DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Implementation

Mercurial (31ec81b5d7bb)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef MOZILLA_GFX_MATRIX_H_
#define MOZILLA_GFX_MATRIX_H_

#include "Types.h"
#include "Rect.h"
#include "Point.h"
#include <math.h>

namespace mozilla {
namespace gfx {

class Matrix
{
public:
  Matrix()
    : _11(1.0f), _12(0)
    , _21(0), _22(1.0f)
    , _31(0), _32(0)
  {}
  Matrix(Float a11, Float a12, Float a21, Float a22, Float a31, Float a32)
    : _11(a11), _12(a12)
    , _21(a21), _22(a22)
    , _31(a31), _32(a32)
  {}
  Float _11, _12;
  Float _21, _22;
  Float _31, _32;

  Point operator *(const Point &aPoint) const
  {
    Point retPoint;

    retPoint.x = aPoint.x * _11 + aPoint.y * _21 + _31;
    retPoint.y = aPoint.x * _12 + aPoint.y * _22 + _32;

    return retPoint;
  }

  Size operator *(const Size &aSize) const
  {
    Size retSize;

    retSize.width = aSize.width * _11 + aSize.height * _21;
    retSize.height = aSize.width * _12 + aSize.height * _22;

    return retSize;
  }

  GFX2D_API Rect TransformBounds(const Rect& rect) const;

  // Apply a scale to this matrix. This scale will be applied -before- the
  // existing transformation of the matrix.
  Matrix &Scale(Float aX, Float aY)
  {
    _11 *= aX;
    _12 *= aX;
    _21 *= aY;
    _22 *= aY;

    return *this;
  }

  Matrix &Translate(Float aX, Float aY)
  {
    _31 += _11 * aX + _21 * aY;
    _32 += _12 * aX + _22 * aY;

    return *this;
  }

  bool Invert()
  {
    // Compute co-factors.
    Float A = _22;
    Float B = -_21;
    Float C = _21 * _32 - _22 * _31;
    Float D = -_12;
    Float E = _11;
    Float F = _31 * _12 - _11 * _32;

    Float det = Determinant();

    if (!det) {
      return false;
    }

    Float inv_det = 1 / det;

    _11 = inv_det * A;
    _12 = inv_det * D;
    _21 = inv_det * B;
    _22 = inv_det * E;
    _31 = inv_det * C;
    _32 = inv_det * F;

    return true;
  }

  Float Determinant() const
  {
    return _11 * _22 - _12 * _21;
  }
  
  GFX2D_API static Matrix Rotation(Float aAngle);

  Matrix operator*(const Matrix &aMatrix) const
  {
    Matrix resultMatrix;

    resultMatrix._11 = this->_11 * aMatrix._11 + this->_12 * aMatrix._21;
    resultMatrix._12 = this->_11 * aMatrix._12 + this->_12 * aMatrix._22;
    resultMatrix._21 = this->_21 * aMatrix._11 + this->_22 * aMatrix._21;
    resultMatrix._22 = this->_21 * aMatrix._12 + this->_22 * aMatrix._22;
    resultMatrix._31 = this->_31 * aMatrix._11 + this->_32 * aMatrix._21 + aMatrix._31;
    resultMatrix._32 = this->_31 * aMatrix._12 + this->_32 * aMatrix._22 + aMatrix._32;

    return resultMatrix;
  }

  Matrix& operator*=(const Matrix &aMatrix)
  {
    Matrix resultMatrix = *this * aMatrix;
    return *this = resultMatrix;
  }

  /* Returns true if the other matrix is fuzzy-equal to this matrix.
   * Note that this isn't a cheap comparison!
   */
  bool operator==(const Matrix& other) const
  {
    return FuzzyEqual(_11, other._11) && FuzzyEqual(_12, other._12) &&
           FuzzyEqual(_21, other._21) && FuzzyEqual(_22, other._22) &&
           FuzzyEqual(_31, other._31) && FuzzyEqual(_32, other._32);
  }

  bool operator!=(const Matrix& other) const
  {
    return !(*this == other);
  }

  /* Returns true if the matrix is a rectilinear transformation (i.e.
   * grid-aligned rectangles are transformed to grid-aligned rectangles)
   */
  bool IsRectilinear() const {
    if (FuzzyEqual(_12, 0) && FuzzyEqual(_21, 0)) {
      return true;
    } else if (FuzzyEqual(_22, 0) && FuzzyEqual(_11, 0)) {
      return true;
    }

    return false;
  }

  /* Returns true if the matrix is an identity matrix.
   */
  bool IsIdentity() const
  {
    return _11 == 1.0f && _12 == 0.0f &&
           _21 == 0.0f && _22 == 1.0f &&
           _31 == 0.0f && _32 == 0.0f;
  }

  /* Returns true if the matrix is singular.
   */
  bool IsSingular() const
  {
    return Determinant() == 0;
  }

  GFX2D_API void NudgeToIntegers();

  bool IsTranslation() const
  {
    return FuzzyEqual(_11, 1.0f) && FuzzyEqual(_12, 0.0f) &&
           FuzzyEqual(_21, 0.0f) && FuzzyEqual(_22, 1.0f);
  }

  bool IsIntegerTranslation() const
  {
    return IsTranslation() &&
           FuzzyEqual(_31, floorf(_31 + 0.5f)) &&
           FuzzyEqual(_32, floorf(_32 + 0.5f));
  }

private:
  static bool FuzzyEqual(Float aV1, Float aV2) {
    // XXX - Check if fabs does the smart thing and just negates the sign bit.
    return fabs(aV2 - aV1) < 1e-6;
  }
};

class Matrix4x4
{
public:
  Matrix4x4()
    : _11(1.0f), _12(0.0f), _13(0.0f), _14(0.0f)
    , _21(0.0f), _22(1.0f), _23(0.0f), _24(0.0f)
    , _31(0.0f), _32(0.0f), _33(1.0f), _34(0.0f)
    , _41(0.0f), _42(0.0f), _43(0.0f), _44(1.0f)
  {}

  Float _11, _12, _13, _14;
  Float _21, _22, _23, _24;
  Float _31, _32, _33, _34;
  Float _41, _42, _43, _44;

  /**
   * Returns true if the matrix is isomorphic to a 2D affine transformation.
   */
  bool Is2D() const
  {
    if (_13 != 0.0f || _14 != 0.0f ||
        _23 != 0.0f || _24 != 0.0f ||
        _31 != 0.0f || _32 != 0.0f || _33 != 1.0f || _34 != 0.0f ||
        _43 != 0.0f || _44 != 1.0f) {
      return false;
    }
    return true;
  }

  Matrix As2D() const
  {
    MOZ_ASSERT(Is2D(), "Matrix is not a 2D affine transform");

    return Matrix(_11, _12, _21, _22, _41, _42);
  }

  bool Is2DIntegerTranslation() const
  {
    return Is2D() && As2D().IsIntegerTranslation();
  }

  // Apply a scale to this matrix. This scale will be applied -before- the
  // existing transformation of the matrix.
  Matrix4x4 &Scale(Float aX, Float aY, Float aZ)
  {
    _11 *= aX;
    _12 *= aX;
    _13 *= aX;
    _21 *= aY;
    _22 *= aY;
    _23 *= aY;
    _31 *= aZ;
    _32 *= aZ;
    _33 *= aZ;

    return *this;
  }
};

class Matrix5x4
{
public:
  Matrix5x4()
    : _11(1.0f), _12(0), _13(0), _14(0)
    , _21(0), _22(1.0f), _23(0), _24(0)
    , _31(0), _32(0), _33(1.0f), _34(0)
    , _41(0), _42(0), _43(0), _44(1.0f)
    , _51(0), _52(0), _53(0), _54(0)
  {}
  Matrix5x4(Float a11, Float a12, Float a13, Float a14,
         Float a21, Float a22, Float a23, Float a24,
         Float a31, Float a32, Float a33, Float a34,
         Float a41, Float a42, Float a43, Float a44,
         Float a51, Float a52, Float a53, Float a54)
    : _11(a11), _12(a12), _13(a13), _14(a14)
    , _21(a21), _22(a22), _23(a23), _24(a24)
    , _31(a31), _32(a32), _33(a33), _34(a34)
    , _41(a41), _42(a42), _43(a43), _44(a44)
    , _51(a51), _52(a52), _53(a53), _54(a54)
  {}
  Float _11, _12, _13, _14;
  Float _21, _22, _23, _24;
  Float _31, _32, _33, _34;
  Float _41, _42, _43, _44;
  Float _51, _52, _53, _54;
};

}
}

#endif /* MOZILLA_GFX_MATRIX_H_ */