DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (31ec81b5d7bb)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "PathHelpers.h"

namespace mozilla {
namespace gfx {

void
AppendRoundedRectToPath(PathBuilder* aPathBuilder,
                        const Rect& aRect,
                        // paren's needed due to operator precedence:
                        const Size(& aCornerRadii)[4],
                        bool aDrawClockwise)
{
  // For CW drawing, this looks like:
  //
  //  ...******0**      1    C
  //              ****
  //                  ***    2
  //                     **
  //                       *
  //                        *
  //                         3
  //                         *
  //                         *
  //
  // Where 0, 1, 2, 3 are the control points of the Bezier curve for
  // the corner, and C is the actual corner point.
  //
  // At the start of the loop, the current point is assumed to be
  // the point adjacent to the top left corner on the top
  // horizontal.  Note that corner indices start at the top left and
  // continue clockwise, whereas in our loop i = 0 refers to the top
  // right corner.
  //
  // When going CCW, the control points are swapped, and the first
  // corner that's drawn is the top left (along with the top segment).
  //
  // There is considerable latitude in how one chooses the four
  // control points for a Bezier curve approximation to an ellipse.
  // For the overall path to be continuous and show no corner at the
  // endpoints of the arc, points 0 and 3 must be at the ends of the
  // straight segments of the rectangle; points 0, 1, and C must be
  // collinear; and points 3, 2, and C must also be collinear.  This
  // leaves only two free parameters: the ratio of the line segments
  // 01 and 0C, and the ratio of the line segments 32 and 3C.  See
  // the following papers for extensive discussion of how to choose
  // these ratios:
  //
  //   Dokken, Tor, et al. "Good approximation of circles by
  //      curvature-continuous Bezier curves."  Computer-Aided
  //      Geometric Design 7(1990) 33--41.
  //   Goldapp, Michael. "Approximation of circular arcs by cubic
  //      polynomials." Computer-Aided Geometric Design 8(1991) 227--238.
  //   Maisonobe, Luc. "Drawing an elliptical arc using polylines,
  //      quadratic, or cubic Bezier curves."
  //      http://www.spaceroots.org/documents/ellipse/elliptical-arc.pdf
  //
  // We follow the approach in section 2 of Goldapp (least-error,
  // Hermite-type approximation) and make both ratios equal to
  //
  //          2   2 + n - sqrt(2n + 28)
  //  alpha = - * ---------------------
  //          3           n - 4
  //
  // where n = 3( cbrt(sqrt(2)+1) - cbrt(sqrt(2)-1) ).
  //
  // This is the result of Goldapp's equation (10b) when the angle
  // swept out by the arc is pi/2, and the parameter "a-bar" is the
  // expression given immediately below equation (21).
  //
  // Using this value, the maximum radial error for a circle, as a
  // fraction of the radius, is on the order of 0.2 x 10^-3.
  // Neither Dokken nor Goldapp discusses error for a general
  // ellipse; Maisonobe does, but his choice of control points
  // follows different constraints, and Goldapp's expression for
  // 'alpha' gives much smaller radial error, even for very flat
  // ellipses, than Maisonobe's equivalent.
  //
  // For the various corners and for each axis, the sign of this
  // constant changes, or it might be 0 -- it's multiplied by the
  // appropriate multiplier from the list before using.

  const Float alpha = Float(0.55191497064665766025);

  typedef struct { Float a, b; } twoFloats;

  twoFloats cwCornerMults[4] = { { -1,  0 },    // cc == clockwise
                                 {  0, -1 },
                                 { +1,  0 },
                                 {  0, +1 } };
  twoFloats ccwCornerMults[4] = { { +1,  0 },   // ccw == counter-clockwise
                                  {  0, -1 },
                                  { -1,  0 },
                                  {  0, +1 } };

  twoFloats *cornerMults = aDrawClockwise ? cwCornerMults : ccwCornerMults;

  Point cornerCoords[] = { aRect.TopLeft(), aRect.TopRight(),
                           aRect.BottomRight(), aRect.BottomLeft() };

  Point pc, p0, p1, p2, p3;

  // The indexes of the corners:
  const int kTopLeft = 0, kTopRight = 1;

  if (aDrawClockwise) {
    aPathBuilder->MoveTo(Point(aRect.X() + aCornerRadii[kTopLeft].width,
                               aRect.Y()));
  } else {
    aPathBuilder->MoveTo(Point(aRect.X() + aRect.Width() - aCornerRadii[kTopRight].width,
                               aRect.Y()));
  }

  for (int i = 0; i < 4; ++i) {
    // the corner index -- either 1 2 3 0 (cw) or 0 3 2 1 (ccw)
    int c = aDrawClockwise ? ((i+1) % 4) : ((4-i) % 4);

    // i+2 and i+3 respectively.  These are used to index into the corner
    // multiplier table, and were deduced by calculating out the long form
    // of each corner and finding a pattern in the signs and values.
    int i2 = (i+2) % 4;
    int i3 = (i+3) % 4;

    pc = cornerCoords[c];

    if (aCornerRadii[c].width > 0.0 && aCornerRadii[c].height > 0.0) {
      p0.x = pc.x + cornerMults[i].a * aCornerRadii[c].width;
      p0.y = pc.y + cornerMults[i].b * aCornerRadii[c].height;

      p3.x = pc.x + cornerMults[i3].a * aCornerRadii[c].width;
      p3.y = pc.y + cornerMults[i3].b * aCornerRadii[c].height;

      p1.x = p0.x + alpha * cornerMults[i2].a * aCornerRadii[c].width;
      p1.y = p0.y + alpha * cornerMults[i2].b * aCornerRadii[c].height;

      p2.x = p3.x - alpha * cornerMults[i3].a * aCornerRadii[c].width;
      p2.y = p3.y - alpha * cornerMults[i3].b * aCornerRadii[c].height;

      aPathBuilder->LineTo(p0);
      aPathBuilder->BezierTo(p1, p2, p3);
    } else {
      aPathBuilder->LineTo(pc);
    }
  }

  aPathBuilder->Close();
}

void
AppendEllipseToPath(PathBuilder* aPathBuilder,
                    const Point& aCenter,
                    const Size& aDimensions)
{
  Size halfDim = aDimensions / 2.0;
  Rect rect(aCenter - Point(halfDim.width, halfDim.height), aDimensions);
  Size radii[] = { halfDim, halfDim, halfDim, halfDim };

  AppendRoundedRectToPath(aPathBuilder, rect, radii);
}

} // namespace gfx
} // namespace mozilla