min;
+        input_value_range[1] = t_max;
+    } else {
+        input_value_range[0] = -t_max;
+        input_value_range[1] = -t_min;
+    }
+
+    if (_cairo_pattern_create_copy (&pat, &gpat->base))
+  /* quartz doesn't deal very well with malloc failing, so there's
+   * not much point in us trying either */
+  return NULL;
+
+    return CGFunctionCreate (pat,
+           1,
+           input_value_range,
+           4,
+           output_value_ranges,
+           &callbacks);
+}
+
 /* Obtain a CGImageRef from a #cairo_surface_t * */
 
 static void
 DataProviderReleaseCallback (void *info, const void *data, size_t size)
 {
     cairo_surface_t *surface = (cairo_surface_t *) info;
     cairo_surface_destroy (surface);
 }
@@ -1112,23 +1252,24 @@ _cairo_quartz_setup_linear_source (cairo
     rgb = CGColorSpaceCreateDeviceRGB();
 
     start = CGPointMake (_cairo_fixed_to_double (lpat->p1.x),
 			 _cairo_fixed_to_double (lpat->p1.y));
     end = CGPointMake (_cairo_fixed_to_double (lpat->p2.x),
 		       _cairo_fixed_to_double (lpat->p2.y));
 
     if (abspat->extend == CAIRO_EXTEND_NONE ||
-	abspat->extend == CAIRO_EXTEND_PAD)
+        abspat->extend == CAIRO_EXTEND_PAD) 
     {
 	gradFunc = CreateGradientFunction (&lpat->base);
     } else {
-	gradFunc = CreateRepeatingGradientFunction (surface,
-						    &lpat->base,
-						    &start, &end, surface->sourceTransform);
+	gradFunc = CreateRepeatingLinearGradientFunction (surface,
+						          &lpat->base,
+						          &start, &end,
+						          surface->sourceTransform);
     }
 
     surface->sourceShading = CGShadingCreateAxial (rgb,
 						   start, end,
 						   gradFunc,
 						   extend, extend);
 
     CGColorSpaceRelease(rgb);
@@ -1142,52 +1283,68 @@ _cairo_quartz_setup_radial_source (cairo
 				   const cairo_radial_pattern_t *rpat)
 {
     const cairo_pattern_t *abspat = &rpat->base.base;
     cairo_matrix_t mat;
     CGPoint start, end;
     CGFunctionRef gradFunc;
     CGColorSpaceRef rgb;
     bool extend = abspat->extend == CAIRO_EXTEND_PAD;
+    double c1x = _cairo_fixed_to_double (rpat->c1.x);
+    double c1y = _cairo_fixed_to_double (rpat->c1.y);
+    double c2x = _cairo_fixed_to_double (rpat->c2.x);
+    double c2y = _cairo_fixed_to_double (rpat->c2.y);
+    double r1 = _cairo_fixed_to_double (rpat->r1);
+    double r2 = _cairo_fixed_to_double (rpat->r2);
+    double dx = c1x - c2x;
+    double dy = c1y - c2y;
+    double centerDistance = sqrt (dx*dx + dy*dy);
 
     if (rpat->base.n_stops == 0) {
 	CGContextSetRGBStrokeColor (surface->cgContext, 0., 0., 0., 0.);
 	CGContextSetRGBFillColor (surface->cgContext, 0., 0., 0., 0.);
 	return DO_SOLID;
     }
 
-    if (abspat->extend == CAIRO_EXTEND_REPEAT ||
-	abspat->extend == CAIRO_EXTEND_REFLECT)
-    {
-	/* I started trying to map these to Quartz, but it's much harder
-	 * then the linear case (I think it would involve doing multiple
-	 * Radial shadings).  So, instead, let's just render an image
-	 * for pixman to draw the shading into, and use that.
+    if (r2 <= centerDistance + r1 + 1e-6 && /* circle 2 doesn't contain circle 1 */
+        r1 <= centerDistance + r2 + 1e-6) { /* circle 1 doesn't contain circle 2 */
+	/* Quartz handles cases where neither circle contains the other very
+	 * differently from pixman.
+	 * Whatever the correct behaviour is, let's at least have only pixman's
+	 * implementation to worry about.
+	 * Note that this also catches the cases where r1 == r2.
 	 */
-	return _cairo_quartz_setup_fallback_source (surface, &rpat->base.base);
+	return _cairo_quartz_setup_fallback_source (surface, abspat);
     }
 
     mat = abspat->matrix;
     cairo_matrix_invert (&mat);
     _cairo_quartz_cairo_matrix_to_quartz (&mat, &surface->sourceTransform);
 
     rgb = CGColorSpaceCreateDeviceRGB();
 
-    start = CGPointMake (_cairo_fixed_to_double (rpat->c1.x),
-			 _cairo_fixed_to_double (rpat->c1.y));
-    end = CGPointMake (_cairo_fixed_to_double (rpat->c2.x),
-		       _cairo_fixed_to_double (rpat->c2.y));
+    start = CGPointMake (c1x, c1y);
+    end = CGPointMake (c2x, c2y);
 
-    gradFunc = CreateGradientFunction (&rpat->base);
+    if (abspat->extend == CAIRO_EXTEND_NONE ||
+        abspat->extend == CAIRO_EXTEND_PAD)
+    {
+	gradFunc = CreateGradientFunction (&rpat->base);
+    } else {
+	gradFunc = CreateRepeatingRadialGradientFunction (surface,
+						          &rpat->base,
+						          &start, &r1,
+						          &end, &r2);
+    }
 
     surface->sourceShading = CGShadingCreateRadial (rgb,
 						    start,
-						    _cairo_fixed_to_double (rpat->r1),
+						    r1,
 						    end,
-						    _cairo_fixed_to_double (rpat->r2),
+						    r2,
 						    gradFunc,
 						    extend, extend);
 
     CGColorSpaceRelease(rgb);
     CGFunctionRelease(gradFunc);
 
     return DO_SHADING;
 }